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Abstract

Maximal Abelian gauge fixing and subsequent Abelian projectidBaR) lattice gauge theory defines closed trajectories of
magnetic monopoles. These trajectories can be interpreted in terms of an effective scalar field theory of the MAG monopoles
using the world line representation of the functional determinants. Employing the monopole world lines detected in the
numerical simulation, we show that a scalar bound state exists. The screening:rofiisis state properly scales towards
the continuum limit. We findz ~ 1.4 GeV when the string tensiofic = 440 MeV is used as reference scale.
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1. Introduction

Lattice calculations [1-7] performed in the so-called “Abelian gauges” [8,9] have provided evidence that a
condensate of magnetic monopoles exist in the Yang—Mills vacuum. Consequently, the vacuum expels color-
electric flux by virtues of the dual Meissner effect and produces confinement. In this sense, the vacuum represents
a dual superconductor. On a phenomenological level a superconductor can be described by a Ginzburg—Landau
theory. There have been attempts to construct the pertinent dual Ginzburg—Landau theory for the QCD vacuum or
to extract it from lattice gauge simulations [10—-13]. The difficulty seems to consist in the mapping of the monopole
degrees of freedom to the one of the scalar Ginzburg—Landau field.

The Ginzburg—Landau theory describes a complex scalar field interacting with an electromagnetic gauge field.
The (dual) Abelian electromagnetic field can be, in principle, be integrated out yielding an effective theory of a
complex self-interacting scalar field. In this Letter, we will extract the effective scalar field theory describing the
dual superconductor of the QCD vacuum with the help of lattice gauge simulations. To this end we firstly determine
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the ensemble of magnetic monopole loops of the vacuum by performing a lattice calculation in the maximum
Abelian gauge, performing the Abelian projection and identifying the magnetic monopole loops by the method of
DeGrand and Toussaint [14]. The obtained ensemble of closed (magnetic monopole) trajectories is then described
in terms of an effective scalar field theory by using the world line formalism [15,16]. Our lattice simulations will
show that a scalar—antiscalar bound state survives in the continuum limit.

2. The Ginzburg-L andau theory of MAG monopoletrajectories

The central idea of the present Letter is that the theory of closed monopole trajectories arising from MAG
projectedSU(2) lattice gauge theory is equivalent to a theory of a charged scalar field. This scalar field theory
designed to describe the monopole properties of the Abelian proj&tié?) Yang—Mills theory necessarily
inherits the scaling laws from the underlyifg (2) Yang—Mills theory and, in particular, the property of asymptotic
freedom by construction (provided th&8t) (2) monopole theory properly scales towards the continuum limit). It
was pointed out by Zakharov [18] that the scalar field theory which emerges3t®) monopole loops is an
interesting candidate for avoiding the so-called fine tuning problem, which is generic in (4-dimensional) scalar
field theory equipped with the standapti potential. Since scalar field theories with local interactions of the scalar
field possess an infra-red fixed point, the action term is presumably not a polynomial of finite order. One might
argue that the increase of complexity due to the non-local interactions prohibit the access to such theories at a
practical level (e.g., the numerical simulation). However, examples of scalar theories incorporating asymptotic
freedom at the expense of the non-locality of the action have been treated in the literature [17,19-21].

In order to establish the equivalence between the theory of the monopole loops and the scalar field theory, we
consider the general form of the partition function of a complex scalar field

Z[M] = f D¢ Dt exp{— f d*x ¢t () [-82 +m? + M(x)]p(x) + V(¢*¢)}. 1)

Herem is the usual mass term, amd(x) is an external source, which we will specify latét(¢Tp) describes
the interaction of the scalar field. The only restriction which we impose here is that we assume the potential term
V (¢1¢) to admit a Taylor expansion so that (1) can be written as

ool [ 8
ZIM]= exp{ /d x V(SM(X)> }ZO[M], (2
Zo[M]=Det [-82 +m? + M (x)]. (3)

