730 research outputs found

    An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems

    Full text link
    Heterogeneous anisotropic diffusion problems arise in the various areas of science and engineering including plasma physics, petroleum engineering, and image processing. Standard numerical methods can produce spurious oscillations when they are used to solve those problems. A common approach to avoid this difficulty is to design a proper numerical scheme and/or a proper mesh so that the numerical solution validates the discrete counterpart (DMP) of the maximum principle satisfied by the continuous solution. A well known mesh condition for the DMP satisfaction by the linear finite element solution of isotropic diffusion problems is the non-obtuse angle condition that requires the dihedral angles of mesh elements to be non-obtuse. In this paper, a generalization of the condition, the so-called anisotropic non-obtuse angle condition, is developed for the finite element solution of heterogeneous anisotropic diffusion problems. The new condition is essentially the same as the existing one except that the dihedral angles are now measured in a metric depending on the diffusion matrix of the underlying problem. Several variants of the new condition are obtained. Based on one of them, two metric tensors for use in anisotropic mesh generation are developed to account for DMP satisfaction and the combination of DMP satisfaction and mesh adaptivity. Numerical examples are given to demonstrate the features of the linear finite element method for anisotropic meshes generated with the metric tensors.Comment: 34 page

    Finite volume schemes for diffusion equations: introduction to and review of modern methods

    Full text link
    We present Finite Volume methods for diffusion equations on generic meshes, that received important coverage in the last decade or so. After introducing the main ideas and construction principles of the methods, we review some literature results, focusing on two important properties of schemes (discrete versions of well-known properties of the continuous equation): coercivity and minimum-maximum principles. Coercivity ensures the stability of the method as well as its convergence under assumptions compatible with real-world applications, whereas minimum-maximum principles are crucial in case of strong anisotropy to obtain physically meaningful approximate solutions

    Piecewise linear transformation in diffusive flux discretization

    Full text link
    To ensure the discrete maximum principle or solution positivity in finite volume schemes, diffusive flux is sometimes discretized as a conical combination of finite differences. Such a combination may be impossible to construct along material discontinuities using only cell concentration values. This is often resolved by introducing auxiliary node, edge, or face concentration values that are explicitly interpolated from the surrounding cell concentrations. We propose to discretize the diffusive flux after applying a local piecewise linear coordinate transformation that effectively removes the discontinuities. The resulting scheme does not need any auxiliary concentrations and is therefore remarkably simpler, while being second-order accurate under the assumption that the structure of the domain is locally layered.Comment: 11 pages, 1 figures, preprint submitted to Journal of Computational Physic

    Semi-Lagrangian methods for parabolic problems in divergence form

    Get PDF
    Semi-Lagrangian methods have traditionally been developed in the framework of hyperbolic equations, but several extensions of the Semi-Lagrangian approach to diffusion and advection--diffusion problems have been proposed recently. These extensions are mostly based on probabilistic arguments and share the common feature of treating second-order operators in trace form, which makes them unsuitable for mass conservative models like the classical formulations of turbulent diffusion employed in computational fluid dynamics. We propose here some basic ideas for treating second-order operators in divergence form. A general framework for constructing consistent schemes in one space dimension is presented, and a specific case of nonconservative discretization is discussed in detail and analysed. Finally, an extension to (possibly nonlinear) problems in an arbitrary number of dimensions is proposed. Although the resulting discretization approach is only of first order in time, numerical results in a number of test cases highlight the advantages of these methods for applications to computational fluid dynamics and their superiority over to more standard low order time discretization approaches

    Numerical analysis of a robust free energy diminishing Finite Volume scheme for parabolic equations with gradient structure

    Get PDF
    We present a numerical method for approximating the solutions of degenerate parabolic equations with a formal gradient flow structure. The numerical method we propose preserves at the discrete level the formal gradient flow structure, allowing the use of some nonlinear test functions in the analysis. The existence of a solution to and the convergence of the scheme are proved under very general assumptions on the continuous problem (nonlinearities, anisotropy, heterogeneity) and on the mesh. Moreover, we provide numerical evidences of the efficiency and of the robustness of our approach
    corecore