2,406 research outputs found

    Representing Code History with Development Environment Events

    Get PDF
    Modern development environments handle information about the intent of the programmer: for example, they use abstract syntax trees for providing high-level code manipulation such as refactorings; nevertheless, they do not keep track of this information in a way that would simplify code sharing and change understanding. In most Smalltalk systems, source code modifications are immediately registered in a transaction log often called a ChangeSet. Such mechanism has proven reliability, but it has several limitations. In this paper we analyse such limitations and describe scenarios and requirements for tracking fine-grained code history with a semantic representation. We present Epicea, an early prototype implementation. We want to enrich code sharing with extra information from the IDE, which will help understanding the intention of the changes and let a new generation of tools act in consequence

    Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Get PDF
    The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs), which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research

    Untangling Fine-Grained Code Changes

    Get PDF
    After working for some time, developers commit their code changes to a version control system. When doing so, they often bundle unrelated changes (e.g., bug fix and refactoring) in a single commit, thus creating a so-called tangled commit. Sharing tangled commits is problematic because it makes review, reversion, and integration of these commits harder and historical analyses of the project less reliable. Researchers have worked at untangling existing commits, i.e., finding which part of a commit relates to which task. In this paper, we contribute to this line of work in two ways: (1) A publicly available dataset of untangled code changes, created with the help of two developers who accurately split their code changes into self contained tasks over a period of four months; (2) a novel approach, EpiceaUntangler, to help developers share untangled commits (aka. atomic commits) by using fine-grained code change information. EpiceaUntangler is based and tested on the publicly available dataset, and further evaluated by deploying it to 7 developers, who used it for 2 weeks. We recorded a median success rate of 91% and average one of 75%, in automatically creating clusters of untangled fine-grained code changes

    Benzo: Reflective Glue for Low-level Programming

    Get PDF
    International audienceThe goal of high-level low-level programming is to bring the abstraction capabilities of high-level languages to the system programming domain, such as virtual machines (VMs) and language runtimes. However, existing solutions are bound to compilation time and expose limited possibilities to be changed at runtime and from language-side. They do not fit well with fully reflective languages and environments. We propose Benzo1, a lightweight framework for high- level low-level programming that allows developers to generate and execute at runtime low-level code (assembly). It promotes the implementation, and dynamic modification, of system components with high-level language tools outperforming existing dynamic solutions. Since Benzo is a general framework we choose three applications that cover an important range of the spectrum of system programming for validating the infrastructure: a For- eign Function Interface (FFI), primitives instrumentation and a just-in-time bytecode compiler (JIT). With Benzo we show that these typical VM-level components are feasible as reflective language-side implementations. Due to its unique combination of high-level reflection and low-level programming, Benzo shows better performance for these three applications than the comparable high-level implementations

    An overview of very high level software design methods

    Get PDF
    Very High Level design methods emphasize automatic transfer of requirements to formal design specifications, and/or may concentrate on automatic transformation of formal design specifications that include some semantic information of the system into machine executable form. Very high level design methods range from general domain independent methods to approaches implementable for specific applications or domains. Applying AI techniques, abstract programming methods, domain heuristics, software engineering tools, library-based programming and other methods different approaches for higher level software design are being developed. Though one finds that a given approach does not always fall exactly in any specific class, this paper provides a classification for very high level design methods including examples for each class. These methods are analyzed and compared based on their basic approaches, strengths and feasibility for future expansion toward automatic development of software systems
    • …
    corecore