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Chapter 1

Introduction

1.1 Foreword

With the current focus on high-speed packet data transmission, it is easy to forget that 

the primary purpose of GSM digital telecommunication systems was speech transmission. 

The general perception is that the complexity of the overall system is associated with the 

management of the transmission link. However, there is a great deal of complexity in the 

compression and decompression of the audio captured by the microphone. Speech must be 

captured at a high enough sample rate and resolution to allow clear reproduction of the 

original sound and compressed in such a way as to maintain the fidelity of the audio over a 

limited bit rate, error-prone wireless transmission channel.

The way in which the human hearing system works allows the coder to create a per-

ceptually similar result at the earpiece of the remote phone. The key principle behind the 

coders used in the GSM system is the mathematical modeling of the human vocal tract, 

leading to an efficient compression method for transmitting speech. A vocoder (combina-

tion of voice and coder) is used to describe these systems tailored for the compression of 

speech.

There are four codecs in use within the GSM that perform the compression opera-

tion.  These are full rate, enhanced full rate (EFR), adaptive multi-rate (AMR) and half-rate 

speech codecs. The full-rate codec is a fairly computationally-efficient method of transmit-



Design and implementation on DSP of the ETSI GSM Adaptive Multi-Rate Vocoder                                          6  

ting speech, but through the use of more intensive algorithms the quality of the speech can 

be improved. The full-rate codec was first implemented on the DSPs of the early 1990s and 

at that time it was not economically viable to use a better quality but more intensive algo-

rithm. In the mid-1990s this was no longer an issue with the availability of higher power 

DSP cores, and so the EFR codec started to appear in handsets.

Full-rate and EFR codecs allow for good reproduction of speech when all their pa-

rameters can be decoded. Due to the redundancy on the transmission channel, many of the 

raw bits can be in error, but the parameters are still recoverable. However, when the param-

eters are lost or erroneous, the quality of the received signal decreases rapidly. It is this 

problem that the AMR codec attempts to resolve. By specifying a set of eight vocoders all 

sharing common mathematical components and operating at different rates, the amount of 

redundancy on the channel can be changed. This way, the quality of speech transmission 

can be slightly degraded by dropping to a lower coding rate, but with an increased confi-

dence of recovering the coding parameters. The result is a better-perceived signal quality in 

the presence of increased interference on the carrier.

The speech coding functionality is riddled with mathematically intensive processes 

such as convolution, and as such is best implemented on dedicated digital signal processors 

with  instructions  to  handle  this  type  of  computation.  But,  even  with  these  specialized 

DSPs, optimization techniques are still necessary in the implementation of a stable speech 

codec with real-time performance.

1.2 Project objectives and methodology

This project has a clear goal. The Adaptive Multi-Rate (AMR) vocoder, as defined by 

ETSI (European Telecommunications Standards Institute) in the GSM 6.90 standard [14], 

has to be implemented into a specialized digital signal processor. It has to be a “bit-exact” 

implementation, as defined by ETSI, and it has to be fast enough so as to work in “real-

time”.
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The ADSP-2181 processor, by Analog Devices, is the DSP chosen for the implemen-

tation. The use of a specialized DSP is a must. Although it would be possible to implement 

the vocoder on a general-purpose processor, the clock speed should be orders of magnitude 

faster to match the same execution speed [9]. Another important decision about the proces-

sor is  choosing between a floating-point  or a fixed-point computational  core. Although 

very fast  implementations  are  available  for  processors  that  offer  floating-point  support 

within the core [11], these implementations are not bit-exact, meaning that they do not re-

sult in the exact mathematical results as the fixed-point reference implementations do. So, 

being the ADSP-2181 a specialized, fixed-point, digital signal processor, it fulfills all the 

requirements for the project.

A first, simple, approach would be trying to accomplish the implementation by only 

using the development tools of the processor manufacturer, in this case Analog Devices. 

Provided that ETSI includes C-language code together with the AMR vocoder documenta-

tion, the Analog Devices' C compiler could be used to get a straight conversion from the C 

code into the assembling code of the DSP [7]. The problem is the compiler is not remotely 

good enough for this purpose. As the same manufacturer reckons, the compiler is able to 

translate simple functions with good results, but using it to translate the huge amount of 

code of the vocoder would produce unexpected results,  illegible  code and poor perfor-

mance. And that supposing that the vocoder worked at all. So we will have to write the 

whole program in assembling code, from the first to the last function of the AMR vocoder.

We can list then, in a more detailed way, the main objectives of the project as follows:

 The first objective is to study the Adaptive Multi-Rate vocoder standard, provided by 

ETSI. All the documentation they include has to be studied, but also the theoretical 

background behind it. That includes the study of voice production, voice coding and 

the history of the different vocoders that preceded the AMR vocoder. Throughout the 

implementation process, the translation of that theory to programming code will also 

have to be understood.
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 The second objective is the study of the digital  signal processor ADSP-2181, from 

Analog Devices, to be able to implement the AMR Vocoder into it. Part of this objec-

tive will be studying how DSP's are specialized in signal processing algorithms, and 

how we can take profit of the dedicated instructions to optimize the program.

 The third objective seems to be the most important objective and the main purpose of 

the project: the bit-exact implementation of the vocoder. Not only has our vocoder to 

work, but it also has to pass all the official tests provided by ETSI to guarantee that the 

encoded and decoded signals it produces are, bit by bit, identical to the ones expected.

 The last  objective  is  to  obtain  a  “real-time”  implementation,  that  is,  the  time  the 

vocoder needs to process the voice signal has to be less than the signal duration itself. 

Otherwise, we wouldn't get a working stable system. As we have just seen, this objec-

tive has had a first implication: the C compiler provided by Analog Devices is not 

good enough to be used. But there's probably a second implication: even our own-

made assembling code will have to follow a strong optimization process.

Now that we have written the main objectives of the project, let's see how they have 

been developed, beginning with a brief description of how this report will be organized.

1.3 Memory structure

Immediately after this introductory chapter, where we have seen the purpose of the 

project, in chapter 2, “GSM Adaptive Multi-Rate Vocoder”, the most theoretical chapter, 

the study of the AMR vocoder is presented. It is one of the objectives of the project, so a 

detailed description is given, beginning with its “Origins and present situation”. A general 

view is offered in “Adaptive Multi-Rate (AMR) coding: general description”, and then spe-

cial focus on the encoding and decoding parts is put, respectively, in “GSM AMR speech 

encoder” and “GSM AMR speech decoder”. Finally, some additional parts of the vocoder 

are studied in “Support functions”.
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Chapter 3, “Workspace: hardware and software development tools”, will describe 

the material, documentation, software and, in general, everything that will be necessary to 

develop the project. The chapter begins with “General description”, where a justification of 

the workspace needed is presented. It follows with “ADSP-2181 processor from Analog 

Devices”, an in-depth description of the digital signal processor that will be used to imple-

ment the AMR vocoder, with the main characteristics that made it suitable for this purpose. 

Finally, an important tool among the tools used throughout the project is given special at-

tention in “Running, debugging and analyzing the assembling code: VisualDSP”.

Chapter 4 is titled “Implementation and optimization” and is the most practical of 

all chapters. The first part, “Methodology”, describes the “day-by-day” realization of the 

project. Then, “Cases of special interest” shows concrete situations encountered during the 

implementation  that  require  a  detailed  explanation,  and  the  solutions  applied.  Lastly, 

“Project results” presents the complete work done, with some numeric results that are ana-

lyzed altogether with more subjective impressions.

The last chapter, “Conclusions”, tries to wrap up the project discussing about the 

“Project objectives accomplished” and the “Future perspectives”.

There are  three appendixes  accompanying the  five main  chapters.  Appendix  A, 

“Speech production  and coding” is  a  theoretical  background to  the study of  the  AMR 

vocoder, giving information about the voice signals, how are they produced and how can 

they be coded. Appendix B, “Simplified instruction set for the ADSP-2181”, explains the 

basics of the assembling programming language that will be used in the implementation. 

Appendix C, “Implementation of the Levinson-Durbin algorithm”, transcribes the complete 

source code of one of the functions of the vocoder (the well-known Levinson-Durbin algo-

rithm), first the C source code, provided by ETSI as a guidance, and then the assembling 

code, implemented during the project.

Finally, the bibliography and a quick reference for terms and acronyms used or re-

lated to the text are included.
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Chapter 2

GSM Adaptive Multi-Rate Vocoder

2.1 Origins and present situation

In this chapter, we will focus on the study of the GSM Adaptive Multi-Rate (AMR) 

vocoder, which is one of the purposes of this project.

Adaptive Multi-Rate (AMR) is an audio data compression scheme optimized for 

speech coding. AMR operating at various bit rates is built into every GSM and WCDMA 

phone, ensuring that content generated by AMR can be played by virtually any wireless 

phone in the world, including hundreds of millions of new phones every year.

AMR was adopted as the standard speech codec by 3GPP (3rd Generation Partner-

ship Project) in October 1998 and is now widely used in GSM and UMTS [22]. It offers 

substantial improvement over previous GSM speech codecs in error robustness by adapting 

speech and channel coding depending on channel conditions.

Initially  developed  for  the  GSM  system,  the  single  most  deployed  2G  mobile 

telecommunication  system  worldwide,  AMR  was  also  standardized  by  the  European 

Telecommunications Standards Institute (ETSI) in 1999 and adopted by the 3GPP as the 

mandatory codec for narrow-band telephony in 2.5G/3G wireless systems based on evolved 

GSM core networks (WCDMA, EDGE, GPRS).  It is  also the mandatory codec for 3G 
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(H.324M) terminals supporting video telephony and the default codec for Multimedia Mes-

saging Services (MMS) as defined by the Open Mobile Alliance (OMA).

Due to its great success, its scope went beyond the bounds of speech communica-

tion in telephony systems, and we can now find AMR in a number of applications: multi-

media services, voice over IP, Wi-Fi telephony, portable audio devices, Internet applica-

tions, digital radio broadcasting and many more. A recent remarkable example is that, in 

2006,  it  was  included  in  the  PacketCable  2.0  specification,  an  important  international 

project  that  seeks for interoperable  interface specifications  in  order to deliver  real-time 

multimedia services over two-way cable networks. 

AMR has also become a well-known file format for storing spoken audio using the 

AMR codec. Many modern mobile telephone handsets allow to store short recordings in 

the AMR format. The common filename extension is .amr.

We will here study the Adaptive Multi-Rate vocoder as defined by the GSM 6.90 

standard.  This  European standard was produced by ETSI Technical  Committee  Special 

Mobile Group (SMG). The complete description of the GSM AMR can therefore be found 

in the documents provided by ETSI.

2.2 Adaptive Multi-Rate (AMR) coding: general description

The GSM Adaptive Multi-Rate (AMR) vocoder belongs to the Algebraic Code-ex-

cited linear prediction (ACELP) vocoders. The bit-rates of the source codec for the adap-

tive multi-rate are: 4.75, 5.15, 5.90, 6.70, 7.40, 7.95, 10.2 or 12.2 kbit/s. Basic theoretical 

background concerning voice production, voice coding and the different types of vocoders 

can be found in the Appendix A, so here we will focus on the specific details concerning 

the ETSI standard [14].
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Figures  2.1  (a)  and 2.1 (b)  present  a  reference  configuration  where  the  various 

speech processing functions are identified. In these figures, the relevant documents for each 

function are also indicated. The audio parts including analogue to digital and digital to ana-

logue  conversion  are  included,  to  show  the  complete  speech  path  between  the  audio 

input/output  in  the Mobile  Station  (MS) and the digital  interface of the PSTN (Public 

Switched Telephone Network). These aspects are only considered to the extent that the per-

formance of the audio parts affect the performance of the speech transcoder.

Figure 2.1 (a): Overview of audio processing functions (transmit side)

Figure 2.1 (b): Overview of audio processing functions (receive side)
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1) 8-bit A-law or µ-law PCM (ITU-T recommendation G.711), 8 000 samples/s;

2) 13-bit uniform PCM, 8 000 samples/s;

3) Voice Activity Detector (VAD) flag;

4) Encoded speech frame, 50 frames/s, number of bits/frame depending on the AMR codec 

mode;

5) Silence Descriptor (SID) frame;

6) TX_TYPE, 2 bits, indicates whether information bits are available and if they are speech 

or SID information;

7) Information bits delivered to the radio subsystem;

8) Information bits received from the radio subsystem;

9) RX_TYPE, the type of frame received quantized into three bits

As shown in figure 2.1 (a), the speech encoder takes its input as a 13-bit uniform 

Pulse Code Modulated (PCM) signal either from the audio part of the Mobile Station or on 

the network side, from the Public Switched Telephone Network (PSTN) via an 8-bit A-law 

or  µ-law to 13-bit  uniform PCM conversion.  The encoded speech at  the output  of the 

speech encoder is then delivered to the channel coding function.

In the receive direction, the inverse operations take place. GSM 06.90 describes the 

detailed mapping between input blocks of 160 speech samples in 13-bit uniform PCM for-

mat to encoded blocks (in which the number of bits depends on the used codec mode) and 

from these to output blocks of 160 reconstructed speech samples.

2.3 GSM AMR speech encoder

2.3.1 Principles

The AMR codec uses eight source codecs with bit-rates of 12.2, 10.2, 7.95, 7.40, 

6.70, 5.90, 5.15 and 4.75 kbit/s [15]. The codec is based on the code-excited linear predic-
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tive (CELP) coding model. A 10th order linear prediction (LP), or short-term, synthesis fil-

ter is used which is given by:

where âi , i = 1,...,m, are the (quantified) linear prediction (LP) parameters, and m = 10 is 

the predictor order. The long-term, or pitch, synthesis filter is given by:

where T is the pitch delay and gp is the pitch gain. The pitch synthesis filter is implemented 

using the so-called adaptive codebook approach.

