134,524 research outputs found

    Formalizing Two Generalized Approximation Operators

    Get PDF
    Rough sets, developed by Pawlak [15], are important tool to describe situation of incomplete or partially unknown information. In this article we give the formal characterization of two closely related rough approximations, along the lines proposed in a paper by Gomolińska [2]. We continue the formalization of rough sets in Mizar [1] started in [6].Adam Grabowski - Institute of Informatics, University of Białystok, PolandMichał Sielwiesiuk - Institute of Informatics, University of Białystok, PolandGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.Anna Gomolińska. A comparative study of some generalized rough approximations. Fundamenta Informaticae, 51:103–119, 2002.Adam Grabowski. Automated discovery of properties of rough sets. Fundamenta Informaticae, 128:65–79, 2013. doi:10.3233/FI-2013-933.Adam Grabowski. Lattice theory for rough sets – a case study with Mizar. Fundamenta Informaticae, 147(2–3):223–240, 2016. doi:10.3233/FI-2016-1406.Adam Grabowski. Formalization of generalized almost distributive lattices. Formalized Mathematics, 22(3):257–267, 2014. doi:10.2478/forma-2014-0026.Adam Grabowski. Basic properties of rough sets and rough membership function. Formalized Mathematics, 12(1):21–28, 2004.Adam Grabowski. Relational formal characterization of rough sets. Formalized Mathematics, 21(1):55–64, 2013. doi:10.2478/forma-2013-0006.Adam Grabowski. Binary relations-based rough sets – an automated approach. Formalized Mathematics, 24(2):143–155, 2016. doi:10.1515/forma-2016-0011.Adam Grabowski and Magdalena Jastrzębska. A note on a formal approach to rough operators. In Marcin S. Szczuka and Marzena Kryszkiewicz et al., editors, Rough Sets and Current Trends in Computing – 7th International Conference, RSCTC 2010, Warsaw, Poland, June 28-30, 2010. Proceedings, volume 6086 of Lecture Notes in Computer Science, pages 307–316. Springer, 2010. doi:10.1007/978-3-642-13529-3_33.Adam Grabowski and Magdalena Jastrzębska. Rough set theory from a math-assistant perspective. In Rough Sets and Intelligent Systems Paradigms, International Conference, RSEISP 2007, Warsaw, Poland, June 28–30, 2007, Proceedings, pages 152–161, 2007. doi:10.1007/978-3-540-73451-2_17.Adam Grabowski and Christoph Schwarzweller. On duplication in mathematical repositories. In Serge Autexier, Jacques Calmet, David Delahaye, Patrick D. F. Ion, Laurence Rideau, Renaud Rioboo, and Alan P. Sexton, editors, Intelligent Computer Mathematics, 10th International Conference, AISC 2010, 17th Symposium, Calculemus 2010, and 9th International Conference, MKM 2010, Paris, France, July 5–10, 2010. Proceedings, volume 6167 of Lecture Notes in Computer Science, pages 300–314. Springer, 2010. doi:10.1007/978-3-642-14128-7_26.Adam Grabowski and Christoph Schwarzweller. Rough Concept Analysis - theory development in the Mizar system. In Asperti, Andrea and Bancerek, Grzegorz and Trybulec, Andrzej, editor, Mathematical Knowledge Management, Third International Conference, MKM 2004, Bialowieza, Poland, September 19–21, 2004, Proceedings, volume 3119 of Lecture Notes in Computer Science, pages 130–144, 2004. doi:10.1007/978-3-540-27818-4_10. 3rd International Conference on Mathematical Knowledge Management, Bialowieza, Poland, Sep. 19-21, 2004.Jouni Järvinen. Lattice theory for rough sets. Transactions of Rough Sets, VI, Lecture Notes in Computer Science, 4374:400–498, 2007.Eliza Niewiadomska and Adam Grabowski. Introduction to formal preference spaces. Formalized Mathematics, 21(3):223–233, 2013. doi:10.2478/forma-2013-0024.Zdzisław Pawlak. Rough sets. International Journal of Parallel Programming, 11:341–356, 1982. doi:10.1007/BF01001956.Y.Y. Yao. Two views of the theory of rough sets in finite universes. International Journal of Approximate Reasoning, 15(4):291–317, 1996. doi:10.1016/S0888-613X(96)00071-0.William Zhu. Generalized rough sets based on relations. Information Sciences, 177: 4997–5011, 2007.26218319