Using the proper-time representation of the functional determinantin (3), i.e.,

TolM] = —InZo[M] = / dTTe_sztrexp{—t(—az—i- M)}, 4)
0

the emerging heat kernel can be interpreted as the time evolution operator of a point particle, for which the usual
Feynman path integral representation holds (we refer to [22] for a recent review of the world line formalism)

o
dT 2
FO[M]Z/TE*’"ZT/d‘lxo / Dx(f)e,fOTdr(T+M(x(r)))‘ )
x(T)=x(0)
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Here we have split off the integral over the zero-modes of the path intquébgo, wherexo, the so-called loop
center of mass, corresponds to the average position of theiQ‘op:' 1/17) fOT dt x* (1), i.e.,

fDx(r)—) /de”(r)6(4)|: (1/T)/drx”(r)i|

In order to relate the functional integral over the world lings) in (5) to the expectation values over loop clouds,
we normalize it with respect to the free theg®y = 0) and introduce

(0w), =N"1 f Dx(r)e*fofdf%o(x(r)), (6)
x(T)=x(0)
where
. 4
_ —derﬁ: dp —p?T _ 1
N fDx(r)e 0477 (Zn)4e @) @

Eq. (6) defines the expectation value of an observ@dealuated over an ensemble of closed laoy; the loops
are centered at a common average positigii‘center of mass”) and are distributed according to the Gaussian

weight exp— fOT dt %]. These definitions lead us to the compact formula

1 rar
Io[M] = (4ﬂ)2/d4xo/ﬁe 2T<exp{—fM(x(r))dr}>x. (8)

The world line representation of the interacting scalar field theory (1) is obtained by inserting (8) into (2). Thereby,
the interaction of the scalar f|eM(¢T¢) gives rise to an effective interaction of the Iodp(sx(r)) ie.,

] Bl seren o)

Note, that once a particular choice of the scalar interactiofgs' ¢) is made, the determination of(x (1)) in 9)
is, in principle, straightforward.

In this Letter, we propose to determine the closed monopole loops of the Yang—Mills vacuum using lattice gauge
simulations (see below for details). Employing the above illustrated equivalence between a world line ensemble
and a scalar field theory, the effective scalar field theory underlying the dual superconductor of the Yang—Mills
vacuum can be, in principle, extracted as suggested in [18]. It was recently observed that Monte Carlo calculations
of the loop averages (such as those in (8) and (9)) are feasible [23,24].

In order to connect properties of the monopole loops with expectation values of the scalar field theory, we study
different choices of the external curre¥t(x) in the context of the scalar field theory (2), (3) and in the context of
the world line formalism (9), respectively.

To shorten the presentation, we introduce the shorthand notation

M=

(o) = oz [ d' / e T T O m)),. (10)

Firstly, we choose

M(x) = j&%x — xo) (11)
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Fig. 1. Closed world line contributing to the scalar correlation functigng — yg).

and insert this ansatz into (1) yielding

dI'[M] d
T In (M1 = (¢"¢ (x0)). -

On the other hand, it is clear from (9) thaf'[M]/d;j counts the number times a monopole loop passes through
the specified pointg,

p(x0) = << /dr 8 (x(r) — xo)>>, (13)

and, hence, corresponds to the probability of finding a monopole or antimonopole (depending on the orientation of
the trajectory) ako. We will call this quantity monopole density. Comparing (13) and (12), one identifies

p(x0) = (7 (x0)¢ (x0)). (14)

In order to get a first insight into the propagators of the full interacting scalar theory (1), we investigate the
particular choice of the source

M (x) = j18*(x — x0) + j28*(x — yo). (15)

Inserting (15) into (1), taking the derivative with respect to the currgntand j», respectively, we obtain the
connected Green function

2

C(x0 — yo) = InZIM1 = (¢"p(x0)dT¢ (y0)) — (¢ ¢ (x0) 9T D (v0)), (16)

djrdj2
which in view of (13) can be interpreted as the correlation function of the monopole density. The long distance
behavior of this correlation function determines the screening mass of the scalar—antiscalar excitation.
Taking the derivatives with respect to the curreisand j, of the effective action (9) in the world line
formulation yields the loop representation of the above correlation function:

C(xo—y0)=<<fdf54(X(f)—XO)/dr’54(X(T/)—yo)»—p(xo)p(yo)- 17

The latter equation has a simple interpretation: the correlation fun€iieg— yo) is obtained by taking the average

over all closed loops which pass through poirgsndyo, respectively (see Fig. 1). Once the monopole world lines

are at our disposal, we are able to calculate the full propagator (16) of the corresponding scalar field theory without
specifying the scalar interactio&¢¢).
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3. Latticeresults