The CELP speech synthesis model is shown in figure 2.2. In this model, the excita-

tion signal at the input of the short-term LP synthesis filter is constructed by adding two ex-

citation vectors from adaptive and fixed (innovative) codebooks. The speech is synthesized 

by feeding the two properly chosen vectors from these codebooks through the short-term 

synthesis filter.

Figure 2.2: Simplified block diagram of the CELP synthesis model
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The optimum excitation sequence in a codebook is chosen using an analysis-by-

synthesis search procedure in which the error between the original and synthesized speech 

is  minimized  according  to  a  perceptually  weighted  distortion  measure.  The  perceptual 

weighting filter used in the analysis-by-synthesis search technique is given by:

where A(z) is the unquantized LP filter and 0 < γ2 < γ1 ≤ 1 are the perceptual weighting fac-

tors. The values  γ1 = 0.9  (for the 12.2 and 10.2 kbit/s mode) or  γ1 = 0.94 (for all other 

modes) and γ2 = 0.6  are used. The weighting filter uses the unquantized LP parameters.

The coder operates on speech frames of 20 ms corresponding to 160 samples at the 

sampling frequency of 8000 sample/s. At each 160 speech samples, the speech signal is 

analysed to extract the parameters of the CELP model (LP filter coefficients, adaptive and 

fixed codebooks' indices and gains). These parameters are encoded and transmitted. At the 

decoder, these parameters are decoded and speech is synthesized by filtering the recon-

structed excitation signal through the LP synthesis filter.

The signal flow at the encoder is shown in figure 2.3.

LP analysis is performed twice per frame for the 12.2 kbit/s mode and once for the 

other modes. For the 12.2 kbit/s mode, the two sets of LP parameters are converted to line 

spectrum pairs (LSP) and jointly quantized using split matrix quantization (SMQ) with 38 

bits. For the other modes, the single set of LP parameters is converted to line spectrum 

pairs (LSP) and vector quantized using split vector quantization (SVQ). The speech frame 

is divided into 4 subframes of 5 ms each (40 samples). The adaptive and fixed codebook 

parameters are transmitted every subframe. The quantized and unquantized LP parameters 

or their interpolated versions are used depending on the subframe. An open-loop pitch lag 
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is estimated in every other subframe (except for the 5.15 and 4.75 kbit/s modes for which it 

is done once per frame) based on the perceptually weighted speech signal.

Figure 2.3: Block diagram of the GSM adaptive multi-rate encoder

Then the following operations are repeated for each subframe:

 The target signal x(n) is computed by filtering the LP residual through the weighted 

synthesis filter W(z)H(z) with the initial states of the filters having been updated by 

filtering the error between LP residual and excitation (this is equivalent to the com-

mon approach of subtracting the zero input response of the weighted synthesis filter 

from the weighted speech signal).

 The impulse response, h(n) of the weighted synthesis filter is computed.
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 Closed-loop pitch analysis is then performed (to find the pitch lag and gain), using 

the target x(n) and impulse response h(n), by searching around the open-loop pitch 

lag. Fractional pitch with 1/6th or 1/3rd of a sample resolution (depending on the 

mode) is used.

 The target signal  x(n) is updated by removing the adaptive codebook contribution 

(filtered adaptive codevector), and this new target, x2(n), is used in the fixed alge-

braic codebook search (to find the optimum innovation).

 The gains of the adaptive and fixed codebook are scalar quantified with 4 and 5 bits 

respectively or vector quantified with 6-7 bits (with moving average (MA) predic-

tion applied to the fixed codebook gain).

 Finally, the filter memories are updated (using the determined excitation signal) for 

finding the target signal in the next subframe.

The bit allocation of the AMR codec modes is shown in table 2.1. In each 20 ms 

speech frame, 95, 103, 118, 134, 148, 159, 204 or 244 bits are produced, corresponding to 

a bit-rate of 4.75, 5.15, 5.90, 6.70, 7.40, 7.95, 10.2 or 12.2 kbit/s. Note that the most signif-

icant bits (MSB) are always sent first.
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Table 2.1: Bit allocation of the AMR coding algorithm for 20ms frame

2.3.2 Pre-processing

Two pre-processing functions are applied prior to the encoding process: high-pass 

filtering and signal down-scaling.
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Down-scaling consists of dividing the input by a factor of 2 to reduce the possibility 

of overflows in the fixed-point implementation. The high-pass filter serves as a precaution 

against undesired low frequency components. A filter with a cut off frequency of 80 Hz is 

used.

2.3.3 Linear prediction analysis and quantization

12.2 kbit/s mode

Short-term prediction,  or linear prediction  (LP),  analysis  is  performed twice per 

speech frame using the auto-correlation approach with 30 ms asymmetric windows. No 

lookahead is used in the auto-correlation computation.

The auto-correlations of windowed speech are converted to the LP coefficients us-

ing the Levinson-Durbin algorithm. Then the LP coefficients are transformed to the Line 

Spectral Pair (LSP) domain for quantization and interpolation purposes. The interpolated 

quantified and unquantized filter coefficients are converted back to the LP filter coeffi-

cients (to construct the synthesis and weighting filters at each subframe).

10.2, 7.95, 7.40, 6.70, 5.90, 5.15, 4.75 kbit/s modes

Short-term prediction,  or  linear  prediction  (LP),  analysis  is  performed  once  per 

speech frame using the auto-correlation  approach with  30 ms  asymmetric  windows.  A 

look- ahead of 40 samples (5 ms) is used in the auto-correlation computation.

The auto-correlations of windowed speech are converted to the LP coefficients us-

ing the Levinson-Durbin algorithm. Then the LP coefficients are transformed to the Line 

Spectral Pair (LSP) domain for quantization and interpolation purposes. The interpolated 

quantified and unquantized filter coefficients are converted back to the LP filter coeffi-

cients (to construct the synthesis and weighting filters at each subframe).
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2.3.4 Open-loop pitch analysis

Open-loop pitch analysis is performed in order to simplify the pitch analysis and 

confine the closed-loop pitch search to a small number of lags around the open-loop esti-

mated lags.

Open-loop pitch estimation is based on the weighted speech signal sw (n) which is 

obtained by filtering the input speech signal through the weighting filter

That is, in a subframe of size L , the weighted speech is given by:

2.3.5 Impulse response computation

The impulse response, h(n) , of the weighted synthesis filter

is computed each subframe. This impulse response is needed for the search of adaptive and 

fixed codebooks. The impulse response h(n) is computed by filtering the vector of coeffi-

cients  of  the  filter  A (z  /  γ1 ) extended  by zeros  through the  two filters  1  /  Â(z)  and 

1 /  A (z / γ2 ). 
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2.3.6 Target signal computation

The target signal for adaptive codebook search is usually computed by subtracting 

the zero input response of the weighted synthesis filter from the weighted speech signal 

sw(n). This is performed on a subframe basis.

An equivalent procedure for computing the target signal, which is used in this stan-

dard, is the filtering of the LP residual signal resLP(n) through the combination of synthesis 

filter  1 / Â(z)  and the weighting filter A (z / γ1 )  A (z / γ2 ).

After determining the excitation for the subframe, the initial states of these filters 

are updated by filtering the difference between the LP residual and excitation. 

The residual signal  resLP(n)  which is needed for finding the target vector is also 

used in the adaptive codebook search to extend the past excitation buffer. This simplifies 

the adaptive codebook search procedure for delays less than the subframe size of 40 as will 

be explained in the next clause. The LP residual is given by:

2.3.7 Adaptive codebook

Adaptive codebook search is performed on a subframe basis. It consists of perform-

ing closed-loop pitch search, and then computing the adaptive codevector by interpolating 

the past excitation at the selected fractional pitch lag.

The adaptive codebook parameters (or pitch parameters) are the delay and gain of 

the pitch filter. In the adaptive codebook approach for implementing the pitch filter, the ex-

citation is repeated for delays less than the subframe length. In the search stage, the excita-

tion is extended by the LP residual to simplify the closed-loop search.



Design and implementation on DSP of the ETSI GSM Adaptive Multi-Rate Vocoder                                          22  

The average adaptive codebook gain is calculated if the LSP_flag is set and the un-

quantized adaptive codebook gain exceeds the gain threshold GPth= 0.95 .

The average gain is calculated from the present unquantized gain and the quantized 

gains of the seven previous subframes. If the average adaptive codebook gain exceeds the 

GPth , the unquantized gain is limited to the threshold value and the GpC_flag is set to indi-

cate the limitation.

2.3.8 Algebraic codebook

The algebraic codebook is searched by minimizing the mean square error between 

the weighted input speech and the weighted synthesized speech. The target signal used in 

the closed-loop pitch search is updated by subtracting the adaptive codebook contribution.

The algebraic structure of the codebooks allows for very fast  search procedures 

since the innovation vector contains only a few nonzero pulses.

2.3.9 Quantization of the adaptive and fixed codebook gains

If the GpC_flag is set, the limited adaptive codebook gain is used in the gain quan-

tization. The quantization codebook search range is limited to only include adaptive code-

book gain values  less  than  GPth .  This  is  performed  in  the  quantization  search for  all 

modes.

The fixed codebook gain quantization is performed using MA prediction with fixed 

coefficients. The 4th order MA prediction is performed on the innovation energy.

After the gain quantization, the buffer with past adaptive codebook gains is updat-

ed, regardless of the value of the GpC_flag.
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2.3.10 Memory update

An update of the states of the synthesis and weighting filters is needed in order to 

compute the target signal in the next subframe.

2.4 GSM AMR speech decoder

2.4.1 Principles

The signal flow at the decoder is shown in figure 2.4. At the decoder, based on the 

chosen mode, the transmitted parameters are decoded from the received bitstream at each 

transmission frame [15]. These parameters are the LSP vectors, the fractional pitch lags, 

the innovative codevectors, and the pitch and innovative gains. The LSP vectors are con-

verted to the LP filter coefficients and interpolated to obtain LP filters at each subframe. 

Then, at each 40-sample subframe:

• the excitation  is  constructed by adding the adaptive and innovative codevectors 

scaled by their respective gains;

• the speech is reconstructed by filtering the excitation through the LP synthesis fil-

ter.

Finally, the reconstructed speech signal is passed through an adaptive postfilter.
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Figure 2.4: Block diagram of the GSM adaptive multi-rate decoder

2.4.2 Decoding and speech synthesis

The decoding process begins with the decoding of LP filter parameters: the received 

indices of LSP quantization are used to reconstruct the quantified LSP vectors. An interpo-

lation is  then performed to obtain 4 interpolated LSP vectors (corresponding to 4 sub-

frames). For each subframe, the interpolated LSP vector is converted to LP filter coeffi-

cient domain ak , which is used for synthesizing the reconstructed speech in the subframe.

The following steps are repeated for each subframe:

1) Decoding of the adaptive codebook vector: The received pitch index (adaptive 

codebook index) is used to find the integer and fractional parts of the pitch lag. The adap-

tive codebook vector v(n) is found by interpolating the past excitation u(n) (at the pitch de-

lay).

2) Decoding of the innovative codebook vector: The received algebraic codebook 

index is used to extract the positions and amplitudes (signs) of the excitation pulses and to 
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find the algebraic codevector  c(n) . If the integer part of the pitch lag,  T, is less than the 

subframe size 40, the pitch sharpening procedure is applied.

3) Decoding of the adaptive and fixed codebook gains: In case of scalar quanti-

zation of the gains (12.2 kbit/s and 7.95 kbit/s modes) the received indices are used to read-

ily find the quantified adaptive codebook gain and the quantified fixed codebook gain cor-

rection factor from the corresponding quantization tables. In case of vector quantization of 

the gains (all other modes), the received index gives both the quantified adaptive codebook

gain and the quantified fixed codebook gain correction factor.

4)  Smoothing of  the fixed  codebook gain  (10.2,  6.70,  5.90,  5.15,  4.75 kbit/s 

modes): An adaptive smoothing of the fixed codebook gain is performed to avoid unnatu-

ral fluctuations in the energy contour. The smoothing is based on a measure of the station-

arity of the short-term spectrum in the q domain. The smoothing strength is computed from 

this measure.

5)  Anti-sparseness  processing (7.95,  6.70,  5.90,  5.15,  4.75 kbit/s  modes):  An 

adaptive anti-sparseness postprocessing procedure is applied to the fixed codebook vector 

c(n) in order to reduce perceptual artifacts arising from the sparseness of the algebraic fixed 

codebook vectors with only a few non-zero samples per subframe. The anti-sparseness pro-

cessing consists of circular convolution of the fixed codebook vector with an impulse re-

sponse. Three pre-stored impulse responses are. The selection of the impulse response is 

performed adaptively from the adaptive and fixed codebook gains.

6) Computing the reconstructed speech: The excitation at the input of the synthe-

sis filter is given by: 
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Before the speech synthesis, a post-processing of excitation elements is performed. 

This means that the total  excitation is modified by emphasizing the contribution of the 

adaptive codebook vector.

Adaptive gain control (AGC) is used to compensate for the gain difference between 

the non-emphasized excitation and emphasized excitation.

7) Additional instability protection: An additional instability protection is imple-

mented in the speech decoder which is monitoring overflows in the synthesis filter. If an 

overflow has occurred in the synthesis part, the whole adaptive codebook memory is scaled 

down by a factor of 4, and the synthesis filtering is repeated using this down-scaled memo-

ry. 

2.4.3 Adaptive post-filtering

The adaptive postfilter is the cascade of two filters: a formant postfilter, and a tilt 

compensation filter. The postfilter is updated every subframe of 5 ms. The formant postfil-

ter is given by:

where Â(z) is the received quantified (and interpolated) LP inverse filter (LP analysis is not 

performed at the decoder), and the factors γn and γd control the amount of the formant post-

filtering.

