1,699 research outputs found

    Abstract Morphing Using the Hausdorff Distance and Voronoi Diagrams

    Get PDF
    This paper introduces two new abstract morphs for two 2-dimensional shapes. The intermediate shapes gradually reduce the Hausdorff distance to the goal shape and increase the Hausdorff distance to the initial shape. The morphs are conceptually simple and apply to shapes with multiple components and/or holes. We prove some basic properties relating to continuity, containment, and area. Then we give an experimental analysis that includes the two new morphs and a recently introduced abstract morph that is also based on the Hausdorff distance [Van Kreveld et al., 2022]. We show results on the area and perimeter development throughout the morph, and also the number of components and holes. A visual comparison shows that one of the new morphs appears most attractive

    Reliable Face Morphing Attack Detection in On-The-Fly Border Control Scenario with Variation in Image Resolution and Capture Distance

    Full text link
    Face Recognition Systems (FRS) are vulnerable to various attacks performed directly and indirectly. Among these attacks, face morphing attacks are highly potential in deceiving automatic FRS and human observers and indicate a severe security threat, especially in the border control scenario. This work presents a face morphing attack detection, especially in the On-The-Fly (OTF) Automatic Border Control (ABC) scenario. We present a novel Differential-MAD (D-MAD) algorithm based on the spherical interpolation and hierarchical fusion of deep features computed from six different pre-trained deep Convolutional Neural Networks (CNNs). Extensive experiments are carried out on the newly generated face morphing dataset (SCFace-Morph) based on the publicly available SCFace dataset by considering the real-life scenario of Automatic Border Control (ABC) gates. Experimental protocols are designed to benchmark the proposed and state-of-the-art (SOTA) D-MAD techniques for different camera resolutions and capture distances. Obtained results have indicated the superior performance of the proposed D-MAD method compared to the existing methods.Comment: The paper is accepted at the International Joint Conference on Biometrics (IJCB) 202

    A Survey of Morphing Techniques

    Full text link
    Image morphing provides the tool to generate the flexible and powerful visual effect. Morphing depicts the transformation of one image into another image. The process of image morphing starts with the feature specification phase and then proceeds to warp generation phase, followed by the transition control phase. This paper surveys the various techniques available for all three stages of image morphing

    Image Morphing

    Get PDF
    Morphing is also used in the gaming industry to add engaging animation to video games and computer games. However, morphing techniques are not limited only to entertainment purposes. Morphing is a powerful tool that can enhance many multimedia projects such as presentations, education, electronic book illustrations, and computer-based training

    Optimized normal and distance matching for heterogeneous object modeling

    Get PDF
    This paper presents a new optimization methodology of material blending for heterogeneous object modeling by matching the material governing features for designing a heterogeneous object. The proposed method establishes point-to-point correspondence represented by a set of connecting lines between two material directrices. To blend the material features between the directrices, a heuristic optimization method developed with the objective is to maximize the sum of the inner products of the unit normals at the end points of the connecting lines and minimize the sum of the lengths of connecting lines. The geometric features with material information are matched to generate non-self-intersecting and non-twisted connecting surfaces. By subdividing the connecting lines into equal number of segments, a series of intermediate piecewise curves are generated to represent the material metamorphosis between the governing material features. Alternatively, a dynamic programming approach developed in our earlier work is presented for comparison purposes. Result and computational efficiency of the proposed heuristic method is also compared with earlier techniques in the literature. Computer interface implementation and illustrative examples are also presented in this paper

    Variational Autoencoders for Deforming 3D Mesh Models

    Full text link
    3D geometric contents are becoming increasingly popular. In this paper, we study the problem of analyzing deforming 3D meshes using deep neural networks. Deforming 3D meshes are flexible to represent 3D animation sequences as well as collections of objects of the same category, allowing diverse shapes with large-scale non-linear deformations. We propose a novel framework which we call mesh variational autoencoders (mesh VAE), to explore the probabilistic latent space of 3D surfaces. The framework is easy to train, and requires very few training examples. We also propose an extended model which allows flexibly adjusting the significance of different latent variables by altering the prior distribution. Extensive experiments demonstrate that our general framework is able to learn a reasonable representation for a collection of deformable shapes, and produce competitive results for a variety of applications, including shape generation, shape interpolation, shape space embedding and shape exploration, outperforming state-of-the-art methods.Comment: CVPR 201

    matching, interpolation, and approximation ; a survey

    Get PDF
    In this survey we consider geometric techniques which have been used to measure the similarity or distance between shapes, as well as to approximate shapes, or interpolate between shapes. Shape is a modality which plays a key role in many disciplines, ranging from computer vision to molecular biology. We focus on algorithmic techniques based on computational geometry that have been developed for shape matching, simplification, and morphing

    Optimum Slice Reduction Algorithm For Fast Surface Reconstruction From Contour Slices

    Get PDF
    Tesis ini memfokus kepada pembinaan semula permukaan daripada siri hirisan kontur, dengan tujuan mempercepatkan proses pembinaan semula di samping mengekalkan kualiti output pada tahap yang boleh diterima. This thesis is concerned with the reconstruction of surface from a series of contour slices, with the aim to speed up the reconstruction process while preserving the output quality at an acceptable level
    corecore