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It has been well over a decade since I wrote the book, Mathematics education: Models and processes 
(1995), along with my co-author, Graeme S. Halford. A good deal of what we wrote is still relevant to 
mathematics education today, as I indicate in this article. But there have been many significant 
developments in the intervening years that have impacted on our discipline and indicate future directions 
for our field. I address some of these developments here. 
 
Issues of Continued Significance 
Proponents of the period of Meaningful Learning (19030s and 1940s) advocated the development of 
mathematical learning with understanding, with William Brownell (e.g., 1945) emphasizing the 
importance of students appreciating and understanding the structure of mathematics. His 
recommendations are still highly relevant today: mathematics is the study of structure (Lesh & English, 
2005). As highlighted in the National Council of Teachers of Mathematics’ Principles and Standards for 
School Mathematics (NCTM 2000), students need to learn mathematics with understanding by actively 
building new knowledge from existing knowledge and experience. The curriculum must be “more than a 
collection of activities: it must be coherent, focused on important mathematics, and well articulated across 
the grades” (p. 14).   

Van Engen’s (e.g., 1949) advice, as well as that of the Gestaltists’ (e.g., Wertheimer, 1959), is 
also highly pertinent to mathematics education today. For example, Van Engen emphasized the 
importance of developing students’ ability to detect patterns in similar and seemingly diverse situations. 
In problem solving, students should identify the structure of a problem before searching for an answer. 
Likewise, the Gestaltists advocated the importance of productive thinking, as opposed to reproductive 
thinking, in the mathematics classroom (Wertheimer, 1959). A productive thinker grasps the structural 
relations in a problem or situation and then combines these parts into a dynamic whole.  Such productive 
thinking can be encouraged by not giving students ready-made steps to solve given problems.  

 
Developments during the period of the “New Mathematics” (1960s) still have significant input for 
mathematics education, despite the backlash they received in subsequent years. For example, Jerome 
Bruner’s (1960) recommendation for students to progress through three levels of representation, namely, 
the enactive, iconic, and symbolic, is still sound advice for effective curriculum development today. 
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Likewise, the ideas of Zoltan Dienes (e.g., 1960), whose recent interview appeared in the journal, 
Mathematical Thinking and Learning (volume 9, issue 1), remain highly applicable, and is reproduced in 
this monograph. For example, Dienes placed a strong focus on multiple embodiments and on cyclic 
patterns of learning where students progress from concrete to symbolic formats in developing an 
understanding of mathematical structures.  
 
Developments in the Intervening Years, 1995-2007 
There have been numerous developments in the intervening years that have either changed the landscape 
of mathematics education and/or provide significant pointers for future growth of our discipline. These 
developments include, among others: (a) a decreased emphasis on constructivism as the dominant 
paradigm for the teaching and learning of mathematics (e.g., Goldin, in press; Lesh & Doerr, 2003); (b) 
new developments in the learning sciences, in particular, a focus on complexity theory (e.g., English, in 
press a; Jacobson & Wilensky, 2006; Lesh, 2006); (c) an increased focus on mathematical reasoning and 
interdisciplinary modeling (e.g., English, 2007; Lesh & English, 2005; Lesh & Zawojewski, 2007); (d) a 
significant increase in research on the mathematics needed in various work place settings and the 
implications for mathematics education (e.g., Gainsburg, 2006; Hoyles, Noss, & Pozzi, 2001; Hoyles, 
Bakker, Kent, & Noss, in press); (e) a broadening of theoretical perspectives, including an increased focus 
on social-cultural-political aspects of mathematics education (e.g., Greer, Verschaffel, & Mukhopadhyay; 
in press; Gutstein, 2007); (g) developments in research methodology, in particular, a focus on design 
research (e.g., Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003; Lesh & Sriraman, 2005; Shavelson, 
Phillips, Towne, & Feuer, 2003); and (h) the increased sophistication and availability of technology (e.g., 
Kaput, Hegedus & Lesh, in press; O’Neil & Perez, 2006).  
 
Decreased emphasis on constructivism 
The dominant influence of constructivist theories on mathematics education has waned in recent years. In 
their edited volume, Beyond constructivism: Models and modeling perspectives on mathematics problem 
solving, learning, and teaching, Lesh and Doerr (2003) presented powerful arguments for why we need to 
move our field beyond the clutches of constructivist ideologies. For example, all of the goals of 
mathematics education do not need to be achieved through the processes of personal construction and not 
all the mathematics students learn need to be invented independently by students. In essence, construction 
is only one of many processes that contribute to the development of constructs. 
 