    Relational Formal Characterization of Rough Sets

    Get PDF
    The notion of a rough set, developed by Pawlak [10], is an important tool to describe situation of incomplete or partially unknown information. In this article, which is essentially the continuation of [6], we try to give the characterization of approximation operators in terms of ordinary properties of underlying relations (some of them, as serial and mediate relations, were not available in the Mizar Mathematical Library). Here we drop the classical equivalence- and tolerance-based models of rough sets [12] trying to formalize some parts of [19] following also [18] in some sense (Propositions 1-8, Corr. 1 and 2; the complete description is available in the Mizar script). Our main problem was that informally, there is a direct correspondence between relations and underlying properties, in our approach however [7], which uses relational structures rather than relations, we had to switch between classical (based on pure set theory) and abstract (using the notion of a structure) parts of the Mizar Mathematical Library. Our next step will be translation of these properties into the pure language of Mizar attributes.Institute of Informatics University of Białystok Akademicka 2, 15-267 Białystok, PolandCzesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Adam Grabowski. Basic properties of rough sets and rough membership function. Formalized Mathematics, 12(1):21-28, 2004.Adam Grabowski and Magdalena Jastrzebska. A note on a formal approach to rough operators. In Marcin S. Szczuka and Marzena Kryszkiewicz et al., editors, Rough Setsand Current Trends in Computing - 7th International Conference, RSCTC 2010, Warsaw,Poland, June 28-30, 2010. Proceedings, volume 6086 of Lecture Notes in ComputerScience, pages 307-316. Springer, 2010. doi:10.1007/978-3-642-13529-333.Artur Korniłowicz. Cartesian products of relations and relational structures. Formalized Mathematics, 6(1):145-152, 1997.Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Z. Pawlak. Rough sets. International Journal of Parallel Programming, 11:341-356, 1982. doi:10.1007/BF01001956.Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.Andrzej Skowron and Jarosław Stepaniuk. Tolerance approximation spaces. Fundamenta Informaticae, 27(2/3):245-253, 1996. doi:10.3233/FI-1996-272311.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115-122, 1990.Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski - Zorn lemma. Formalized Mathematics, 1(2):387-393, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.Y.Y. Yao. Two views of the theory of rough sets in finite universes. International Journal of Approximate Reasoning, 15(4):291-317, 1996. doi:10.1016/S0888-613X(96)00071-0.William Zhu. Generalized rough sets based on relations. Information Sciences, 177: 4997-5011, 2007. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000250016200013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f

    Bulletin of Mathematical Biology - facts, figures and comparisons

    Get PDF
    The Society for Mathematical Biology (SMB) owns the Bulletin of Mathematical Biology (BMB). This is an international journal devoted to the interface of mathematics and biology. At the 2003 SMB annual meeting in Dundee the Society asked the editor of the BMB to produce an analysis of impact factor, subject matter of papers, submission rates etc. Other members of the society were interested in the handling times of articles and wanted comparisons with other (appropriate) journals. In this article we present a brief history of the journal and report on how the journal impact factor has grown substantially in the last few years. We also present an analysis of subject areas of published papers over the past two years. We finally present data on times from receipt of paper to acceptance, acceptance to print (and to online publication) and compare these data with some other journals

    Mathematical models of games of chance: Epistemological taxonomy and potential in problem-gambling research

    Get PDF
    Games of chance are developed in their physical consumer-ready form on the basis of mathematical models, which stand as the premises of their existence and represent their physical processes. There is a prevalence of statistical and probabilistic models in the interest of all parties involved in the study of gambling – researchers, game producers and operators, and players – while functional models are of interest more to math-inclined players than problem-gambling researchers. In this paper I present a structural analysis of the knowledge attached to mathematical models of games of chance and the act of modeling, arguing that such knowledge holds potential in the prevention and cognitive treatment of excessive gambling, and I propose further research in this direction

    Dynamic problems for metamaterials: Review of existing models and ideas for further research

    Get PDF
    Metamaterials are materials especially engineered to have a peculiar physical behaviour, to be exploited for some well-specified technological application. In this context we focus on the conception of general micro-structured continua, with particular attention to piezoelectromechanical structures, having a strong coupling between macroscopic motion and some internal degrees of freedom, which may be electric or, more generally, related to some micro-motion. An interesting class of problems in this context regards the design of wave-guides aimed to control wave propagation. The description of the state of the art is followed by some hints addressed to describe some possible research developments and in particular to design optimal design techniques for bone reconstruction or systems which may block wave propagation in some frequency ranges, in both linear and non-linear fields. (C) 2014 Elsevier Ltd. All rights reserved

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008
    • …
    corecore