Finally, the filter Ht(z) compensates for the tilt in the formant postfilter Hf(z) and is 

given by:

where μ is a tilt factor.
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2.4.4 High-pass filtering and up-scaling

The high-pass filter serves as a precaution against undesired low frequency compo-

nents. A filter cut-off frequency of 60 Hz is used.

Up-scaling consists of multiplying the post-filtered speech by a factor of 2 to com-

pensate for the down-scaling by 2 which is applied to the input signal.

2.5 Support functions

2.5.1 Discontinuous transmission (DTX)

During a normal phone conversation, the participants alternate so that, on the aver-

age,  each direction of transmission is  occupied about 50 % of the time.  Discontinuous 

transmission (DTX) is a mode of operation where the transmitters are switched on only for 

those frames which contain useful information. This may be done for the following two 

purposes:

1) in the MS, battery life will be prolonged or a smaller battery could be used for a 

given operational duration;

2) the average interference level over the air interface is reduced, leading to better 

Radio Frequency (RF) spectrum efficiency.

The overall DTX mechanism is implemented in the DTX handlers (Transmit (TX) 

and Receive (RX)) and requires the following functions [18]:

 a Voice Activity Detector (VAD) on the TX side;

 evaluation of the background acoustic noise on the TX side, in order to transmit 

characteristic parameters to the RX side;
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 generation of comfort noise on the RX side during periods where the radio trans-

mission is turned off.

The transmission of comfort noise information to the RX side is achieved by means 

of a Silence Descriptor (SID) frame. A SID frame is transmitted at the end of speech bursts 

and serves as an end of speech marker for the RX side. In order to update the comfort noise 

characteristics at the RX side, SID frames are transmitted at regular intervals also during 

speech pauses. This also serves the purpose of improving the measurement of the radio link 

quality by the radio subsystem (RSS).

The 2 bit field TX_TYPE indicates whether information bits are speech or SID in-

formation or if there is no information. The TX_TYPE field is calculated from the VAD 

flag by the TX DTX handler. When SID information is transmitted the operation of the 

speech encoder is modified to reduce the remaining computation for that frame.

2.5.2 Voice Activity Detection (VAD)

The input to the VAD is a set of parameters computed by the adaptive multi-rate 

speech encoder defined in GSM 06.90 [19].  The VAD uses this  information to  decide 

whether each 20 ms speech coder frame contains speech or not. Note that the VAD flag is 

an input to the TX DTX handler and does not need to control the transmitter keying direct-

ly.

2.5.3 Comfort noise insertion

When  switching  the  transmission  on  and  off  during  DTX operation,  the  effect 

would be a modulation of the background noise at the receiving end, if no precautions were 

taken.  When transmission  is  on,  the background noise is  transmitted  together with the 

speech to the receiving end. As the speech burst ends, the connection is off and the per-

ceived noise would drop to a very low level. This step modulation of noise may be per-
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ceived as annoying and reduce the intelligibility of speech, if presented to a listener without 

modification.

This "noise contrast effect" is reduced in the GSM system by inserting an artificial 

noise, termed comfort noise, at the receiving end when speech is absent. The comfort noise 

processes are as follows [17]:

• the evaluation of the acoustic background noise in the transmitter

• the noise parameter encoding (SID frames) and decoding;

• and the generation of comfort noise in the receiver.

2.5.4 Lost speech frame substitution and muting

In the receiver, frames may be lost due to transmission errors or frame stealing. 

Some actions have to be taken in these cases, both for lost speech frames and for lost SID 

frames in DTX operation.

In order to mask the effect of an isolated lost frame, the lost speech frame is substi-

tuted by a predicted frame based on previous frames. Insertion of silence frames is not al-

lowed. For several subsequent lost frames, a muting technique shall be used to indicate to 

the listener that transmission has been interrupted. [16]

2.5.5 Adaptive multi-rate codec homing

The GSM adaptive multi-rate speech transcoder, VAD, DTX system and comfort 

noise parts of the audio processing functions (shown in figures 2.1 (a) and (b) ) are defined 

in bit exact arithmetic. Consequently, they shall react on a given input sequence always 

with the corresponding bit exact output sequence, provided that the internal state variables 

are also always exactly in the same state at the beginning of the experiment.
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The input test sequences provided in GSM 06.74 shall force the corresponding out-

put test sequences, provided that the tested modules are in their home-state when starting. 

The modules may be set into their home states by provoking the appropriate homing-func-

tions. This is normally done during reset (initialization of the codec).

Special  in  band  signaling  frames  (encoder-homing-frame  and  decoder-homing-

frame) have been defined to provoke these homing-functions also in remotely placed mod-

ules. This mechanism is specified to support three main areas:

 type approval of mobile terminal equipment;

 type approval of infrastructure equipment;

 remote control and testing for operation and maintenance.

At the end of the first received homing frame, the audio functions that are defined 

in a bit exact way shall go into their predefined home states. The output corresponding to 

the first homing frame is dependent on the codec state when the frame was received. Any 

consecutive homing frames shall produce corresponding homing frames at the output.
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Chapter 3

Workspace: hardware and software

development tools

3.1 General description

As we mentioned in the introduction chapter, the purpose of the project was the imple-

mentation of the AMR vocoder into the ADSP-2181 processor from Analog Devices. Fur-

thermore, we would have to accomplish, if possible, two objectives: it should be a “bit-ex-

act” implementation and it had to run in “real-time”. Let's study what kind of material we 

needed so as to begin with the implementation.

The vocoder description was provided by ETSI specifications. All the related docu-

mentation was available in their web site [23]. In the “ETSI EN 301 704” standard and the 

related documents, a complete description of the vocoder can be found (and we dedicated 

the whole previous chapter to study it), but, concerning the implementation, the more im-

portant document was the “ETSI EN 301 712: ANSI-C code for the AMR speech codec” 

[20], which provided a complete C language implementation of the vocoder. It had to be 

the key reference in the process of implementing the vocoder into the ADSP-2181. Finally, 

if a bit-exact implementation was to be accomplished, some way of verifying that exacti-

tude was necessary, a set of speech samples to test the vocoder in all possible situations, 

and their coded and decoded results to compare with the obtained with our implementation. 
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That is exactly what we got with “ETSI EN 301 713: Test sequences for the Adaptive Mul-

ti-Rate (AMR) speech codec” [21].

With all the written material, the next step was to get the necessary software tools. C 

code had been provided by ETSI, so a C compiler was required, as it would be necessary to 

run the test vectors on the official implementation of the vocoder and extract intermediate 

results at specific points.  Those results could then serve as a reference to compare them 

with the results obtained from the assembling code. A good debugging environment would 

also be appreciated, to set breakpoints in the code and be able to examine the values of dif-

ferent variables. The Visual Studio 6.0, from Microsoft Corporation, was chosen. It includ-

ed Visual C++ (compatible with ANSI C) and also a great deal of debugging tools.

Finally, we needed the digital signal processor itself or, better, a simulation software 

close  enough to  it  that  let  us  work  most  of  the  time  fast  and  easily on  the  PC.  The 

ADSP-2181 is supported with a complete set of software and hardware development tools. 

Specifically, the EZ-KIT Lite provided by Analog Devices contained all we needed [7]:

 System Builder—Defines the architecture of the hardware system.

 Assembler—Assembles the source code and data modules (there was no specific 

source code editor, so a standard editor was used to write the code). It produces ob-

ject and some other intermediate files, as shown in figure 3.1:
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Figure 3.1: Assembler process

 Linker—Links separately assembled modules. It maps the linked code and data out-

put to the target system hardware, as specified by the System Builder output. It is 

the module that produces the executable, as shown in figure 3.2:
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Figure 3.2: Linker process

 VisualDSP—Runs,  debugs and analyzes  the  executable  program.  Its  importance 

during the development was so high that we will dedicate chapter 3.3 to examine 

this tool in depth.

 PROM Splitter—This module reads the Linker output and generates PROM pro-

grammer compatible files.

 ADSP-2181  EZ-LAB  evaluation  board—The  hardware  component,  with  the 

ADSP-2181 processor, where the PROM file can be loaded and the program can 

physically run.
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3.2 ADSP-2181 processor from Analog Devices

3.2.1 General description

The ADSP-2181 is a programmable single-chip microprocessor optimized for digi-

tal signal processing (DSP) and other high-speed numeric processing applications. It be-

longs  to  the  ADSP-2100  processors  family  from  Analog  Devices.  It  combines  the 

ADSP-2100 family base architecture (three computational units,  data address generators 

and a program sequencer) with two serial ports, a 16-bit internal DMA port, a byte DMA 

port, a programmable timer, Flag I/O, extensive interrupt capabilities, and on-chip program 

and data memory.

The ADSP-2181 integrates 80K bytes of on-chip memory configured as 16K words 

(24-bit) of program RAM, and 16K words (16-bit) of data RAM.

Fabricated  in  a  high  speed,  double  metal,  low  power,  CMOS  process,  the 

ADSP-2181 operates with a 25 ns instruction cycle time. Every instruction can execute in a 

single processor cycle [5].

3.2.2 Architecture 

Figure 3.3: ADSP-2181 architecture
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 Computational Units—Every processor in the ADSP-2100 family contains three in-

dependent,  full-function  computational  units:  an  arithmetic/logic  unit  (ALU),  a 

multiplier/accumulator (MAC) and a barrel shifter. The computational units process 

16-bit data directly and also provide hardware support for multi precision computa-

tions.

 Data Address Generators & Program Sequencer—Two dedicated address genera-

tors and a program sequencer supply addresses for on-chip or external memory ac-

cess. The sequencer supports single-cycle conditional branching and executes pro-

gram loops with zero overhead. Dual data address generators allow the processor to 

generate simultaneous addresses for dual operand fetches. Together the sequencer 

and data  address generators keep the computational  units  continuously working, 

maximizing throughput.

 Memory—The ADSP-2100 family uses a modified Harvard architecture in which 

data memory stores data, and program memory stores both instructions and data. 

All ADSP-2100 family processors contain on-chip RAM that comprises a portion 

of the program memory space and data memory space. The speed of the on-chip 

memory allows the processor to fetch two operands (one from data memory and 

one from program memory) and an instruction (from program memory) in a single 

cycle.

 Buses—The  processor  has  five  internal  buses.  The  program  memory  address 

(PMA) and data memory address (DMA) buses are used internally for the addresses 

associated with program and data memory. The program memory data (PMD) and 

data memory data (DMD) buses are used for the data associated with the memory 

spaces. The buses are multiplexed into a single external address bus and a single 

external  data bus;  the BMS, DMS and PMS signals select  the different  address 

spaces. The R bus transfers intermediate results directly between the various com-

putational units.
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 Serial Ports—The serial ports (SPORTs) provide a complete serial interface with 

hardware companding for data compression and expansion. Both µ-law and A-law 

companding are supported. The SPORTs interface easily and directly to a wide va-

riety of popular serial devices. Each SPORT can generate a programmable internal 

clock or accept an external clock. SPORT0 includes a multichannel option.

 Timer—A programmable timer/counter with 8-bit prescaler provides periodic inter-

rupt generation.

 DMA Ports—The ADSP-2181’s Internal DMA Port (IDMA) and Byte DMA Port 

(BDMA) provide efficient data transfers to and from internal memory. The IDMA 

port has a 16-bit  multiplexed address and data bus and supports 24-bit  program 

memory. The IDMA port is completely asynchronous and can be written to while 

the ADSP-2181 is operating at full speed. The byte memory DMA port allows boot 

loading and storing of program instructions and data.

The ADSP-2181 architecture exhibits a high degree of parallelism, tailored to DSP re-

quirements. In a single cycle, it can:

 Generate the next program address.

 Fetch the next instruction.

 Perform one or two data moves.

 Update one or two data address pointers.

 Perform a computation.

 Receive and/or transmit data via the serial ports.

 Receive and/or transmit via the DMA ports.

3.2.3 Instruction Set

The assembly language of the ADSP-2181 is often referred as simply “ADI”. It's a 

language that, unlike many other assembly languages, uses an algebraic syntax for readabil-
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ity and ease of coding. Because some assembly code will be shown in chapter 4, a brief de-

scription of the assembly language of the ADSP-2181 will be included in the Appendix B. 

Here, some features will be highlighted because they had an impact over the development 

of the project, or at least made it a little easier the always difficult task of programming in 

assembly language.

The instruction set is quite appropriate to the computation-intensive algorithms of 

the AMR vocoder. For example, sustained single-cycle multiplication/accumulation opera-

tions are possible. The instruction set provides full control of the processors’ three compu-

tational units: the ALU, MAC and Shifter. Arithmetic instructions can process single-preci-

sion 16-bit operands directly and provisions for multi-precision operations are available. A 

40-bit accumulator provides eight bits of protection against overflow in successive addi-

tions to ensure that no loss of data or range occurs; 256 overflows would have to occur be-

fore any data is lost [6].

There is no performance penalty for the high-level syntax of ADSP-2181 language: 

each program statement assembles into one 24-bit instruction which executes in a single 

cycle. There are no multi-cycle instructions in the instruction set.

In addition to JUMP and CALL, the instruction set’s control instructions support 

conditional execution of most calculations and a DO UNTIL looping instruction. Return 

from interrupt (RTI) and return from subroutine (RTS) are also provided.

As a consequence of the high degree of parallelism of the ADSP-2181 architecture, 

seen in the previous section, and the 24-bit instruction words, the instruction set allows for 

single-cycle execution of any of the following combinations [5]:

 any ALU, MAC or Shifter operation (conditional or non-conditional)

 any register-to-register move

 any data memory read or write

 a computation with any data register to data register move
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 a computation with any memory read or write

 a computation with a read from two memories

Lastly, but equally remarkable,  ADI allows maximum flexibility moving data. It 

provides moves from any register to any other register, and from most registers to/from 

memory.

