59 research outputs found

    Author index to volume 185 (1998)

    Get PDF

    Identifiability of Points and Rigidity of Hypergraphs under Algebraic Constraints

    Full text link
    Identifiability of data is one of the fundamental problems in data science. Mathematically it is often formulated as the identifiability of points satisfying a given set of algebraic relations. A key question then is to identify sufficient conditions for observations to guarantee the identifiability of the points. This paper proposes a new general framework for capturing the identifiability problem when a set of algebraic relations has a combinatorial structure and develops tools to analyze the impact of the underlying combinatorics on the local or global identifiability of points. Our framework is built on the language of graph rigidity, where the measurements are Euclidean distances between two points, but applicable in the generality of hypergraphs with arbitrary algebraic measurements. We establish necessary and sufficient (hyper)graph theoretical conditions for identifiability by exploiting techniques from graph rigidity theory and algebraic geometry of secant varieties

    Bibliographie

    Get PDF

    Inside-Out Polytopes

    Get PDF
    We present a common generalization of counting lattice points in rational polytopes and the enumeration of proper graph colorings, nowhere-zero flows on graphs, magic squares and graphs, antimagic squares and graphs, compositions of an integer whose parts are partially distinct, and generalized latin squares. Our method is to generalize Ehrhart's theory of lattice-point counting to a convex polytope dissected by a hyperplane arrangement. We particularly develop the applications to graph and signed-graph coloring, compositions of an integer, and antimagic labellings.Comment: 24 pages, 3 figures; to appear in Adv. Mat

    Linked Tree-Decompositions of Infinite Represented Matroids

    No full text
    It is natural to try to extend the results of Robertson and Seymour's Graph Minors Project to other objects. As linked tree-decompositions (LTDs) of graphs played a key role in the Graph Minors Project, establishing the existence of ltds of other objects is a useful step towards such extensions. There has been progress in this direction for both infinite graphs and matroids. Kris and Thomas proved that infinite graphs of finite tree-width have LTDs. More recently, Geelen, Gerards and Whittle proved that matroids have linked branch-decompositions, which are similar to LTDs. These results suggest that infinite matroids of finite treewidth should have LTDs. We answer this conjecture affirmatively for the representable case. Specifically, an independence space is an infinite matroid, and a point configuration (hereafter configuration) is a represented independence space. It is shown that every configuration having tree-width has an LTD k E w (kappa element of omega) of width at most 2k. Configuration analogues for bridges of X (also called connected components modulo X) and chordality in graphs are introduced to prove this result. A correspondence is established between chordal configurations only containing subspaces of dimension at most k E w (kappa element of omega) and configuration tree-decompositions having width at most k. This correspondence is used to characterise finite-width LTDs of configurations by their local structure, enabling the proof of the existence result. The theory developed is also used to show compactness of configuration tree-width: a configuration has tree-width at most k E w (kappa element of omega) if and only if each of its finite subconfigurations has tree-width at most k E w (kappa element of omega). The existence of LTDs for configurations having finite tree-width opens the possibility of well-quasi-ordering (or even better-quasi-ordering) by minors those independence spaces representable over a fixed finite field and having bounded tree-width

    Is the five-flow conjecture almost false?

    Get PDF
    The number of nowhere zero Z_Q flows on a graph G can be shown to be a polynomial in Q, defining the flow polynomial \Phi_G(Q). According to Tutte's five-flow conjecture, \Phi_G(5) > 0 for any bridgeless G.A conjecture by Welsh that \Phi_G(Q) has no real roots for Q \in (4,\infty) was recently disproved by Haggard, Pearce and Royle. These authors conjectured the absence of roots for Q \in [5,\infty). We study the real roots of \Phi_G(Q) for a family of non-planar cubic graphs known as generalised Petersen graphs G(m,k). We show that the modified conjecture on real flow roots is also false, by exhibiting infinitely many real flow roots Q>5 within the class G(nk,k). In particular, we compute explicitly the flow polynomial of G(119,7), showing that it has real roots at Q\approx 5.0000197675 and Q\approx 5.1653424423. We moreover prove that the graph families G(6n,6) and G(7n,7) possess real flow roots that accumulate at Q=5 as n\to\infty (in the latter case from above and below); and that Q_c(7)\approx 5.2352605291 is an accumulation point of real zeros of the flow polynomials for G(7n,7) as n\to\infty.Comment: 44 pages (LaTeX2e). Includes tex file, three sty files, and a mathematica script polyG119_7.m. Many improvements from version 3, in particular Sections 3 and 4 have been mostly re-writen, and Sections 7 and 8 have been eliminated. (This material can now be found in arXiv:1303.5210.) Final version published in J. Combin. Theory

    Factor models on locally tree-like graphs

    Full text link
    We consider homogeneous factor models on uniformly sparse graph sequences converging locally to a (unimodular) random tree TT, and study the existence of the free energy density ϕ\phi, the limit of the log-partition function divided by the number of vertices nn as nn tends to infinity. We provide a new interpolation scheme and use it to prove existence of, and to explicitly compute, the quantity ϕ\phi subject to uniqueness of a relevant Gibbs measure for the factor model on TT. By way of example we compute ϕ\phi for the independent set (or hard-core) model at low fugacity, for the ferromagnetic Ising model at all parameter values, and for the ferromagnetic Potts model with both weak enough and strong enough interactions. Even beyond uniqueness regimes our interpolation provides useful explicit bounds on ϕ\phi. In the regimes in which we establish existence of the limit, we show that it coincides with the Bethe free energy functional evaluated at a suitable fixed point of the belief propagation (Bethe) recursions on TT. In the special case that TT has a Galton-Watson law, this formula coincides with the nonrigorous "Bethe prediction" obtained by statistical physicists using the "replica" or "cavity" methods. Thus our work is a rigorous generalization of these heuristic calculations to the broader class of sparse graph sequences converging locally to trees. We also provide a variational characterization for the Bethe prediction in this general setting, which is of independent interest.Comment: Published in at http://dx.doi.org/10.1214/12-AOP828 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore