436 research outputs found

    Intelligent Integrated Management for Telecommunication Networks

    Get PDF
    As the size of communication networks keeps on growing, faster connections, cooperating technologies and the divergence of equipment and data communications, the management of the resulting networks gets additional important and time-critical. More advanced tools are needed to support this activity. In this article we describe the design and implementation of a management platform using Artificial Intelligent reasoning technique. For this goal we make use of an expert system. This study focuses on an intelligent framework and a language for formalizing knowledge management descriptions and combining them with existing OSI management model. We propose a new paradigm where the intelligent network management is integrated into the conceptual repository of management information called Managed Information Base (MIB). This paper outlines the development of an expert system prototype based in our propose GDMO+ standard and describes the most important facets, advantages and drawbacks that were found after prototyping our proposal

    Performance Evaluation of Mobile U-Navigation based on GPS/WLAN Hybridization

    Get PDF
    This paper present our mobile u-navigation system. This approach utilizes hybridization of wireless local area network and Global Positioning System internal sensor which to receive signal strength from access point and the same time retrieve Global Navigation System Satellite signal. This positioning information will be switched based on type of environment in order to ensure the ubiquity of positioning system. Finally we present our results to illustrate the performance of the localization system for an indoor/ outdoor environment set-up.Comment: Journal of Convergence Information Technology(JCIT

    Integration of Data Mining and Data Warehousing: a practical methodology

    Get PDF
    The ever growing repository of data in all fields poses new challenges to the modern analytical systems. Real-world datasets, with mixed numeric and nominal variables, are difficult to analyze and require effective visual exploration that conveys semantic relationships of data. Traditional data mining techniques such as clustering clusters only the numeric data. Little research has been carried out in tackling the problem of clustering high cardinality nominal variables to get better insight of underlying dataset. Several works in the literature proved the likelihood of integrating data mining with warehousing to discover knowledge from data. For the seamless integration, the mined data has to be modeled in form of a data warehouse schema. Schema generation process is complex manual task and requires domain and warehousing familiarity. Automated techniques are required to generate warehouse schema to overcome the existing dependencies. To fulfill the growing analytical needs and to overcome the existing limitations, we propose a novel methodology in this paper that permits efficient analysis of mixed numeric and nominal data, effective visual data exploration, automatic warehouse schema generation and integration of data mining and warehousing. The proposed methodology is evaluated by performing case study on real-world data set. Results show that multidimensional analysis can be performed in an easier and flexible way to discover meaningful knowledge from large datasets

    A Differential Mechatronic Device: Design, Simulation and Experimental Results

    Get PDF
    Differential mechanisms are widely studied in literature, from a theoretical viewpoint and for applicative reasons. A differential mechanism is a mechanical system with one or more output motions resulting from the combination of different input motions acting on the same degree of freedom. In this work, we point the attention on planar differential systems (a monoaxis and a Cartesian device) composed by belts and pulleys. Particularly the Vernier effect is used to realize high-speed and highaccuracy devices with low-cost components. Simplified models of these two systems are presented to show the main kinematic and dynamic features. An advanced model is then realized for the Cartesian device with the aid of the Dymola software and simulation results are compared with the expected ones from the simplified model. The control of the system is realized with three PI systems (proportionalintegrative) optimized via an adaptive logic. Finally early experimental results are presented only for the monoaxis system
    corecore