3.3 Running, debugging and analyzing the assembling code: VisualDSP

The implementation and testing of the vocoder required an absolute control over the 

data at every step of the execution process. Firstly, we needed a tool to execute the program 

without uploading it into the DSP itself, that is, in order to accelerate the testing process 

and being more productive we needed a PC simulator. Secondly, without the proper tool to 

debug the code it would have been impossible to accomplish the ”bit-exact” goal. If the 

program does not function correctly, the ability to step through code or to run to a predeter-

mined line and halt are very useful features. Each time the program halts, you can examine 

registers and memory to determine the source of errors. From the typical programming er-

rors to the, more difficult to detect, overflow situations, they all needed a step-by-step code 

revision to find the exact line of the assembly program where the error was generated. Last-

ly, the “real-time” implementation goal required the proper tool to analyze the processor 

use and performance. All three requirements were met by the tool we are now presenting: 

the VisualDSP debugger.

The VisualDSP debugger (which we'll often call “Simulator”) gives several options 

for running and observing program execution:

 Examining and changing the contents of memory and register windows

 Setting breakpoints to control program execution

 Defining watch points to capture program activity
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 Tracing functions in the program to determine which paths are taken during specific 

activities

 Profiling the application’s performance within defined memory ranges

 Streaming data from the test vector into the program to watch the results

3.3.1 VisualDSP interface

Figure 3.4 shows the distribution of VisualDSP debugger windows that was used 

most of the time during the development process.

Figure 3.4: Common VisualDSP interface

The “Disassembly” window shows the code of the program with the instruction cur-

rently executing highlighted.

“Computational” and “DAG” are used to check registers status, which was very 

useful to trace the data changes involved in every action.
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Another important window is “Program Control”. It shows some general indicators 

that help keep track of execution loops, for example.

Lastly,  another  not  so  often  used,  but  also  useful,  windows  include:  “Program 

Memory” and “Data Memory” (to check at a very low level the content of any address in 

program or data memory) and “Call Stack” (to follow the execution path when using sub-

routines).

3.3.2 I/O streaming

Most of the time, it was necessary to use data input (often one of the test vectors 

provided by ETSI) to follow the data processing throughout the program. It was then ap-

propriate to use the “streaming” option of the debugger. As shown in the figure 3.5, there is 

an option to choose sources and a destinations for the data entering and exiting the proces-

sor. They can be physical devices or, as in our case, data files.

Figure 3.5: Stream configuration
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3.3.3 Profiling

To analyze the executable program runtime behavior, the “profiling” function was used. 

This feature allows to select areas of code and obtain its performance on program execu-

tion, as shown in figure 3.6.

Figure 3.6: Profile definition

We were especially interested in seeing the processor cycles consumption of the 

vocoder, divided into its different modules. That would make it possible to evaluate the op-

timization level of the assembly code, and if we would be able to accomplish one of our 

main objectives: the real-time operation of the system.

Once a profile have been defined, the program (or the part of it we are interested in) 

can be run and the performance results are shown, as in figure 3.7.
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Figure 3.7: Profiling results

The “Exec Count” parameter shows the number of executions of any instruction be-

longing to the profile, and the “Exec %” is the percentage over the total number of instruc-

tions executed. As we learned previously in this chapter, the processor executes any in-

struction in one cycle, so these parameters tell us the number of processor cycles used in 

any part of the program that we want to evaluate. We will come back to the performance is-

sue in the next chapter, when we study some numeric results of the vocoder implementa-

tion.
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Chapter 4

Implementation and optimization

4.1 Methodology

4.1.1 Preparation

A simple first view to the C source code provided by ETSI [20] made it clear it was 

not going to be an easy, nor short, development. The vocoder was implemented into 113 

“.c” code files (with their respective “.h” header files) and 22 “.tab” files for the numeric 

tables. Further examining the “.c” files, they contained 27636 lines of source code. It was 

clear  that  different  phases  had  to  be  established:  concentrating  into  smaller  objectives 

would make it easier to organize and evaluate the progress of the project.

But something had to be done first. The code provided by ETSI had to work, that is, 

compiled, linked and executed in a PC. As it has been commented before, it would serve as 

a reference to  verify the implementation  in  ADI: coding a speech sample  with the “C 

vocoder” would give us, at any point of the process, the “officially” expected result to be 

compared with the one obtained with our “ADI vocoder” at the same point.

Being standard ANSI-C, it shouldn't be difficult to make the code work in our Visual 

C++ environment. And it wasn't. With a small change in the file “typedefs.h”, to specify 

the platform we were working with, we got executable files, both for the encoder and the 

decoder. We tried then to encode and decode a real speech sample.
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The file “spch_dos.inp” is provided by ETSI together with the source code. It had to be 

passed through the encoder, with the file “allmodes.txt” specifying the AMR mode for each 

frame (in this case it switches between all possible modes) and the coded file should be 

identical to the “spch_dos.cod”, also provided. We performed the test and the result was 

the expected. Then we tried to pass the just encoded sequence to the decoder and compared 

it with the “spch_dos.out” file provided. Again, they were identical.

We also wanted to perform this first test to get an idea (to some extent) of the degree 

of optimization it was going to be necessary in the project. The time the encoder needed to 

process the speech frames was an important indicator (the decoder would be much faster). 

With  the  Pentium  III  processor  we  were  using,  and  the  standard  voice  test  sample 

“spch_dos.inp”, it took a little more than 10 sec. to complete the encoding of the 8.5 sec. 

sample (425 speech frames, at 20 msec. per frame). The PC processor couldn't make it in 

real time. It confirmed the demanding algorithm we were dealing with, and also confirmed 

that an optimization process was going to be needed when we implemented it  into the 

ADSP-2181 [9].

With all the previous considerations, we could make a decision about the methodology 

we were going to follow.

4.1.2 Procedure

• To divide the large implementation into smaller, more affordable, modules, we de-

cided to follow the logical flow of the functions of the program. Beginning with 

the  first  function  the  speech  sequence  would  “encounter”  when  entering  the 

vocoder, that is, the “Main” function of the encoder (“Speech_Encode_Frame”), 

we would follow the same path as the speech frames, implementing the functions 

in the same order we found them. That way, any moment we could test the work 

done, from the beginning to the last point implemented. Of course, a first division 

was clear between the encoder and the decoder, but then we had to take our way 
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down into lower levels. Table 4.1 shows the code hierarchy (for clarity, only the 

encoder is shown, with functions up to level 4, basic routines avoided).

Following the table, the order would be to begin with “Speech_Encode_Frame”, 

then to “Pre_Process”, “cod_amr”, “Copy”... and so on.

Speech_Encode_Frame Pre_Process
cod_amr Copy

Vad1 filter_bank
vad_decision

Tx_dtx_handler
Lpc Autocorr

Lag_window
Levinson

Lsp Az_lsp
Q_plsf_5

Int_lpc_1and3_2
Int_lpc_1and3

Q_plsf_3
Int_lpc_1to3_2
Int_lpc_1to3

Copy
dtx_buffer Copy

Log2
dtx_enc Lsp_lsf

Reorder_lsf
Lsf_lsp

Set_zero
lsp_reset Copy

Q_plsf_reset
Cl_ltp_reset Pitch_fr_reset
check_lsp
pre_big Weight_Ai

Residu
Syn_filt

ol_ltp Pitch_ol
Pitch_ol_wgh

vad_pitch_detection
subframePreProc Weight_Ai

Syn_filt
Residu
Copy

cl_ltp Pitch_fr
Pred_lt_3or6
Convolve
G_pitch

check_gp_clipping
q_gain_pitch

Cbsearch
GainQuant

update_gp_clipping Copy
subframePostProc Syn_filt

Pred_lt_3or6
Convolve

Prm2bits Int2bin

Table 4.1: Code hierarchy (partial)

 When a function called a subroutine, even if the subroutine didn't exist yet, the pa-

rameters where placed in the proper registers or memory positions (where eventual-

ly the subroutine would look for them). The CALL instruction itself was written, 

but left disabled in the code if the subroutine didn't exist.
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 The implementation of each function was made literally in a first approach, that is, 

totally equivalent to the C counterpart instruction by instruction. Then, it was tested 

(as we'll see in the next point). When the test was successful, an optimization was 

performed,  rearranging the instructions  into multifunction instructions  and using 

other techniques that have been seen in chapter 3 and will be shown in more detail 

in chapter 4.2. Finally, a new test for the optimized version and the function could 

be considered done.

 The testing process depended on the function itself. For basic functions, using the 

VisualDSP debugging tools was enough. Setting a breakpoint at the beginning of 

the function and then stepping over every instruction, manually defining the data in 

the registers and memory, allowed to verify the correct behavior of the function.

When more complex functions had to be tested, or critical points of the vocoder 

process were reached, the whole test sample “spch_dos.inp” was used. Using the 

original C code and the Visual Studio debugging tools, the test sample was passed 

through the vocoder, and sequences were taken at the beginning and ending of the 

function  we wanted to  check.  If repeating the  same process,  but  with  our  own 

vocoder, produced the same sequences, then we considered the function tested. It's 

important to remember at this point that only a test sequence was used, a standard 

voice sample. Working with that sample didn't guarantee that the whole set of test 

vectors, provided by ETSI to test a bit-exact implementation [21], would pass. Fur-

thermore, provided that the test vectors are prepared to test non-standard situations, 

like overflow errors, that doesn't normally appear during a voice conversation, it 

was very likely that some of them would fail through our functions at this point. We 

counted on it,  but  using the whole set  of test  vectors  with individual  functions 

would have made the process much slower. We should deal with them later. But as-

suring a correct implementation with normal speech samples made us confident that 

we would get, if not bit-exact, at least a working vocoder.
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 Regarding the optimization: without a reference, it was difficult to know the degree 

of optimization required. In other words, there are always ways to save one proces-

sor cycle, but they have a cost to pay, be it in hours spent by the developer, be it in 

processor's memory used (more on this in chapter 4.2). As we had a clear objective 

to accomplish, the system functioning in real-time, some calculations were made to 

get an idea of the real meaning of that objective [8].

First of all, from the specifications we know that the ADSP-2181 processor oper-

ates with a 25 ns instruction cycle time, for all the instructions (even multioperation 

instructions). We will try to convert that value to a more often used parameter when 

referring a processor's performance: MIPS. The number of MIPS a processor can 

provide is the number of Millions of Instructions Per Second. In our case, that's 

equivalent to the millions of cycles per second, so:

25 ns /cycle −1=25×10−9 s /cycle −1=4×107 cycle /s

MIPS=4×10 7cycle / s
106 =40

So 40 MIPS is the maximum power we can get from the processor, but how many 

of those MIPS are we using into a specific function? We usually work with com-

plete frames or subframes into a function but, to answer the question, it would be 

easier if we could work with individual samples (meaning by sample here each one 

of the 16-bit words that form the frame; each frame containing 160 samples). The 

reason is that, in the end, the algorithm operates sample by sample, and the instruc-

tions that a function uses for each sample are easier to count.



Design and implementation on DSP of the ETSI GSM Adaptive Multi-Rate Vocoder                                          49  

To work with samples, the only information we need is that they are taken at a fre-

quency of 8 KHz. In one second, we have to process 8000 samples. In that same 

second, one million cycles dedicated will count as 1 MIP, so:

106 cycle /s 
8000 sample /s 

=125cycle / sample

We could then implement and optimize our code taking into account that every 125 

instructions  dedicated  to  one  sample  would  cost  1  MIP of  our  processor.  That 

knowledge was useful to detect, simply looking at the code, the functions we had to 

put a special interest in. And, although we are not going to give any more details on 

how this affected to specific functions, we'll come back to the MIPS issue soon, 

when we analyze the final results of the project.

4.2 Cases of special interest

It would make little sense describing function by function all the implementation pro-

cess. It is not possible due to space limitation, nor is it the purpose of this report. As an ex-

tract of the whole process, a complete example is shown in Appendix C. We have chosen 

one function, the Levinson-Durbin algorithm, that is very representative of the complete 

system. The ANSI-C code is first shown, and then our implementation of the same code 

into ADI, the assembling language of the DSP. Of course, all the functions of the AMR 

vocoder are available, in case someone was interested. We would be willing to provide 

them upon previous request.

It is very interesting, though, to comment on some particular cases that we encountered 

during the development of the project and that we found had special relevance in the imple-

mentation. It's our selection of cases of interest. It can be useful to understand the typical 

problems that were found and the solutions we applied.
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4.2.1 Sum of products

Perhaps the single most common operation in DSP algorithms is the sum of products. 

It consists in fetching two operands (such as a coefficient and a sample point) and then 

multiplying the operands and summing the result with previous products.

As we have seen, the ADSP-2181 can execute both data fetches and the multiplication/

accumulation in a single-cycle. Besides, it doesn't introduce extra cycles managing loops, 

so an operation of this type can execute with sustained single-cycle throughput.  Typically, 

it can be written with just two program lines:

DO sample_loop UNTIL CE;

sample_loop: MR=MR+MX0*MY0(SS), MX0=DM(I0,M0), MY0=PM(I4,M5);

4.2.2 Common mistake: testing a memory value

If we wanted to check if the value of sample_var is greater than zero (GT) to perform 

some action, the next code would be INCORRECT:

AR = DM(sample_var);

IF GT JUMP ...

The reason is that a data movement doesn't alter the status flags, only operations do. 

So the CORRECT version of the code would be:

AR = DM(sample_var);

AR = PASS AR;

IF GT JUMP ...

The operation PASS doesn't do anything, but activates the status flags.
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4.2.3 Testing 32-bit values

To produce the correct flags when testing a 32-bit value, for example stored in the reg-

isters MR1 (higher 16 bits) and MR0 (lower 16 bits), we begin testing the higher bits. If 

they are different from zero, they provide all the information we need. In case they are 

equal to zero (EQ) the absolute value of the lower part (because the lower 16 bits don't 

store sign information) is tested.