Goldin (e.g., 2002, 2003, in press) has further highlighted the shortcomings of constructivist theories, 
explaining how radical constructivists: 

rejected on a priori grounds all that is external to the “worlds of experience” of human individuals. 
Excluding the very possibility of knowledge about the real world, they dismissed unknowable, 
“objective reality” to focus instead on “experiential reality.” Mathematical structures, as 
abstractions apart from individual knowers and problem solvers, were likewise to be rejected. In 
advocating the (wholly subjective) idea of “viability” they dismissed its counterpart, the notion of 
(objective) validity (Goldin, in press). 

 
Paradigms, such as constructivism, which became fashionable in mathematics education over recent 
decades, tended to dismiss or deny the integrity of fundamental aspects of mathematical and scientific 
knowledge. I agree with Goldin that “It is time to abandon, knowledgeably and thoughtfully, the 
dismissive fads and fashions – the ‘isms’ – in favor of a unifying, non-ideological, scientific and eclectic 
approach to research, an approach that allows for the consilience of knowledge across the disciplines” 
(2003, p. 176).   
  
A models and modeling perspective provides one such unifying approach to research in mathematics 
education. I address this shortly but first wish to mention briefly some significant developments in 
complexity theory that have important, as yet untouched, implications for mathematics education.  



 
Developments in the learning sciences: A focus on complexity  
In the past decade or so, the learning sciences have seen substantial growth in research on complex 
systems and complexity theories (e.g., Jacobson & Wilensky, 2006; Lesh, 2006). Such research is yet to 
have an impact on mathematics education. Clearly, we cannot ignore this body of research if we are to 
prepare our students effectively for their future lives. Our students live in a world that is increasingly 
governed by complex systems that are dynamic, self-organizing, and continually adapting. Financial 
corporations, political parties, education systems, and the World Wide Web are just a few examples of 
complex systems. In the 21st century, such systems are becoming increasingly important in the everyday 
lives of both children and adults. For all citizens, an appreciation and understanding of the world as 
interlocked complex systems is critical for making effective decisions about one’s life as both an 
individual and as a community member (Bar-Yam, 2004; Davis & Sumara, 2006; Jacobson & Wilensky, 
2006; Lesh, 2006).     
 
In basic terms, complexity is the study of systems of interconnected components whose behavior cannot 
be explained solely by the properties of their parts but from the behavior that arises from their 
interconnectedness; the field has led to significant scientific methodological advances (Sabelli, 2006). 
Educational leaders from different walks of life are emphasizing the need to develop students’ abilities to 
deal with complex systems for success beyond school.  These abilities include: constructing, describing, 
explaining, manipulating, and predicting complex systems (such as sophisticated buying, leasing, and 
loan plans); working on multi-phase and multi-component projects in which planning, monitoring, and 
communicating are critical for success; and adapting rapidly to ever-evolving conceptual tools (or 
complex artifacts) and resources (e.g., Gainsburg, 2006; Lesh & Doerr, 2003). One approach to 
developing such abilities is through mathematical modelling, which is central to the study of complexity 
and to modern science. 
 
Increased focus on mathematical reasoning and interdisciplinary modeling 
Modeling is increasingly recognized as a powerful vehicle for not only promoting students’ understanding 
of a wide range of key mathematical and scientific constructs, but also for helping them appreciate the 
potential of mathematics as a critical tool for analyzing important issues in their lives, communities, and 
society in general (Greer, Verschaffel, & Mukhopadhyay, 2007; Romberg, Carpenter, & Kwako, 2005).  
 
The terms, models and modeling, have been used variously in the literature, including with reference to 
solving word problems, conducting mathematical simulations, creating representations of problem 
situations, and creating internal, psychological representations while solving a particular problem (e.g., 
Doerr & Tripp, 1999; Gravemeijer, 1999; Greer, 1997; Lesh & Doerr, 2003; Romberg et al., 2005). In my 
research in recent years I have defined models as “systems of elements, operations, relationships, and rules 
that can be used to describe, explain, or predict the behavior of some other familiar system” (Doerr & 
English, 2003, p.112). From this perspective, modeling problems are realistically complex situations where 
the problem solver engages in mathematical thinking beyond the usual school experience and where the 
products to be generated often include complex artifacts or conceptual tools that are needed for some 
purpose, or to accomplish some goal (Lesh & Zawojewski, 2007).   
 
Students’ development of powerful models should be regarded as among the most significant goals of 
mathematics education (Lesh & Sriraman, 2005). Importantly, modeling needs to be integrated within the 
elementary school curriculum and not reserved for the secondary school years and beyond as it has been 
traditionally. My recent research has shown that elementary school children are indeed capable of 
developing their own models and sense-making systems for dealing with complex problem situations (e.g., 
English, 2006; English & Watters, 2005). Mathematics education needs to give greater attention to 
developing the mathematical modeling abilities of younger children, especially given the increasing 
importance of modeling beyond the classroom. 



 
Research on the mathematics needed in work place settings: Implications for mathematics 
education 
Numerous researchers and employer groups have expressed concerns that educators are not giving 
adequate attention to the understandings and abilities that are needed for success beyond school. Research 
suggests that although professionals in mathematics-related fields draw upon their school learning, they 
do so in a flexible and creative manner, unlike the way in which they experienced mathematics in their 
school days (Gainsburg, 2006; Lombard & Lombardi, 2007; Noss, Hoyles, & Pozzi, 2002; Zawojewski & 
McCarthy, 2007). Furthermore, this research has indicated that such professionals draw upon 
interdisciplinary knowledge in solving problems and communicating their findings.  
 
The advent of digital technologies is also changing the nature of the mathematics needed in the work place, 
as I indicate later.  These technological developments have led to both the addition of new mathematical 
competencies and the elimination of existing mathematical skills that were once part of the worker's toolkit 
(e.g., Jenkins, Clinton, Purushotma, & Weigel, 2006; Lombardi & Lombardi, 2007). Studies of the nature 
and role of mathematics used in the workplace and other everyday settings (e.g., nursing, engineering, 
grocery shopping, dieting, architecture, fish hatcheries) provide significant pointers for the future-orienting 
of mathematics education. In the final chapter of the second edition of the Handbook of International 
Research in Mathematics Education (English et al., in press), I list a number of powerful mathematical 
ideas for the 21st century that are indicated by these studies of mathematics in work place settings. Included 
in this list are: (a) working collaboratively on complex problems where planning, monitoring, and 
communicating are critical for success; (b) applying numerical and algebraic reasoning in an efficient, 
flexible, and creative manner; (c) generating, analysing, operating on, and transforming complex data sets; 
(d) applying an understanding of core ideas from ratio and proportion, probability, rate, change, 
accumulation, continuity, and limit; (e) constructing, describing, explaining, manipulating, and predicting 
complex systems; and (f) thinking critically and being able to make sound judgments.  
 
A broadening of theoretical perspectives: An increased focus on social-cultural-political aspects of 
mathematics education 
In recent years we have seen a major shift within the field of mathematics education from a mainly 
psychological and pedagogical perspective towards one that encompasses the historical, cultural, social, and 
political contexts of both mathematics and mathematics education (e.g., English, in press b; Greer, Verschaffel, 
& Mukhopadhyay, 2007). This multitude of factors is having an unprecedented impact on mathematics 
education and its research endeavours. Many of our current educational problems continue to be fuelled by 
opposing values held by policy makers, program developers, professional groups, and community organizations 
(Greer et al., 2007; Skovsmose & Valero, in press). When mathematics is intertwined with human contexts and 
practices, it follows that social accountability must be applied to the discipline (D’Ambrosio, 2007; Greer & 
Mukhopadhyay, 2003; Mukhopadhyay & Greer, 2007; Gutstein, 2007). One potentially rich opportunity to 
address this issue lies in the increased emphasis on the inclusion of real-world problems in school curricula that 
involve data handling, statistical reasoning, and mathematical modeling and applications. There are numerous 
real-world examples where students can use mathematics to analyze socially and culturally relevant problems 
(Greer & Mukhopadhyay (2003). For example, Mukhopadhyay and Greer (2007) have outlined how the issue 
of gun violence, in particular as it impacts on students, can be analyzed in relation to its socio-political contexts 
using mathematics as a critical tool.  
 
In the final section of this article I review briefly design research, which in recent years has had a powerful 
impact on studies aimed at improving the teaching and learning of mathematics.  
 
Developments in research methodology: A focus on design research 
In recent years, the field of mathematics education research has been viewed by several scholars as a 
design science akin to engineering and other emerging interdisciplinary fields (e.g., Cobb et al., 2003; 



Lesh & Sriraman, 2005; Hjalmarson & Lesh, in press). Design research typically involves creating 
opportunities for both “engineering” particular forms of learning and teaching and studying these forms 
systematically within the supportive contexts created (Cobb et al., 2003; Lesh & Clarke, 2000; Schorr & 
Koellner-Clarke, 2003). Such a process usually involves a series of “iterative design cycles,” in which 
trial outcomes are iteratively tested and revised in progressing towards the improvement of mathematics 
teaching and learning (Lesh & Sriraman, 2005; Shavelson et al., 2003). Such developmental cycles leave 
auditable trails of documentation that reveal significant information about how and why the desired 
outcomes evolved.   
 
