1,495 research outputs found

    MobiSys 2016

    Get PDF
    The 14th ACM International Conference on Mobile Systems, Applications, and Services (MobiSys 2016) spanned a range of themes and domains, from smart environments to security and privacy. The highlights presented here cover the keynotes, paper sessions, and first Asian Students Symposium on Emerging Technologies

    DoubleEcho: Mitigating Context-Manipulation Attacks in Copresence Verification

    Full text link
    Copresence verification based on context can improve usability and strengthen security of many authentication and access control systems. By sensing and comparing their surroundings, two or more devices can tell whether they are copresent and use this information to make access control decisions. To the best of our knowledge, all context-based copresence verification mechanisms to date are susceptible to context-manipulation attacks. In such attacks, a distributed adversary replicates the same context at the (different) locations of the victim devices, and induces them to believe that they are copresent. In this paper we propose DoubleEcho, a context-based copresence verification technique that leverages acoustic Room Impulse Response (RIR) to mitigate context-manipulation attacks. In DoubleEcho, one device emits a wide-band audible chirp and all participating devices record reflections of the chirp from the surrounding environment. Since RIR is, by its very nature, dependent on the physical surroundings, it constitutes a unique location signature that is hard for an adversary to replicate. We evaluate DoubleEcho by collecting RIR data with various mobile devices and in a range of different locations. We show that DoubleEcho mitigates context-manipulation attacks whereas all other approaches to date are entirely vulnerable to such attacks. DoubleEcho detects copresence (or lack thereof) in roughly 2 seconds and works on commodity devices

    Mobile, collaborative augmented reality using cloudlets

    Get PDF
    The evolution in mobile applications to support advanced interactivity and demanding multimedia features is still ongoing. Novel application concepts (e.g. mobile Augmented Reality (AR)) are however hindered by the inherently limited resources available on mobile platforms (not withstanding the dramatic performance increases of mobile hardware). Offloading resource intensive application components to the cloud, also known as "cyber foraging", has proven to be a valuable solution in a variety of scenarios. However, also for collaborative scenarios, in which data together with its processing are shared between multiple users, this offloading concept is highly promising. In this paper, we investigate the challenges posed by offloading collaborative mobile applications. We present a middleware platform capable of autonomously deploying software components to minimize average CPU load, while guaranteeing smooth collaboration. As a use case, we present and evaluate a collaborative AR application, offering interaction between users, the physical environment as well as with the virtual objects superimposed on this physical environment

    Deep Room Recognition Using Inaudible Echos

    Full text link
    Recent years have seen the increasing need of location awareness by mobile applications. This paper presents a room-level indoor localization approach based on the measured room's echos in response to a two-millisecond single-tone inaudible chirp emitted by a smartphone's loudspeaker. Different from other acoustics-based room recognition systems that record full-spectrum audio for up to ten seconds, our approach records audio in a narrow inaudible band for 0.1 seconds only to preserve the user's privacy. However, the short-time and narrowband audio signal carries limited information about the room's characteristics, presenting challenges to accurate room recognition. This paper applies deep learning to effectively capture the subtle fingerprints in the rooms' acoustic responses. Our extensive experiments show that a two-layer convolutional neural network fed with the spectrogram of the inaudible echos achieve the best performance, compared with alternative designs using other raw data formats and deep models. Based on this result, we design a RoomRecognize cloud service and its mobile client library that enable the mobile application developers to readily implement the room recognition functionality without resorting to any existing infrastructures and add-on hardware. Extensive evaluation shows that RoomRecognize achieves 99.7%, 97.7%, 99%, and 89% accuracy in differentiating 22 and 50 residential/office rooms, 19 spots in a quiet museum, and 15 spots in a crowded museum, respectively. Compared with the state-of-the-art approaches based on support vector machine, RoomRecognize significantly improves the Pareto frontier of recognition accuracy versus robustness against interfering sounds (e.g., ambient music).Comment: 29 page

    Device-Based Isolation for Securing Cryptographic Keys

    Get PDF
    In this work, we describe an eective device-based isolation approach for achieving data security. Device-based isolation leverages the proliferation of personal computing devices to provide strong run-time guarantees for the condentiality of secrets. To demonstrate our isolation approach, we show its use in protecting the secrecy of highly sensitive data that is crucial to security operations, such as cryptographic keys used for decrypting ciphertext or signing digital signatures. Private key is usually encrypted when not used, however, when being used, the plaintext key is loaded into the memory of the host for access. In our threat model, the host may be compromised by attackers, and thus the condentiality of the host memory cannot be preserved. We present a novel and practical solution and its prototype called DataGuard to protect the secrecy of the highly sensitive data through the storage isolation and secure tunneling enabled by a mobile handheld device. DataGuard can be deployed for the key protection of individuals or organizations
    • …
    corecore