AR = PASS MR1;

IF EQ AR = ABS MR0;

4.2.4 Saving one cycle per iteration in long loops

There's a way to save a cycle in a loop by performing the last iteration outside the loop. 

For example, imagine we have to sum the components of some vector, sample_vector, of N 

components:

I0 = ^sample_vector;

CNTR = N;

M1 = 1;

DO loop UNTIL CE;

AY0 = DM(I0,M1);

loop: AR = AR + AY0;

The loop uses two cycles, one to fetch the value and the other to add the result, so we 

have used 2N processor's cycles (plus 3 extra initialization cycles outside the loop). Let's 

take a look at the next variation:

I0 = ^sample_vector;

AY0 = DM(I0,M1);

CNTR = N - 1;

M1 = 1;

DO loop UNTIL CE;
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loop: AR = AR + AY0,AY0 = DM(I0,M1);

/* now the extra iteration, outside the loop */

AR = AR + AY0;

By taking the first memory fetch and the last addition out of the loop, we can use in-

side a multi-operation that adds the value and fetches the next value in the same cycle. The 

total processor's cycles used has been reduced to N (instead of 2N) and we have only in-

creased the extra cycles to 5 (instead of 3).

4.2.5 Common mistake: initializing variables in subroutines

If some variable needs to be initialized at the beginning of a subroutine, for example 

the variable lsp_flag = 0, it is not enough to use the following ADI code:

.VAR/DM lsp_flag;

.INIT lsp_flag: 0;.

The reason is that we wanted the variable to be re-initialized every time the subroutine 

was called, while in ADI it is initialized only once, at the beginning of the program, keep-

ing its value between calls. The solution would be to include the necessary instructions at 

the beginning of the subroutine to assign the value to the variable every time is called.

4.2.6 Analog Devices bug! Use of constants in ALU operations

Even if the use of any constant value is allowed as a valid parameter for an ALU in-

struction, as can be checked in Appendix B, we discovered that it produced a wrong com-

piled code when the constant was equal to zero. Very oddly, instead of zero, the current 

value of register AY0 was used.
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It would be long to explain why such a case could happen, but it did, and the error was 

very difficult to detect. Analog Devices were informed of it, agreed it was an error of their 

compiler and thanked us for the information.

4.2.7 Reutilization of memory for different buffers

Several functions of the vocoder used huge temporal buffers. Implementing them as 

local to the specific function would have supposed a great amount of memory used, but 

there was a solution to optimize that. Instead of using local buffers, some global buffers 

where declared. Then they could be used in different functions to store temporal buffers.

 

To make it easier the legibility of the code, local names can be used. Let's assume that 

we have a global buffer declared as temp_dm. A function that wanted to use it to store two 

local buffers, filter_param and speech, could define them easily this way:

#define filter_param temp_dm

#define speech temp_dm + 40

And then use them as if they were local:

I0 = ^speech;

AR = DM(I0,M1);

...

But some precautions must be taken: using it only locally (can't store anything useful if 

the execution exits the function, either because it ends or because it calls a subroutine) and 

not exceeding their maximum length.
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4.2.8 Multiplication of fractional 1.15 numbers

When we have fractional values of 16 bits in format 1.15 (they have an absolute value 

less than 1), some steps must be performed when multiplying them.

If we multiply two 1.15 numbers, a 2.30 number results in the MAC unit of the proces-

sor. The value of the highest bit is irrelevant (as the result of the multiplication doesn't ex-

ceed 1 in absolute value, the two bits of the integer part are either “00” or “11”), so we can 

left-shift the result and we will get a 1.31 value. Then we simply take the 16 most signifi-

cant bits and we will have a 1.15 number again.

4.3 Project results

Applying the method described in chapter 4.1, using some of the techniques described 

in chapter 4.2, and dedicating tons of hours, one day came when the AMR vocoder had 

been totally implemented into the ADSP-2181.

As a systematic testing method had been applied, we didn't get any surprise and it was 

rather easy to check that the encoder and the decoder worked with the file “spch_dos.inp” 

provided by ETSI. The coded file was identical to the “spch_dos.cod” provided, and the 

decoded file was identical to “spch_dos.out”.

Another very important test had to be done. It had been periodically done throughout 

the process, with good results, but the results that counted were the last ones. We are refer-

ring to the MIPS performance of the vocoder, and if it would be able to work in real-time. 

Specifically, and provided that we are treating independently encoding and decoding, we 

were interested in the MIPS consumption of the encoder, that was way more complex (and 

slow) than the decoder. Using the profiling options in the VisualDSP simulator, the follow-
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ing results were obtained for each mode, shown in table 4.2. A standard voice sequence 

(vector “t08”) was used as an input, trying to get results as close to real use as possible.

MODE BITRATE (Kbps) ENCODER MIPS
MR475 4.75 23
MR515 5.15 18.7
MR59 5.90 23
MR67 6.70 29
MR74 7.40 26.5
MR795 7.95 28.1
MR102 10.2 27.2
MR122 12.2 28.7

Table 4.2: MIPS consumption for each mode

The first thing to note, of course, is that the MIPS used are less than the 40 MIPS the 

ADSP-2181 is capable of. We have even obtained an important margin, that will be useful 

to include into the ADSP, together with the AMR encoder, some possibly necessary func-

tions (analog to digital speech conversion, for example). The system could work in real-

time. And the same applies to the decoder by a greater margin. As a side note, unfortunate-

ly, we wouldn't be able to build a whole dual-channel system, with the encoder, the decoder 

and the rest of the external modules working in one ADSP-2181. But that was not part of 

the objectives of the project.

Interestingly enough, the MIPS consumption is not proportional (or at least related in 

some way) to the bitrate used. The reason is that all the input samples have to be processed 

in any of the modes, no matter the output frame length. Nevertheless, internally each mode 

acts as a different vocoder, with its specific functions, and they are more or less complex 

independently one from each other.

Trying to find the most cost-expensive function, different profiling tests were made, 

evaluating the MIPS of each of the main functions. Results are presented in table 4.3. The 

numbers were obtained with the same test sequence “t08” and mode MR122.
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FUNCTION MIPS DESCRIPTION
Pre_Process 0.42 Preprocessing of input speech
Lpc 0.84 LP coefficients calculation
Lsp 5.25 Conversion from LP coefficients to LSPs
ol_ltp 3.4 Compute the open loop pitch lag
subframePreProc 2.3 Subframe preprocessing
cl_ltp 2.6 Close-loop fractional pitch search
Cbsearch 11.8 Innovative codebook search
GainQuant 0.2 Quantization of gains
subframePostProc 0.6 Subframe postprocessing

Table 4.3: MIPS consumption of the main functions

The most processor-consuming function, by a difference, is “Cbsearch”. The codebook 

search, as we studied in chapter 2, is the key technique in the AMR vocoder. It provides the 

most important reduction in the length of the encoded bits, reducing the transmission of the 

speech frame to the index and gain of the codevector into the codebook. But, as we have 

just seen, this great reduction comes with a great computational cost.

So the vocoder seemed to work, but we wanted to “hear it”. Using the ADSP-2181 

EZ-LAB evaluation board, a microphone, a speaker, and some  audio functions (not made 

by the author), including analogue to digital (13-bit uniform PCM) and digital to analogue 

conversion, we were able to encode our own voice and then recover it through the decoder, 

using different modes. The audio quality was quite good, obviously better with the 12.2 

Kbit/s mode than with the 4.75 Kbit/s mode (the two extreme modes), but acceptable in 

any case. It was one of the most satisfying moments of the project.

But the job wasn't finished yet. Remember the bit-exact implementation and the test 

vectors? As expected, some of them didn't pass the test. Exactly 176 out of 360 test vectors 

failed, most of them corresponding to the encoder. It's a very significant information about 

the ETSI standard of quality: an apparently working vocoder couldn't pass almost half of 

their tests [21].

The process of solving these particular cases wasn't as hard as it may seem, though. 

Using the debugging tools, at the same time with the C code and the ADI code, it was easy 
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to identify the exact point where they diverged and correct the mistake. Most of the times it 

was due to an overflow situation: an addition of very high (or low) values through many 

samples produced a saturation of the corresponding value that was treated differently by the 

ADSP accumulator than by the ETSI implementation.  Once detected and corrected, the 

amount of test vectors failing was greatly reduced (which is expected, because the same 

vectors are repeated for every mode).

It has to be noticed that a lot of time was spent trying to find why some of the tests 

failed with no logical explanation, until we found out that the C code also failed with them! 

The reason was that the C code we were working with for the last months (v7.3.0) was not 

the last available. Apparently, ETSI had also detected the error and had updated the code. 

Once the latest version (v7.4.0) was downloaded, the changes it included were implement-

ed into our ADI code and the problem was solved.

It took long, but finally, with only about 10 or 12 small corrections, all the test vectors 

worked, and our vocoder could be considered a bit-exact implementation of the ETSI stan-

dard.
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Chapter 5

Conclusions

5.1 Project objectives accomplished

We begun chapter 1 enumerating the objectives we would try to accomplish in the 

project. It is now time to review them and see if we have succeeded.

 The first objective was to study the Adaptive Multi-Rate vocoder. Prior to the imple-

mentation, all the theory about it was studied (it was presented in chapter 2, and is comple-

mented in Appendix A), and during the project we have been able to identify the parts of 

the vocoder in their “physical” translation into programming code. Of course, the magni-

tude of the project didn't allow to study every specific parameter of every filter, but it did 

allowed a general understanding of the system.

The second objective was to study digital signal processors, specially the ADSP-2181, 

and how they are specialized in dealing with the computing-expensive algorithms that sig-

nal processing requires. In this case, the theory was also studied, but the importance of the 

experience obtained was even higher. We had to deal with the optimization problem and 

took profit of every dedicated instruction of the processor, as shown in chapter 4.

Maybe, the main objective was the implementation itself: we had to get the vocoder 

working and we wanted that it passed the strong restrictions of the ETSI standard for a 

“bit-exact” implementation.  It took very long, as we have seen, but the vocoder finally 
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passed all the test vectors. This guarantees that it meets all the official requirements of the 

mobile industry and that it is ready to be used in any mobile device.

The last objective could be considered an “extra”. Real-time implementation was de-

sirable,  but  the processor  chosen was not  specially fast.  If the program hadn't  run fast 

enough, it could have been solved choosing a more powerful processor. Anyway, we ob-

tained a rather optimized implementation: it  could run in real-time, considering the two 

parts, encoder and decoder, as different programs (as they are presented by ETSI). If a com-

mercial implementation required the whole system, plus some external functions, running 

in real-time in the ADSP-2181, a different solution would be necessary. But we'll discuss 

about that in “Future perspectives”. 

As a conclusion, having reviewed the results of the project, we think the main objec-

tives were accomplished successfully.

5.2 Future perspectives

The main objectives of the project, as we have just seen, were accomplished. But 

that doesn't mean that no further improvement could be done. For example, special dedica-

tion has been put into optimizing the code, but the optimization was aimed at reducing the 

MIPS of the program, making it  faster. Nevertheless, there's another important resource 

that could be optimized: memory used.

Although memory is becoming cheaper and cheaper and it seems as if, in general, 

not much effort is put by software companies into controlling the amount of memory their 

programs use, in the end it's also a limited resource and should be optimized. A few ideas 

to reduce memory are now going to be presented, that could be applied to further optimize 

the assembling code of this project:
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 PM (Program Memory) of the ADSP-2181 is used mainly to store the program instruc-

tions, but it has often been used to store data, sometimes big tables that consumed a lot 

of memory. That was done to take profit of the architecture of the DSP, that allows 

reading data from Program Memory and Data Memory in one single cycle. When data 

from two vectors are used in a computation, it is more efficient to store one in PM and 

the other in DM and access them at the same time. But Program Memory is 24-bit 

wide, while our data was always 16-bit wide, so 8 bits were wasted with every entry. 

Some method to take profit of those 8 extra bit could be thought, like storing two ta-

bles in the same portion of memory: one of them using the normal 16 bits and the oth-

er dividing every 16-bit word into two 8-bit words that could use the free space. Of 

course, the access to them would be computationally more complicated.

 Portions of code that are identical could be written only once and used as small func-

tions. For example, common operations used in the algorithm include shifting with sat-

uration or 32-by-16-bit  multiplications.  They are implemented into several  lines of 

code, so writing them as small functions would save some memory.

 “Pre_proc.dsp” and “Post_proc.dsp”, while not identical, are very similar. Again, their 

common parts could be written only once, so the use of memory wasn't duplicated.

 The mechanism of saturation was implemented in almost every operation performed, 

but maybe it's not always necessary. That is, the test vectors that guarantee for a bit-ex-

act implementation maybe never produce saturation in some of those operations (be-

cause mathematically it's impossible, for example). So the extra instructions written to 

take care of the saturation are never used and could be removed with no effect in the 

results. In this case, though, the time employed in finding them could be long, and 

maybe not worth it.

Apart from the improvement in memory used, another future perspective could be the 

implementation of the dual-channel [13]. As we have repeated a couple of times before, the 

ETSI standard implements the encoder and the decoder independently. In real use, though, 
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they should normally work together, with extra modules like analog to/from digital speech 

conversion, echo cancellation or many more. It would be an interesting future work to join 

all those programs into one and implement it in the ADSP. The problem could be, in that 

case, that the ADSP-2181 wasn't powerful enough to support all those MIPS. An upgrade 

to a newest processor, like Analog Devices' ADSP-2184, very similar to 2181 but capable 

of 80 MIPS, could probably be the solution.
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Appendix A

Speech production and coding

A.1 Speech production

Speech is used to communicate information from a speaker to a listener. The speak-
er must produce a speech signal in the form of a sound pressure wave that travels from the 
speaker's mouth to a listener's ears. Not only the speech production, but also the hearing 
process is an integral part of the so-called speech chain. Actually, the human auditory sys-
tem also plays an important role in the production of the speech as a feedback.

