22 research outputs found

    School Choice as a One-Sided Matching Problem: Cardinal Utilities and Optimization

    Get PDF
    The school choice problem concerns the design and implementation of matching mechanisms that produce school assignments for students within a given public school district. Previously considered criteria for evaluating proposed mechanisms such as stability, strategyproofness and Pareto efficiency do not always translate into desirable student assignments. In this note, we explore a class of one-sided, cardinal utility maximizing matching mechanisms focused exclusively on student preferences. We adapt a well-known combinatorial optimization technique (the Hungarian algorithm) as the kernel of this class of matching mechanisms. We find that, while such mechanisms can be adapted to meet desirable criteria not met by any previously employed mechanism in the school choice literature, they are not strategyproof. We discuss the practical implications and limitations of our approach at the end of the article

    Adapting a Kidney Exchange Algorithm to Align with Human Values

    Get PDF
    The efficient and fair allocation of limited resources is a classical problem in economics and computer science. In kidney exchanges, a central market maker allocates living kidney donors to patients in need of an organ. Patients and donors in kidney exchanges are prioritized using ad-hoc weights decided on by committee and then fed into an allocation algorithm that determines who gets what--and who does not. In this paper, we provide an end-to-end methodology for estimating weights of individual participant profiles in a kidney exchange. We first elicit from human subjects a list of patient attributes they consider acceptable for the purpose of prioritizing patients (e.g., medical characteristics, lifestyle choices, and so on). Then, we ask subjects comparison queries between patient profiles and estimate weights in a principled way from their responses. We show how to use these weights in kidney exchange market clearing algorithms. We then evaluate the impact of the weights in simulations and find that the precise numerical values of the weights we computed matter little, other than the ordering of profiles that they imply. However, compared to not prioritizing patients at all, there is a significant effect, with certain classes of patients being (de)prioritized based on the human-elicited value judgments

    Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems

    Get PDF
    An algorithm is said to be certifying if it outputs, together with a solution to the problem it solves, a proof that this solution is correct. We explain how state of the art maximum clique, maximum weighted clique, maximal clique enumeration and maximum common (connected) induced subgraph algorithms can be turned into certifying solvers by using pseudo-Boolean models and cutting planes proofs, and demonstrate that this approach can also handle reductions between problems. The generality of our results suggests that this method is ready for widespread adoption in solvers for combinatorial graph problems

    Active classification with comparison queries

    Full text link
    We study an extension of active learning in which the learning algorithm may ask the annotator to compare the distances of two examples from the boundary of their label-class. For example, in a recommendation system application (say for restaurants), the annotator may be asked whether she liked or disliked a specific restaurant (a label query); or which one of two restaurants did she like more (a comparison query). We focus on the class of half spaces, and show that under natural assumptions, such as large margin or bounded bit-description of the input examples, it is possible to reveal all the labels of a sample of size nn using approximately O(logn)O(\log n) queries. This implies an exponential improvement over classical active learning, where only label queries are allowed. We complement these results by showing that if any of these assumptions is removed then, in the worst case, Ω(n)\Omega(n) queries are required. Our results follow from a new general framework of active learning with additional queries. We identify a combinatorial dimension, called the \emph{inference dimension}, that captures the query complexity when each additional query is determined by O(1)O(1) examples (such as comparison queries, each of which is determined by the two compared examples). Our results for half spaces follow by bounding the inference dimension in the cases discussed above.Comment: 23 pages (not including references), 1 figure. The new version contains a minor fix in the proof of Lemma 4.

    Understanding and Addressing the Pitfalls of Bisimulation-based Representations in Offline Reinforcement Learning

    Full text link
    While bisimulation-based approaches hold promise for learning robust state representations for Reinforcement Learning (RL) tasks, their efficacy in offline RL tasks has not been up to par. In some instances, their performance has even significantly underperformed alternative methods. We aim to understand why bisimulation methods succeed in online settings, but falter in offline tasks. Our analysis reveals that missing transitions in the dataset are particularly harmful to the bisimulation principle, leading to ineffective estimation. We also shed light on the critical role of reward scaling in bounding the scale of bisimulation measurements and of the value error they induce. Based on these findings, we propose to apply the expectile operator for representation learning to our offline RL setting, which helps to prevent overfitting to incomplete data. Meanwhile, by introducing an appropriate reward scaling strategy, we avoid the risk of feature collapse in representation space. We implement these recommendations on two state-of-the-art bisimulation-based algorithms, MICo and SimSR, and demonstrate performance gains on two benchmark suites: D4RL and Visual D4RL. Codes are provided at \url{https://github.com/zanghyu/Offline_Bisimulation}.Comment: NeurIPS 202
    corecore