The focus on design science has led to studies addressing the interaction of a variety of participants (e.g., 
students, teachers, researchers, curriculum developers), complex conceptual systems (e.g., complex 
programs of constructions, complex learning activities) and technology, all of which are influenced by 
certain social constraints and affordances (e.g., Schorr & Koellner-Clarke, 2003). Such studies contrast 
with previous research involving information-processing approaches that traced the cognitive growth of 
individuals in selected mathematical domains such as number (e.g., Simon & Klahr, 1995). In the 
intervening years, design science approaches have opened up a new world of mathematics education 
research—we now have a greater understanding of a “learning ecology” (Cobb et al., 2003). Mathematics 
education involves not just individual learners and teachers; rather, it involves complex, interacting 
systems of participants engaged in learning experiences of many types and at many levels of 
sophistication.  
 
Design studies, however, have not been without their critics. Shavelson et al. (2003) warned that such 
studies, like all scientific research, must provide adequate warrants for the knowledge claims they make. 
As Shavelson et al. emphasized: “By their very nature, design studies are complex, multivariate, and 
interventionist, making warrants particularly difficult to establish” (p. 25).  Furthermore, many of these 
studies rely on narrative accounts to relay and justify their findings; the veracity of such findings is not 
guaranteed. In addressing this concern, Shavelson et al., have provided a framework that links research 
questions evolving from design studies with corresponding research methods focused on validation of 
claims.  
 
Included in their framework are considerations pertaining to: (a) “What is happening?” (e.g., 
characterizing a sample of students with a statistical sample, addressing the depth and breadth of a 
problem through survey, ethnographic, case study methods); (b) “Is there a systematic effect?” 
(addressing issues related to an intent to establish cause and effect); and (c) “Why or how is it 
happening?” (a question seeking a causal agent). In our efforts to move our discipline forward, we need to 
give serious consideration to concerns such as these, but at the same time, we need to ensure that design 
studies are not sidelined by policymakers’ request for stringent, scientifically controlled research. We 
cannot afford to lose the rich insights gained from design research studies in our discipline.  
 
Increased Sophistication and Availability of Technology 
Since the publication of my 1995 book, Mathematics education: Models and Processes, the increase in 
sophistication and availability of new technologies has been quite incredible. Such technological growth will 
escalate in years to come, making it difficult to predict what mathematics knowledge and understandings our 
students will need in even five years from now.  What appears of increasing importance, however, is the need 
for students to solve a variety of unanticipated problems, to be innovative and adaptive in their dealings with 
the world, to communicate clearly their ideas and understandings in a variety of formats to a variety of 
audiences, and to understand and appreciate the viewpoints of others, both within the classroom context and 
globally.  
 
Numerous opportunities are now available for both students and teachers to engage in mathematical 
experiences within international learning communities linked via videoconferencing and other computer 



networking facilities (e.g., see O’Neil & Perez, 2006). There are also increasing opportunities afforded by 
classroom connectivity where multiple devise types enable numerous representations to be passed bi-
directionally and flexibly among students and between students and the teacher within the classroom 
environment (Kaput, Hegedus, & Lesh, in press). Kaput et al. view classroom connectivity as “a critical means 
to unleash the long unrealized potential of computational media in education.”   
 
As many researchers have emphasized, however, (e.g., Moreno-Armella & Santos-Trigo, in press; Niss, 1999), 
the effective use of new technologies does not happen automatically and will not replace mathematics itself.  
Nor will technology lead to improvements in mathematical learning without improvements being made to the 
curriculum itself.   
 
As students and teachers become more adept at capitalizing on technological opportunities, the more they 
need to understand, reflect on, and critically analyze their actions; and the more researchers need to address 
the impact of these technologies on students’ and teachers’ mathematical development (Niss, 1999).   
 
Concluding Points 
I hope to have shown in this article that the field of mathematics education has come quite some distance 
since the 1995 publication of Mathematics education: Models and processes. However, I have only 
touched upon some of the key developments that have shaped and continue to shape mathematics 
education as we know it today. We still need significantly more progress in our discipline. We need to 
find more effective ways of involving all students in meaningful mathematical learning—learning that 
will equip all students for a rapidly advancing and exciting technological world. But equally importantly, 
we need to ensure that all of our students have the mathematical competencies that will enable them to 
navigate successively through their daily lives and achieve the productive outcomes they desire.  
Mathematics transcends so many aspects of our existence; it is our role to ensure our students make 
maximum use of their mathematical achievements.  
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