The speech waveform (see Figure 3.1) is an acoustic sound pressure wave that orig-
inates  from voluntary movements  of  anatomical  structures  which  make  up  the  human 
speech production system.
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Figure 3.1: example of a speech signal

The gross components of the system are the lungs, trachea (windpipe), larynx (or-

gan of voice production, where the vocal cords or folds are), pharyngeal cavity (throat), 

oral cavity (mouth) and nasal cavity (nose) [3]. In technical discussions, the pharyngeal and 

oral cavities are usually grouped into one unit referred to as the vocal tract and the nasal 

cavity is often called the nasal tract. These three main cavities of the speech production 

system comprise the main acoustic filter. The filter is excited by the organs below it and is 

loaded at its main output by a radiation impedance due to the lips. The function of the lar-

ynx is to provide a periodic excitation to the system for speech sounds that are known as 

voiced sounds.

Roughly speaking, the periodic vibration of the vocal folds is responsible for this 

voicing. The articulators are used to change the properties of the system, its form of excita-

tion and its output loading over time. These articulators are human tissues and/or muscles 

which are moved from one position to another to produce the desired speech sounds.
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One of the principal features of any speech sound is the manner of excitation. There 

are two elemental excitation types: voiced and unvoiced (there are other types of excitation, 

which are really just combinations of voiced, unvoiced and silence).

Voiced sounds are produced by forcing air through the glottis or an opening be-

tween the vocal folds. The tension of the vocal cords is adjusted so that they vibrate in os-

cillatory fashion at the pitch frequency, referred to as F0 (see Figure 3.2 (a)). Unvoiced 

sounds are generated by forming a constriction at some point along the vocal tract and forc-

ing air through the constriction to produce turbulence (see Figure 3.2 (b)). As it was point-

ed out before, a sound may be simultaneously voiced and unvoiced (e.g. the sound corre-

sponding to the letter z).

The spectral characteristics of the speech wave are time-varying (or nonstationary), 

since the physical system changes rapidly over time (but not instantaneously due to the re-

quirement  of  finite  movement  of  the  articulators  to  produce  each  sound).  As  a  result, 

speech can be divided into sound segments that possess similar acoustic properties over 

short periods of time. In Figure 3.3 (a), a voiced sound, there is evidence of periodic excita-

tion,  while  in  Figure  3.3  (b),  an  unvoiced  sound,  there  is  no  such  harmonic  structure 

present.

Figure 3.2:  (a) voiced speech signal and (b) unvoiced speech signal
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Figure 3.3: spectrum of  (a) a voiced speech signal and  (b) an unvoiced speech signal in frequency 

domain

It can also be noted in each case (and especially for the voiced sound) that there are 

well-defined  regions  of  emphasis  (resonances)  and  deemphasis  (antiresonances)  in  the 

spectrum. These resonances are a consequence of the articulators having formed various 

acoustical cavities and subcavities out of the vocal tract cavities. So the locations of these 

resonances in the frequency domain depend upon the shape and physical dimensions of the 

vocal tract. Conversely, each vocal tract shape is characterized by a set of resonant frequen-

cies.

From a system modeling point of view, the articulators determine the properties of 

the speech system filter. Since these resonances tend to shape the overall spectrum, speech 

scientists refer to them as formants and they are referred to as: F1, F2, F3, ....

A basic model for the speech production can be seen in Figure 3.4, composed by the 

two main different types of excitation (voiced, as a periodic signal, and unvoiced, as noise) 

and the vocal tract.

Nevertheless, the fact of modeling the source as a switch to voiced or unvoiced 

speech production, is a serious limitation for several reasons. First, human speech produc-
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tion does not require voicing to turn off immediately prior to an unvoiced phoneme. In ad-

dition, several phonemes, such as voiced fricatives (/z/, /v/), possess two sources of excita-

tion, vocal fold movement and a major constriction resulting in both voiced and unvoiced 

forms of excitation. Moreover, since the model is based on acoustic tube theory assuming 

short-term stationarity, it lacks the ability to characterize rapidly changing excitation prop-

erties such as those found in plosive sounds like /t/ and /b/.

Figure 3.4: Basic model representing speech production
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A.2 Speech coding

Coding algorithms seek to minimize the bit rate in the digital representation of a 

signal without an objectionable loss of signal quality in the process. High quality is attained 

at low bit rates by exploiting signal redundancy as well as the knowledge that certain types 

of coding distortion are imperceptible because they are masked by the signal. New models 

based on signal redundancy and distortion masking are becoming increasingly more sophis-

ticated, leading to continuing improvements in the quality of low bit rate signals. 

Speech  coding  techniques  can  be  broadly  divided  into  two  classes:  waveform 

coders, that aim at reproducing the speech waveform as faithfully as possible, and voice 

coders (vocoders), that use some parameters determined by a speech analysis of the origi-

nal signal to represent it. The waveform coders are able to produce high-quality speech at 

high enough bit rates; vocoders produce intelligible speech at much lower bit rates, but the 

level of speech quality is also lower. 

The general model for vocoders follows the speech production system studied in the 

previous section. The vocal tract is modeled as an all-pole filter. For voiced speech, the ex-

citation is a periodic impulse train with period equal to the pitch period of the speech. For 

unvoiced speech, the excitation is a white noise sequence. In addition, there can be an esti-

mated gain parameter included in the model. Basically, the different vocoders estimate the 

model parameters from frames of speech (speech analysis), encode and transmit the param-

eters to the receiver on a frame-by-frame basis, and reconstruct the speech signal from the 

model  (speech synthesis)  at  the  receiver.  Different  types  of  vocoders  include:  channel 

vocoders,  cepstral  vocoders,  phase  vocoders,  formant  vocoders  and  linear  predictive 

coders. The last of these are the most widely used in practice today, and the model studied 

in this project belongs to this class.
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The objective of the linear prediction analysis (LP analysis) in speech processing is 

to estimate the parameters of the all-pole model of the vocal tract for a given signal. If 

these parameters have been determined for a given frame of speech to be transmitted or 

stored, this is called linear predictive coding.

Several  methods  have  been  devised  for  generating  the  excitation  sequence  for 

speech  synthesis.  Next  we  describe  several  LPC-type  speech  analysis  and  synthesis 

schemes that differ primarily in the type of excitation signal that is generated for speech 

synthesis [1].

A.2.1 LPC-10 algorithm

The earliest LPC-based vocoders followed exactly the voice representation model 

studied in section 3.1. The all-pole filter directly used a pitch-pulse excitation for synthesis 

of voiced speech, and a noise source excitation for unvoiced. Such a vocoder first caught 

the public’s attention in the 1970’s. The algorithm is usually called LPC-10 in reference to 

the fact that 10 coefficients are typically employed.

A.2.2 Residual excited linear prediction vocoder

Speech quality in LPC can be improved at the expense of a higher bit rate by com-

puting and transmitting a residual error.

Once  the  LPC model  and  excitation  parameters  are  estimated  from a  frame  of 

speech, the speech is synthesized at the transmitter and subtracted from the original speech 

signal to form a residual error. The residual error is quantized, coded, and transmitted to 

the receiver along with the model parameters. At the receiver the signal is synthesized by 

adding the residual error signal to the signal generated from the model. Thus the addition 

of the residual error improves the quality of the synthesized speech.
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Another approach that produces a residual error is shown in figure 3.5. In this case, 

the original speech signal is passed through the inverse (all-zero) filter to generate the pre-

diction residual signal. Then this  residual will  be transmitted,  after being properly pro-

cessed and encoded so as to reduce the bit rate. Once in the receiver, the residual signal 

will be passed through the all-pole filter to recover the original speech. We note that this 

method does not require pitch information and voicing information. The residual error sig-

nal provides the excitation to the all-pole LPC model. This LPC vocoder is called a residu-

al excited linear prediction (RELP) vocoder.

Figure 3.5: RELP encoder and decoder

A.2.3 Multipulse LPC vocoder

One of the shortcomings of RELP is that the regeneration scheme results in a crude 

approximation of the high frequencies. Multipulse LPC is an analysis-by-synthesis method 

that results in a better excitation signal for the LPC vocal system filter.

 The LPC filter coefficients are determined from the speech signal samples by the 

conventional methods. The output of the all-pole filter is the synthetic speech, which is 

subtracted from the original speech signal to form the residual error sequence. This error 
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sequence is then passed through a perceptual error weighting filter that is used to control 

the noise spectrum weighting.

The multipulse excitation consists of a short sequence of pulses (discrete-time puls-

es) whose amplitudes and locations are chosen to minimize the energy of the weighted er-

ror signal. For simplicity, the amplitudes and locations of the impulses are obtained se-

quentially by minimizing the error energy for one pulse at a time.

A.2.4 Code-excited linear prediction vocoder

Code Excited Linear Prediction (CELP) is a speech coding algorithm originally pro-

posed by M.R. Schroeder and B.S. Atal in 1985. At the time, it provided significantly bet-

ter quality than existing low bit-rate algorithms, such as RELP and LPC vocoders.

Figure 3.6 describes a generic CELP decoder. The excitation is produced by sum-

ming the contributions from an adaptive (aka pitch) codebook and a fixed (aka innovation 

or stochastic) codebook.  The fixed codebook is a vector quantization dictionary that is 

hard-coded into the codec. This codebook can be algebraic (ACELP) or be stored explicit-

ly. The entries in the adaptive codebook consist of delayed versions of the excitation. This 

makes it possible to efficiently code periodic signals, such as voiced sounds.

The filter  that  shapes the excitation has an all-pole model of the form 1 / A(z), 

where A(z) is called the prediction filter and is obtained using linear prediction (Levinson-

Durbin algorithm). An all-pole filter is used because it is a good representation of the hu-

man vocal tract and because it is easy to compute.
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Figure 3.6: CELP decoder

The main principle behind CELP is called Analysis-by-Synthesis (AbS) and means 

that the encoding (analysis) is performed by perceptually optimizing the decoded (synthe-

sis) signal in a closed loop. In theory, the best CELP stream would be produced by trying 

all possible bit combinations and selecting the one that produces the best-sounding decoded 

signal. This is obviously not possible in practice for two reasons: the required complexity is 

beyond any currently available hardware and the "best sounding" selection criterion implies 

a human listener.

In  order  to  achieve  real-time  encoding  using  limited  computing  resources,  the 

CELP search is broken down into smaller, more manageable, sequential searches using a 

simple perceptual weighting function. Typically, the encoding is performed in the follow-

ing order:

 LPC coefficients are computed and quantized, usually as LSPs

 The adaptive (pitch) codebook is searched and its contribution removed

 The fixed (innovation) codebook is searched
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Appendix B

Simplified instruction set for the 

ADSP-2181

B.1 Assembly language overview

Table B1: Registers of the ADSP-2100 family



Design and implementation on DSP of the ETSI GSM Adaptive Multi-Rate Vocoder                                          73  

The ADSP-2100 family’s assembly language uses an algebraic syntax for ease of 

coding and readability. The sources and destinations of computations and data movements 

are written explicitly in each assembly statement, eliminating cryptic assembler mnemon-

ics. Each assembly statement,  however, corresponds to a single 24-bit  instruction,  exe-

cutable in one cycle. Register mnemonics, listed in table B1, are concise and easy to re-

member.

B.2 ALU, MAC & Shifter instructions

This group of instructions performs computations. All of these instructions can be 

executed conditionally except the ALU division instructions and the Shifter SHIFT IMME-

DIATE instructions.

B.2.1 ALU Group

Here is an example of one ALU instruction, Add/Add with Carry:

IF AC AR=AX0+AY0+C;

The (optional) conditional expression, IF AC, tests the ALU Carry bit (AC); if there 

is a carry from the previous instruction, this instruction executes, otherwise a NOP occurs 

and  execution  continues  with  the  next  instruction.  The  algebraic  expression 

AR=AX0+AY0+C means that the ALU result register (AR) gets the value of the ALU X 

input and Y input registers plus the value of the carry-in bit.

Table B2 gives a summary list of all ALU instructions. In this list, condition stands 

for all the possible conditions that can be tested and xop and yop stand for the registers that 

can be specified as input for the ALU. The conditional clause is optional and is enclosed in 

square brackets to show this. A complete list of conditions is given in Table B8.
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Table B2: ALU instructions
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B.2.2 MAC Group

Here is an example of one of the MAC instructions, Multiply/Accumulate:

IF NOT MV MR=MR+MX0*MY0(UU);

The conditional expression, IF NOT MV, tests the MAC overflow bit. If the condi-

tion  is  not  true,  a  NOP  is  executed.  The  expression  MR=MR+MX0*MY0  is  the 

multiply/accumulate operation: the multiplier result register (MR) gets the value of itself 

plus the product of the X and Y input registers selected. The modifier in parentheses (UU) 

treats the operands as unsigned. There can be only one such modifier selected from

the available set. (SS) means both are signed, while (US) and (SU) mean that either the 

first or second operand is signed; (RND) means to round the (implicitly signed) result.

Table B3 gives a summary list of all MAC instructions. In this list, condition stands 

for all the possible conditions that can be tested and xop and yop stand for the registers that 

can be specified as input for the MAC.

Table B3: MAC instructions
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B.2.3 Shifter Group

Here is an example of one of the Shifter instructions, Normalize:

IF NOT CE SR= SR OR NORM SI (HI);

The conditional expression, IF NOT CE, tests the “not counter expired” condition. 

If the condition is false, a NOP is executed. The destination of all shifting operations is the 

Shifter Result register, SR. (The destination of exponent detection instructions is SE or SB, 

as shown below.) In this example, SI, the Shifter Input register, is the operand. The amount 

and direction of the shift is controlled by the signed value in the SE register in all shift op-

erations except an immediate shift. Positive values cause left shifts; negative values cause 

right shifts.

