242,308 research outputs found

    Multiscaling in passive scalar advection as stochastic shape dynamics

    Full text link
    The Kraichnan rapid advection model is recast as the stochastic dynamics of tracer trajectories. This framework replaces the random fields with a small set of stochastic ordinary differential equations. Multiscaling of correlation functions arises naturally as a consequence of the geometry described by the evolution of N trajectories. Scaling exponents and scaling structures are interpreted as excited states of the evolution operator. The trajectories become nearly deterministic in high dimensions allowing for perturbation theory in this limit. We calculate perturbatively the anomalous exponent of the third and fourth order correlation functions. The fourth order result agrees with previous calculations.Comment: 14 pages, LaTe

    Time-like flows of energy-momentum and particle trajectories for the Klein-Gordon equation

    Get PDF
    The Klein-Gordon equation is interpreted in the de Broglie-Bohm manner as a single-particle relativistic quantum mechanical equation that defines unique time-like particle trajectories. The particle trajectories are determined by the conserved flow of the intrinsic energy density which can be derived from the specification of the Klein-Gordon energy-momentum tensor in an Einstein-Riemann space. The approach is illustrated by application to the simple single-particle phenomena associated with square potentials.Comment: 14 pages, 11 figure

    Thermodynamics for Trajectories of a Mass Point

    Get PDF
    On the basis of information theory, a new formalism of classical non-relativistic mechanics of a mass point is proposed. The particle trajectories of a general dynamical system defined on an (1+n)-dimensional smooth manifold are treated geometrically as dynamical variables. Statistical mechanics of particle trajectories are constructed in a classical manner. Thermodynamic variables are introduced through a partition function based on a canonical ensemble of trajectories. Within this theoretical framework, classical mechanics can be interpreted as an equilibrium state of statistical mechanics. The relationships between classical and quantum mechanics are discussed from this statistical mechanical viewpoint. The maximum entropy principle is shown to provide a unified view of both classical and quantum mechanics.Comment: 22 pages, 1 figur

    On the Landau Ginzburg theory of MAG projected SU(2) lattice gauge theory

    Get PDF
    Maximal Abelian gauge fixing and subsequent Abelian projection of SU(2) lattice gauge theory defines closed trajectories of magnetic monopoles. These trajectories can be interpreted in terms of an effective scalar field theory of the MAG monopoles using the worldline representation of the functional determinants. Employing the monopole worldlines detected in the numerical simulation, we show that a scalar bound state exists. The screening mass mm of this state properly scales towards the continuum limit. We find m ~ 1.3 $GeV when the string tension sigma = 440 MeV is used as reference scale.Comment: 9 pages, 3 figures, accepted by Phys. Lett.

    Pioneer's Anomaly and the Solar Quadrupole Moment

    Full text link
    The trajectories of test particles moving in the gravitational field of a non-spherically symmetric mass distribution become affected by the presence of multipole moments. In the case of hyperbolic trajectories, the quadrupole moment of an oblate mass induces a displacement of the trajectory towards the mass source, an effect that can be interpreted as an additional acceleration directed towards the source. Although this additional acceleration is not constant, we perform a general relativistic analysis in order to evaluate the possibility of explaining Pioneer's anomalous acceleration by means of the observed Solar quadrupole moment, within the range of accuracy of the observed anomalous acceleration. We conclude that the Solar quadrupole moment generates an acceleration which is of the same order of magnitude of Pioneer's constant acceleration only at distances of a few astronomical units.Comment: Typos corrected, references adde
    corecore