In order to determine the closed world lines of the magnetic monopoles we performed simulaticmﬁ RNVG,
N, =12 andN; = 24, lattice using the Wilson action. In order to express the size of the lattice spacing in physical
units, we extract the string tensiem? in units of the lattice spacing from a calculation of the quark—antiquark
potential V () for the above lattice size. For this purpose, we calculated the Polyakov loop correlation function
P(n) as function of the quark—antiquark distance= na. For this task, we used the 2-level Lischer-Weisz
method [25]. The averages at level 1 were performed using 50 iterations while 10 evaluations were employed
for the averages at level 2. 600 independent 2-level measurements were performed.

The raw data were fitted to

P(n) occexp{—N;V(m)a(B)} + exp{—N,V(N; — n)a(p)}, (18)

thereby taking into account the periodicity of the lattice. For the potential we used the standard form
V(n)a = e +0a’n. (29)
n

The results are shown in Table 1.

The values are in reasonable agreement with the known values for symmetric lattices. In the following, we will
use a string tension = 440 MeV as reference scale.

The Maximal Abelian Gauge (MAG) condition, i.e.,

Y U (0PU® ()e%) £ max (20)
{xhn

whereU;?(x) = .Q(x)U,L(x).QT(x + ) are the gauge transformed link variables, is implemented by employing

a standard iteration over-relaxation algorithm. We do not expect that our numerical procedure locgheisathe
maximum of the non-linear functional (20). Choosing different setead maxima of (20) implies that different

gauge conditions are implemented (see, e.g., [26] for a more detailed study of the issue of gauge fixing ambiguities).
We stress that the properties of the monopoles corresponding to these different gauges might turn out to be different.
Rather than pursuing a detailed study of the effects of these so-called Gribov ambiguities, the aim of the present
Letter is to show that a monopole—antimonopole bound state exists at least for a specific choice of the gauge
(MAG, using an iteration over-relaxation algorithm to install the gauge condition). Once the MAG is implemented,
the U (2) gauge theory is projected onto a compécfl) gauge theory by the usual prescription

U2 (x) = exp{io“c*} — exp{io®c3}. (21)

Once the compadf (1) gauge theory is at our disposal, we use the standard method of DeGrand and Toussaint [14]
to extract the closed monopole trajectories.

In order to obtain the screening maasof the scalar bound state, instead of (17) we consider the related
correlation function

Ct) =Y Oy (0) — (v ®) ¥ (0) x exp—mr}, (22)
Table 1
String tension in units of the lattice spacing on thé ¥2N; lattice
B 2.3 2.35 2.4 2.45
oa? 0.13964+ 0.002 Q01104 0.002 Q0073+ 0.002 Q0061+ 0.002
B 2.5 2.55 2.6 2.65

oa? 0.040+0.002 Q027+ 0.002 Q0206+ 0.001 0016+ 0.001
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m=1.45 +/- 0.1 GeV
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Fig. 2. Monopole—antimonopole, i.g ¢, correlation function.

where

Y=Y T, D, 5. (23)
{5}
The correlation functior€ (¢) is obtained from the monopole trajectories as follows: the numpef monopoles
is counted for a given time slice. The correlation function

Cdis(t) = (nno) (24)
provides the disconnected counterpart of the Green function (22). The function can be well represented by the fit
function

Cais(t) = p? + o exp{—m1}, (25)

where we used the fact that the disconnected correlation function asymptoticallyl/m) approaches the
monopole density squared.

After thermalization, we performed 100 measurements which were separated by 15 dummy sweeps to reduce
the auto-correlations. For eagh we extractna from a fit of (25) to the numerical data fa@ryis(z) (24). Fig. 2
shows the normalized connected correlation function

C(t) = (Cais(t) — p%) /o = expl—mt}, (26)

where the value of (in physical units); = a(8) NV;, is obtained by using the measured string tension (see Table 1).
We observe that the data points obtained from sevyenedlues fall on top of the same curve. This signals that
the screening mass extrapolates to the continuum limit. Using a string tensio40 MeVY, we find a mass

m ~ 1454+ 0.1 GeV, which is of order of the mass of the low lying glueballs.
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