The “SR OR” modifier (which is optional) logically ORs the result with the current 

contents of the SR register; this allows you to construct a 32-bit value in SR from two 16-

bit pieces. “NORM” is the operator and “(HI)” is the modifier that determines whether the 

shift is relative to the HI or LO (16-bit) half of SR. If “SR OR” is omitted, the result is 

passed directly into SR. Table B4 gives a summary list of all Shifter instructions.

Table B4: Shifter instructions
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B.3 MOVE: read and write

MOVE instructions, shown in Table B5, move data to and from data registers and 

external memory. Registers are divided into two groups, referred to as reg which includes 

almost all registers and dreg, or data registers, which is a subset. Only the program counter 

(PC) and the ALU and MAC feedback registers (AF and MF) are not accessible. Table B6 

shows which registers belong to these groups.

Table B5: MOVE instructions

Table B6: Processor registers
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B.4 Program flow control

Here is an example of one instruction: 

IF EQ JUMP my_label;

JUMP is a familiar construct from many other languages. My_label is any identifier 

you wish to use as a label for the destination jumped to. Instead of the label, an index regis-

ter in DAG2 may be explicitly used. The default scope for any label is the source code 

module in which it is declared. The assembler directive .ENTRY makes a label visible as 

an entry point  for  routines  outside the module.  Conversely,  the .EXTERNAL directive 

makes it possible to use a label declared in another module.

Table B7: Program flow control instructions

RTS (return from subroutine) and RTI (return from interrupt) provide for condition-

al return from CALL or interrupt vectors respectively. Table B7 gives a summary of all 

program flow control instructions. The condition codes are described in Table B8.



Design and implementation on DSP of the ETSI GSM Adaptive Multi-Rate Vocoder                                          79  

Table B8: IF condition codes

B.5 Multifunction instructions

Multifunction  operations  take  advantage  of  the  inherent  parallelism  of  the 

ADSP-2100 family architecture by providing combinations of data moves, memory reads/

memory writes, and computation, all in a single cycle. Table B9 shows the legal combina-

tions for multifunction instructions: you may combine operations on the same row with 

each other. And, finally, table B10 shows the syntax of the multifunction instructions.

Table B9: Valid combinations for multifunction instructions
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Table B10: Multifunction instructions
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Appendix C

Implementation of the Levinson-Durbin 

algorithm

C.1 ETSI ANSI-C code

/*
*****************************************************************************
*                         MODULE INCLUDE FILE AND VERSION ID
*****************************************************************************
*/
#include "levinson.h"
const char levinson_id[] = "@(#)$Id $" levinson_h;
 
/*
*****************************************************************************
*                         INCLUDE FILES
*****************************************************************************
*/
#include <stdlib.h>
#include <stdio.h>
#include "typedef.h"
#include "basic_op.h"
#include "oper_32b.h"
#include "count.h"
#include "cnst.h"

int Levinson (
    LevinsonState *st,
    Word16 Rh[],       /* i : Rh[m+1] Vector of autocorrelations (msb) */
    Word16 Rl[],       /* i : Rl[m+1] Vector of autocorrelations (lsb) */
    Word16 A[],        /* o : A[m]    LPC coefficients  (m = 10)       */
    Word16 rc[]        /* o : rc[4]   First 4 reflection coefficients  */
)
{
    Word16 i, j;
    Word16 hi, lo;
    Word16 Kh, Kl;                /* reflexion coefficient; hi and lo      */
    Word16 alp_h, alp_l, alp_exp; /* Prediction gain; hi lo and exponent   */
    Word16 Ah[M + 1], Al[M + 1];  /* LPC coef. in double prec.             */
    Word16 Anh[M + 1], Anl[M + 1];/* LPC coef.for next iteration in double
                                     prec. */
    Word32 t0, t1, t2;            /* temporary variable                    */

    /* K = A[1] = -R[1] / R[0] */
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    t1 = L_Comp (Rh[1], Rl[1]);
    t2 = L_abs (t1);                    /* abs R[1]         */
    t0 = Div_32 (t2, Rh[0], Rl[0]);     /* R[1]/R[0]        */
    test (); 
    if (t1 > 0)
       t0 = L_negate (t0);             /* -R[1]/R[0]       */
    L_Extract (t0, &Kh, &Kl);           /* K in DPF         */
    
    rc[0] = round (t0);                 move16 (); 

    t0 = L_shr (t0, 4);                 /* A[1] in          */
    L_Extract (t0, &Ah[1], &Al[1]);     /* A[1] in DPF      */

    /*  Alpha = R[0] * (1-K**2) */

    t0 = Mpy_32 (Kh, Kl, Kh, Kl);       /* K*K             */
    t0 = L_abs (t0);                    /* Some case <0 !! */
    t0 = L_sub ((Word32) 0x7fffffffL, t0); /* 1 - K*K        */
    L_Extract (t0, &hi, &lo);           /* DPF format      */
    t0 = Mpy_32 (Rh[0], Rl[0], hi, lo); /* Alpha in        */

    /* Normalize Alpha */

    alp_exp = norm_l (t0);
    t0 = L_shl (t0, alp_exp);
    L_Extract (t0, &alp_h, &alp_l);     /* DPF format    */

    /*--------------------------------------*
     * ITERATIONS  I=2 to M                 *
     *--------------------------------------*/

    for (i = 2; i <= M; i++)
    {
       /* t0 = SUM ( R[j]*A[i-j] ,j=1,i-1 ) +  R[i] */
       
       t0 = 0;                         move32 (); 
       for (j = 1; j < i; j++)
       {
          t0 = L_add (t0, Mpy_32 (Rh[j], Rl[j], Ah[i - j], Al[i - j]));
       }
       t0 = L_shl (t0, 4);
       
       t1 = L_Comp (Rh[i], Rl[i]);
       t0 = L_add (t0, t1);            /* add R[i]        */
       
       /* K = -t0 / Alpha */
       
       t1 = L_abs (t0);
       t2 = Div_32 (t1, alp_h, alp_l); /* abs(t0)/Alpha              */
       test (); 
       if (t0 > 0)
          t2 = L_negate (t2);         /* K =-t0/Alpha                */
       t2 = L_shl (t2, alp_exp);       /* denormalize; compare to Alpha */
       L_Extract (t2, &Kh, &Kl);       /* K in DPF                      */
       
       test (); 
       if (sub (i, 5) < 0)
       {
          rc[i - 1] = round (t2);     move16 (); 
       }
       /* Test for unstable filter. If unstable keep old A(z) */
       
       test (); 
       if (sub (abs_s (Kh), 32750) > 0)
       {
          for (j = 0; j <= M; j++)
          {
             A[j] = st->old_A[j];        move16 (); 
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          }
          
          for (j = 0; j < 4; j++)
          {
             rc[j] = 0;              move16 (); 
          }
          
          return 0;
       }
       /*------------------------------------------*
        *  Compute new LPC coeff. -> An[i]         *
        *  An[j]= A[j] + K*A[i-j]     , j=1 to i-1 *
        *  An[i]= K                                *
        *------------------------------------------*/
       
       for (j = 1; j < i; j++)
       {
          t0 = Mpy_32 (Kh, Kl, Ah[i - j], Al[i - j]);
          t0 = L_add(t0, L_Comp(Ah[j], Al[j]));
          L_Extract (t0, &Anh[j], &Anl[j]);
       }
       t2 = L_shr (t2, 4);
       L_Extract (t2, &Anh[i], &Anl[i]);
       
       /*  Alpha = Alpha * (1-K**2) */
       
       t0 = Mpy_32 (Kh, Kl, Kh, Kl);           /* K*K             */
       t0 = L_abs (t0);                        /* Some case <0 !! */
       t0 = L_sub ((Word32) 0x7fffffffL, t0);  /* 1 - K*K        */
       L_Extract (t0, &hi, &lo);               /* DPF format      */
       t0 = Mpy_32 (alp_h, alp_l, hi, lo);
       
       /* Normalize Alpha */
       
       j = norm_l (t0);
       t0 = L_shl (t0, j);
       L_Extract (t0, &alp_h, &alp_l);         /* DPF format    */
       alp_exp = add (alp_exp, j);             /* Add normalization to
                                                  alp_exp */
       
       /* A[j] = An[j] */
       
       for (j = 1; j <= i; j++)
       {
          Ah[j] = Anh[j];                     move16 (); 
          Al[j] = Anl[j];                     move16 (); 
       }
    }
    
    A[0] = 4096;                                move16 (); 
    for (i = 1; i <= M; i++)
    {
       t0 = L_Comp (Ah[i], Al[i]);
       st->old_A[i] = A[i] = round (L_shl (t0, 1));move16 (); move16 (); 
    }
    
    return 0;
}

C.2 Implemented ADI code

.MODULE levinson_mod;

#include "gsmamr/cnst.h"
#include "gsmamr/temp_mem.h"
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/* ********************* Global temporary memory ********************* */
/* 
 * Restrictions in this module:
 * -  pm_tmp (30 - end) and all tmp can be used
 */
#define    Anh_Anl           pm_tmp + 30                    /* 2*(M+1) */
/*  To store Anh and Anl: Anh[0], Anl[0], Anh[1], Anl[1]... */

           /* TOTAL USED: 22 (+30) */
#define    cnt               tmp                           /* 1 */
#define    pt_Rh             tmp + 1                       /* 1 */
#define    pt_Rl             tmp + 2                       /* 1 */
#define    pt_A              tmp + 3                       /* 1 */
#define    alp_h             tmp + 4                       /* 1 */
#define    alp_l             tmp + 5                       /* 1 */
#define    alp_exp           tmp + 6                       /* 1 */

           /* TOTAL USED: 7 */
/* ******************************************************************* */
.VAR/DM/CIRC Ah_Al[2 * (M+1)];
  /*  To store Ah and Al: Ah[0], Al[0], Ah[1], Al[1]... */
.EXTERNAL div_32;
.EXTERNAL ses_amrst__olda;
.ENTRY levinson;
/* ******************************************************************* */
/* ******************************************************************* */
/* 
 * Function: levinson
 *
 * Parameters:
 *
 * *st    = (global variable)
 *
 * Rh[]   = I6
 * Rl[]   = I7
 * A[]    = I0
 */
levinson:

M7 = -1;
AR = PASS 1, MY0 = PM(I6,M5);
MR = 0, MX0 = PM(I7,M5);
MR1 = PM(I6,M7);
MY1 = PM(I7,M7);
MR = MR + AR * MY1 (SS);
AR = PASS MR1;
IF EQ AR = ABS MR0;
SI = AR; /* SI stores the sign of t1 for further use */
AR = PASS MR1;
IF GE JUMP lev2;

lev1: DIS AR_SAT;
AR = - MR0;
ENA AR_SAT;
MR0 = AR, AR = -MR1 + C - 1;
MR1 = AR;

 
lev2: /* t0 = Div_32 (t2, Rh[0], Rl[0]) */

/*  MR  /  MY0, MX0  */
CALL div_32; /* Returned SR */
AR = SI;
MR0 = SR0;
AR = PASS AR, MR1 = SR1;
IF LE JUMP lev5;
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DIS AR_SAT;
AR = - SR0;
ENA AR_SAT;
MR0 = AR, AR = -SR1 + C - 1;
MR1 = AR;

lev5: SE = -1;
SR = LSHIFT MR0 (LO), MX1 = MR1;
MX0 = SR0;
/* MX1=Kh, MX0=Kl */
SE = -4;
SR = ASHIFT MR1 (HI);
SR = SR OR LSHIFT MR0 (LO);
I1 = ^Ah_Al + 2;
L1 = %Ah_Al;
SE = -1;
DM(I1,M1) = SR1, SR = LSHIFT SR0 (LO);
DM(I1,M1) = SR0;
AR = PASS 1, MY1 = MX1;
MR = MX1 * MY1 (SS), MY0 = MX0;
MF = MX1 * MY0 (SS);
MR = MR + AR * MF (SS);
IF MV SAT MR;
MF = MX0 * MY1 (SS); 
MR = MR + AR * MF (SS);
IF MV SAT MR;
AR = PASS MR1;        /*  L_abs (t0)  */
IF GE JUMP lev7;

lev6: DIS AR_SAT;
AR = - MR0;
ENA AR_SAT;
MR0 = AR, AR = -MR1 + C - 1;
MR1 = AR;

 
lev7: AF = PASS MR0, AY1 = MR1;

AX0 = 0xFFFF;
AX1 = 0x7FFF;
DIS AR_SAT;
AR = AX0 - AF;
ENA AR_SAT;
MR0 = AR, AR = AX1 - AY1 + C - 1;
MR1 = AR;
MY1 = MR1;
SR = LSHIFT MR0 BY -1 (LO);
/*  MY1 = hi, SR0 = lo  */
AR = PASS 1, MX1 = PM(I6,M5);/*Rh[0]*/
MY0 = SR0, MR = MX1 * MY1 (SS);
MF = MX1 * MY0 (SS), MX0 = PM(I7,M5);/*Rl[0]*/
MR = MR + AR * MF (SS);
IF MV SAT MR;
MF= MX0 * MY1 (SS); 
MR = MR + AR * MF (SS);
IF MV SAT MR;
SE = EXP MR1 (HI);
SE = EXP MR0 (LO);
SR = NORM MR1 (HI);
SR = SR OR NORM MR0 (LO);
DM(alp_exp) = SE;
DM(alp_h) = SR1;
SR = LSHIFT SR0 BY -1 (LO);
DM(alp_l) = SR0;

/********** Iterations i=2 to M **************/
DM(pt_Rh) = I6;       /*  &Rh[1]  */
DM(pt_Rl) = I7;       /*  &Rl[1]  */
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CNTR = M - 1;
M3 = -3;
DM(cnt) = M1;    /* "cnt" is "i-1" in the C code  */
DO lev8 UNTIL CE;

