30 research outputs found

    Quantisation mechanisms in multi-protoype waveform coding

    Get PDF
    Prototype Waveform Coding is one of the most promising methods for speech coding at low bit rates over telecommunications networks. This thesis investigates quantisation mechanisms in Multi-Prototype Waveform (MPW) coding, and two prototype waveform quantisation algorithms for speech coding at bit rates of 2.4kb/s are proposed. Speech coders based on these algorithms have been found to be capable of producing coded speech with equivalent perceptual quality to that generated by the US 1016 Federal Standard CELP-4.8kb/s algorithm. The two proposed prototype waveform quantisation algorithms are based on Prototype Waveform Interpolation (PWI). The first algorithm is in an open loop architecture (Open Loop Quantisation). In this algorithm, the speech residual is represented as a series of prototype waveforms (PWs). The PWs are extracted in both voiced and unvoiced speech, time aligned and quantised and, at the receiver, the excitation is reconstructed by smooth interpolation between them. For low bit rate coding, the PW is decomposed into a slowly evolving waveform (SEW) and a rapidly evolving waveform (REW). The SEW is coded using vector quantisation on both magnitude and phase spectra. The SEW codebook search is based on the best matching of the SEW and the SEW codebook vector. The REW phase spectra is not quantised, but it is recovered using Gaussian noise. The REW magnitude spectra, on the other hand, can be either quantised with a certain update rate or only derived according to SEW behaviours

    Hybrid techniques for speech coding

    Get PDF

    Comparison of CELP speech coder with a wavelet method

    Get PDF
    This thesis compares the speech quality of Code Excited Linear Predictor (CELP, Federal Standard 1016) speech coder with a new wavelet method to compress speech. The performances of both are compared by performing subjective listening tests. The test signals used are clean signals (i.e. with no background noise), speech signals with room noise and speech signals with artificial noise added. Results indicate that for clean signals and signals with predominantly voiced components the CELP standard performs better than the wavelet method but for signals with room noise the wavelet method performs much better than the CELP. For signals with artificial noise added, the results are mixed depending on the level of artificial noise added with CELP performing better for low level noise added signals and the wavelet method performing better for higher noise levels

    Non-intrusive identification of speech codecs in digital audio signals

    Get PDF
    Speech compression has become an integral component in all modern telecommunications networks. Numerous codecs have been developed and deployed for efficiently transmitting voice signals while maintaining high perceptual quality. Because of the diversity of speech codecs used by different carriers and networks, the ability to distinguish between different codecs lends itself to a wide variety of practical applications, including determining call provenance, enhancing network diagnostic metrics, and improving automated speaker recognition. However, few research efforts have attempted to provide a methodology for identifying amongst speech codecs in an audio signal. In this research, we demonstrate a novel approach for accurately determining the presence of several contemporary speech codecs in a non-intrusive manner. The methodology developed in this research demonstrates techniques for analyzing an audio signal such that the subtle noise components introduced by the codec processing are accentuated while most of the original speech content is eliminated. Using these techniques, an audio signal may be profiled to gather a set of values that effectively characterize the codec present in the signal. This procedure is first applied to a large data set of audio signals from known codecs to develop a set of trained profiles. Thereafter, signals from unknown codecs may be similarly profiled, and the profiles compared to each of the known training profiles in order to decide which codec is the best match with the unknown signal. Overall, the proposed strategy generates extremely favorable results, with codecs being identified correctly in nearly 95% of all test signals. In addition, the profiling process is shown to require a very short analysis length of less than 4 seconds of audio to achieve these results. Both the identification rate and the small analysis window represent dramatic improvements over previous efforts in speech codec identification