AR = DM(cnt);
CNTR = AR;
SR = ASHIFT AR BY 1 (LO);
AY0 = ^Ah_Al;
AR = SR0 + AY0;
I1 = AR;          /*  I1 = &Ah_Al[2*(i-1)]  */
SR = LSHIFT AR BY 100 (LO); /*  SR = 0  */
I6 = DM(pt_Rh);
I7 = DM(pt_Rl);
DO lev8_1 UNTIL CE;

AR = PASS 1, MX1 = DM(I1,M1),MY1 =PM(I6,M5);
MR = MX1 * MY1 (SS), MX0 = DM(I1,M3),MY0 = PM(I7,M5);
MF = MX0 * MY1 (SS), AY0 = SR0;
MR = MR + AR * MF (SS), AY1 = SR1;
IF MV SAT MR;
MF = MX1 * MY0 (SS);     
MR = MR + AR * MF (SS);
IF MV SAT MR;
DIS AR_SAT;
AR = MR0 + AY0;
ENA AR_SAT;
SR0 = AR, AR = MR1 + AY1 + C;

lev8_1: SR1 = AR;

AR = 4;
SE = AR, AR = PASS SR0;
SR = ASHIFT SR1 (HI), MR1 = PM(I6,M5);
SR = SR OR LSHIFT AR (LO), MX0 = PM(I7,M5);
MR0 = 0;
MY0 = 1;
MR = MR + MX0 * MY0 (SS), AY0 = SR0;
DIS AR_SAT;
AR = MR0 + AY0, AY1 = SR1;
ENA AR_SAT;
MR0 = AR,  AR = MR1 + AY1 + C;
MR1 = AR;
IF EQ AR = ABS MR0;
SI = AR; /*  SI stores the sign of t0 for further usage  */

AR = PASS MR1; 
IF GE JUMP lev8_6;

lev8_5: DIS AR_SAT;
AR = - MR0;
ENA AR_SAT;
MR0 = AR, AR = -MR1 + C - 1;
MR1 = AR;

lev8_6: /* t0 = Div_32 (t1, alp_h, alp_l) */
MY0 = DM(alp_h);
MX0 = DM(alp_l);
/*  MR  /  MY0, MX0  */
CALL div_32; /* Returned SR */
AR = SI;
MR0 = SR0;
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AR = PASS AR, MR1 = SR1;
IF LE JUMP lev8_9;
DIS AR_SAT;
AR = - SR0;
ENA AR_SAT;
MR0 = AR, AR = -SR1 + C - 1;
MR1 = AR;

lev8_9: AR = DM(alp_exp);
AR = - AR;
SE = AR;
SR = ASHIFT MR1 (HI);
SR = SR OR LSHIFT MR0 (LO);

lev8_12: SE = -1;
SI = SR1;
AX0 = SR0, /* SI,AX0=t2 */ SR = LSHIFT SR0 (LO);
AR = SI;
/* SI=Kh, SR0=Kl */
AY0 = 32750;
AR = ABS AR, MX0 = SR0; /* MX0=Kl */
AR = AR - AY0, MX1 = SI; /* MX1=Kh */
IF LE JUMP lev8_13;

I5 = ^ses_amrst__olda; /* Unstable. Keep old A(z) */
CNTR = M + 1;
DO lev8_12_1 UNTIL CE;

AR = PM(I5,M5);
lev8_12_1: DM(I0,M1) = AR;

/*  pop stacks (because we exit the function without ending lev8 loop) */
POP CNTR, POP PC, POP LOOP;
RTS;

/* Compute new LPC coeff. -> An[i] */
lev8_13: DM(pt_A) = I0;   /* Save I0 */

AR = DM(cnt);
CNTR = AR;
SR = ASHIFT AR BY 1 (LO);
AY0 = ^Ah_Al;
AR = SR0 + AY0;
I1 = AR;          /*  I1 = &Ah_Al[2*(i-1)]  */
I0 = ^Ah_Al + 2;  /*  I0 = &Ah_Al[2]  */
I5 = ^Anh_Anl + 2;  /*  I5 = &Anh_Anl[2]  */
SE = -1;
DO lev8_14 UNTIL CE;

MR1 = DM(I0,M1);
MR0 = 0;
AR = DM(I0,M1);
MY0 = 1;
MR = MR + AR * MY0 (SS), MY1 = DM(I1,M1);
AY1 = MR1;
AR = PASS 1, AY0 = MR0;
MR = MX1 * MY1 (SS), MY0 = DM(I1,M3);
MF = MX1 * MY0 (SS);
MR = MR + AR * MF (SS);
IF MV SAT MR;
MF = MX0 * MY1 (SS);
MR = MR + AR * MF (SS);
IF MV SAT MR;
DIS AR_SAT;
AR = MR0 + AY0;
ENA AR_SAT;
MR0 = AR, AR = MR1 + AY1 + C;
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SR = LSHIFT MR0 (LO), PM(I5,M5) = AR;  /* Save 
Anh[j] */
lev8_14: PM(I5,M5) = SR0; /* Save Anl[j] */

I0 = DM(pt_A);    /* Restore I0 */
SE = -4;
SR = ASHIFT SI (HI), SI = AX0;
SR = SR OR LSHIFT SI (LO);
PM(I5,M5) = SR1; /* Save Anh[i] */
SR = LSHIFT SR0 BY -1 (LO);
PM(I5,M5) = SR0; /* Save Anl[i] */

/* Calculate Alpha */
AR = PASS 1, MY1 = MX1;
MR = MX1 * MY1 (SS), MY0 = MX0;
MF = MX1 * MY0 (SS);
MR = MR + AR * MF (SS);
IF MV SAT MR;
MF = MX0 * MY1 (SS); 
MR = MR + AR * MF (SS);
IF MV SAT MR;
AR = PASS MR1;        /*  L_abs (t0)  */
IF GE JUMP lev8_16;

lev8_15: DIS AR_SAT;
AR = - MR0;
ENA AR_SAT;
MR0 = AR, AR = -MR1 + C - 1;
MR1 = AR;

 
lev8_16: AF = PASS MR0, AY1 = MR1;

AX0 = 0xFFFF;
AX1 = 0x7FFF;
DIS AR_SAT;
AR = AX0 - AF;
ENA AR_SAT;
MR0 = AR, AR = AX1 - AY1 + C - 1;
SR = LSHIFT MR0 BY -1 (LO);
/*  AR = hi, SR0 = lo  */
MX1 = DM(alp_h);
MY1 = AR, AR = PASS 1;
MR = MX1 * MY1 (SS), MY0 = SR0;
MF = MX1 * MY0 (SS);
MR = MR + AR * MF (SS);
IF MV SAT MR;
MX0 = DM(alp_l);
MF = MX0 * MY1 (SS); 
MR = MR + AR * MF (SS);
IF MV SAT MR;
SE = EXP MR1 (HI);
SE = EXP MR0 (LO);
SR = NORM MR1 (HI);
SR = SR OR NORM MR0 (LO);
DM(alp_h) = SR1;
SR = LSHIFT SR0 BY -1 (LO);
DM(alp_l) = SR0;
AR = DM(alp_exp);
AY0 = SE;
AR = AR + AY0;
DM(alp_exp) = AR;
I1 = ^Ah_Al + 2;  /*  I1 = &Ah_Al[2]  */
I5 = ^Anh_Anl + 2;  /*  I5 = &Anh_Anl[2]  */
CNTR = DM(cnt); /* Actually, it's cnt+1, so an additional 

iteration will be done manually after the loop */
DO lev8_17 UNTIL CE;
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AR = PM(I5,M5);  /*  Ah[j] = Anh[j]  */
DM(I1,M1) = AR;
AR = PM(I5,M5);  /*  Al[j] = Anl[j]  */

lev8_17: DM(I1,M1) = AR;
AR = PM(I5,M5);
DM(I1,M1) = AR;
AR = PM(I5,M5);
DM(I1,M1) = AR;
AR = DM(cnt);   /*  increment cnt  */
AR = AR + 1;

lev8: /* loop end */ DM(cnt) = AR;
DM(I0,M1) = 4096;      /*  A[0] = 4096  */
I1 = ^Ah_Al + 2;  /*  I1 = &Ah_Al[2]  */
I5 = ^ses_amrst__olda + 1;
CNTR = M;
DO lev9 UNTIL CE;

MR1 = DM(I1,M1);
MR0 = 0;
AR = DM(I1,M1);
MY0 = 1;
MR = MR + AR * MY0 (SS);
SR= ASHIFT MR1 BY 1 (HI);
SR= SR OR LSHIFT MR0 BY 1 (LO);
AR = SR0 + 0x8000;   /* rounding */
AR = SR1 + C;
DM(I0,M1) = AR;  /*  Save A[i]  */

lev9: /* loop end */ PM(I5,M5) = AR;  /*  Save old_A[i]  */

RTS;
/* ************************************************************************* */
/* ************************************************************************* */
.ENDMOD;
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Terms & Acronyms

1G

The first generation of analogue mobile phone technologies including AMPS, TACS and 

NMT

2G

The second generation of digital mobile phone technologies including GSM, CDMA IS-95 

and D-AMPS IS-136

2.5G

The enhancement of GSM which includes technologies such as GPRS

3G

The third generation of mobile phone technologies covered by the ITU IMT-2000 family

3GPP

The 3rd Generation Partnership Project, a grouping of international standards bodies, oper-

ators and vendors with the responsibility of standardising the WCDMA based members of 

the IMT-2000 family

ADI

Analog Devices' proprietary assembling language, used by their family of DPS processors 
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ADPCM

Adaptive Differential Pulse Code Modulation; a form of voice compression that typically 

uses 32kbit/s

AMR

Adaptive Multi-Rate codec. Developed in 1999 for use in GSM networks, the AMR

has been adopted by 3GPP for 3G

ANSI

American National Standards Institute. An non-profit making US organisation which does 

not carry out standardisation work but reviews the work of standards bodies and assigns 

them category codes and numbers

CDMA

Code Division Multiple Access; also known as spread spectrum, CDMA cellular systems 

utilise a single frequency band for all traffic, differentiating the individual transmissions by 

assigning  them  unique  codes  before  transmission.  There  are  a  number  of  variants  of 

CDMA (see W-CDMA, B-CDMA, TD-SCDMA et al)

CELP

Code Excited Linear Prediction; an analogue to digital voice coding scheme, there are a 

number of variants used in cellular systems

Codec

A word formed by combining coder and decoder the codec is a device which encodes and 

decodes signals. The voice codec in a cellular network converts voice signals into and back 

from bit strings. In GSM networks, in addition to the standard voice codec, it is possible to 

implement Half Rate (HR) codecs and Enhanced Full Rate (EFR) codecs

D/A

Digital to Analogue conversion
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DAC

Digital to Analogue Convertor

DPCM

Differential Pulse Code Modulation

DSP

Digital Signal Processing

DTX

Discontinuous Transmission

Duplex

The wireless technique where one frequency band is used for traffic from the network to 

the subscriber (the downlink) and another, widely separated, band is used for traffic from 

the subscriber to the network (the uplink)

EDGE

Enhanced Data rates for GSM Evolution; effectively the final stage in the evolution of the 

GSM standard, EDGE uses a new modulation schema to enable theoretical data speeds of 

up to 384kbit/s within the existing GSM spectrum. An alternative upgrade path towards 3G 

services for operators, such as those in the USA, without access to new spectrum. Also 

known as Enhanced GPRS (E-GPRS)

EFR

Enhanced Full Rate; a alternative voice codec that provides improved voice quality in a 

GSM network (see codec)

ETSI

European Telecommunications  Standards Institute:  The European group responsible  for 

defining telecommunications standards
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FDMA

Frequency Division Multiple Access-a transmission technique where the assigned frequen-

cy band for a network is divided into sub-bands which are allocated to a subscriber for the 

duration of their calls

GPRS

General Packet Radio Service; standardised as part of GSM Phase 2+, GPRS represents the 

first implementation of packet switching within GSM, which is a circuit switched technolo-

gy.  GPRS offers  theoretical  data  speeds  of  up to  115kbit/s  using multislot  techniques. 

GPRS is an essential precursor for 3G as it introduces the packet switched core required for 

UMTS

GSM

Global System for Mobile communications, the second generation digital technology origi-

nally developed for Europe but which now has in excess of 71 per cent of the world mar-

ket. Initially developed for operation in the 900MHz band and subsequently modified for 

the 850, 1800 and 1900MHz bands. GSM originally stood for Groupe Speciale Mobile, the 

CEPT committee which began the GSM standardisation process

HSCSD

High Speed Circuit Switched Data; a special mode in GSM networks which provides high-

er data throughput By cocatenating a number of timeslots, each delivering 14.4kbit/s, much 

higher data speeds can be achieved

ITU

International Telecommunications Union

ITU-T

ITU Telecommunications Standardisation Sector
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PCM

Pulse Code Modulation; the standard digital voice format at 64kbit/s

QAM

Quadrature Amplitude Modulation

QCELP

Quadrature Code Excited Linear Prediction

RAM

Random Access Memory

RELP

Regular pulse Excitation Linear Prediction coding

TDMA

Time Division Multiple Access; a technique for multiplexing multiple users onto a single 

channel on a single carrier by splitting the carrier into time slots and allocating these on a 

as-needed basis

UMTS

Universal  Mobile  Telecommunications  System;  the European entrant  for 3G; now sub-

sumed into the IMT-2000 family as the WCDMA technology.

Vocoder

Voice coder

VoIP

Voice over Internet Protocol



Design and implementation on DSP of the ETSI GSM Adaptive Multi-Rate Vocoder                                          97  

VSELP

Vector Sum Excited Linear Prediction

WCDMA

Wideband CDMA; the technology created from a fusion of proposals to act as the Euro-

pean entrant for the ITU IMT-2000 family