    Structure-Constrained Basis Pursuit for Compressively Sensing Speech

    Get PDF
    Compressed Sensing (CS) exploits the sparsity of many signals to enable sampling below the Nyquist rate. If the original signal is sufficiently sparse, the Basis Pursuit (BP) algorithm will perfectly reconstruct the original signal. Unfortunately many signals that intuitively appear sparse do not meet the threshold for sufficient sparsity . These signals require so many CS samples for accurate reconstruction that the advantages of CS disappear. This is because Basis Pursuit/Basis Pursuit Denoising only models sparsity. We developed a Structure-Constrained Basis Pursuit that models the structure of somewhat sparse signals as upper and lower bound constraints on the Basis Pursuit Denoising solution. We applied it to speech, which seems sparse but does not compress well with CS, and gained improved quality over Basis Pursuit Denoising. When a single parameter (i.e. the phone) is encoded, Normalized Mean Squared Error (NMSE) decreases by between 16.2% and 1.00% when sampling with CS between 1/10 and 1/2 the Nyquist rate, respectively. When bounds are coded as a sum of Gaussians, NMSE decreases between 28.5% and 21.6% in the same range. SCBP can be applied to any somewhat sparse signal with a predictable structure to enable improved reconstruction quality with the same number of samples

    The self-excited vocoder for mobile telephony

    Get PDF

    The development of speech coding and the first standard coder for public mobile telephony

    Get PDF
    This thesis describes in its core chapter (Chapter 4) the original algorithmic and design features of the ??rst coder for public mobile telephony, the GSM full-rate speech coder, as standardized in 1988. It has never been described in so much detail as presented here. The coder is put in a historical perspective by two preceding chapters on the history of speech production models and the development of speech coding techniques until the mid 1980s, respectively. In the epilogue a brief review is given of later developments in speech coding. The introductory Chapter 1 starts with some preliminaries. It is de- ??ned what speech coding is and the reader is introduced to speech coding standards and the standardization institutes which set them. Then, the attributes of a speech coder playing a role in standardization are explained. Subsequently, several applications of speech coders - including mobile telephony - will be discussed and the state of the art in speech coding will be illustrated on the basis of some worldwide recognized standards. Chapter 2 starts with a summary of the features of speech signals and their source, the human speech organ. Then, historical models of speech production which form the basis of di??erent kinds of modern speech coders are discussed. Starting with a review of ancient mechanical models, we will arrive at the electrical source-??lter model of the 1930s. Subsequently, the acoustic-tube models as they arose in the 1950s and 1960s are discussed. Finally the 1970s are reviewed which brought the discrete-time ??lter model on the basis of linear prediction. In a unique way the logical sequencing of these models is exposed, and the links are discussed. Whereas the historical models are discussed in a narrative style, the acoustic tube models and the linear prediction tech nique as applied to speech, are subject to more mathematical analysis in order to create a sound basis for the treatise of Chapter 4. This trend continues in Chapter 3, whenever instrumental in completing that basis. In Chapter 3 the reader is taken by the hand on a guided tour through time during which successive speech coding methods pass in review. In an original way special attention is paid to the evolutionary aspect. Speci??cally, for each newly proposed method it is discussed what it added to the known techniques of the time. After presenting the relevant predecessors starting with Pulse Code Modulation (PCM) and the early vocoders of the 1930s, we will arrive at Residual-Excited Linear Predictive (RELP) coders, Analysis-by-Synthesis systems and Regular- Pulse Excitation in 1984. The latter forms the basis of the GSM full-rate coder. In Chapter 4, which constitutes the core of this thesis, explicit forms of Multi-Pulse Excited (MPE) and Regular-Pulse Excited (RPE) analysis-by-synthesis coding systems are developed. Starting from current pulse-amplitude computation methods in 1984, which included solving sets of equations (typically of order 10-16) two hundred times a second, several explicit-form designs are considered by which solving sets of equations in real time is avoided. Then, the design of a speci??c explicitform RPE coder and an associated eÆcient architecture are described. The explicit forms and the resulting architectural features have never been published in so much detail as presented here. Implementation of such a codec enabled real-time operation on a state-of-the-art singlechip digital signal processor of the time. This coder, at a bit rate of 13 kbit/s, has been selected as the Full-Rate GSM standard in 1988. Its performance is recapitulated. Chapter 5 is an epilogue brie y reviewing the major developments in speech coding technology after 1988. Many speech coding standards have been set, for mobile telephony as well as for other applications, since then. The chapter is concluded by an outlook

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression
    corecore