9,086 research outputs found

    A New Inexact Non-Interior Continuation Algorithm for Second-Order Cone Programming

    Get PDF
    Second-order cone programming has received considerable attention in the past decades because of its wide range of applications. Non-interior continuation method is one of the most popular and efficient methods for solving second-order cone programming partially due to its superior numerical performances. In this paper, a new smoothing form of the well-known Fischer-Burmeister function is given. Based on the new smoothing function, an inexact non-interior continuation algorithm is proposed. Attractively, the new algorithm can start from an arbitrary point, and it solves only one system of linear equations inexactly and performs only one line search at each iteration. Moreover, under a mild assumption, the new algorithm has a globally linear and locally Q-quadratical convergence. Finally, some preliminary numerical results are reported which show the effectiveness of the presented algorithm

    Interior-proximal primal-dual methods

    Get PDF
    We study preconditioned proximal point methods for a class of saddle point problems, where the preconditioner decouples the overall proximal point method into an alternating primal--dual method. This is akin to the Chambolle--Pock method or the ADMM. In our work, we replace the squared distance in the dual step by a barrier function on a symmetric cone, while using a standard (Euclidean) proximal step for the primal variable. We show that under non-degeneracy and simple linear constraints, such a hybrid primal--dual algorithm can achieve linear convergence on originally strongly convex problems involving the second-order cone in their saddle point form. On general symmetric cones, we are only able to show an O(1/N)O(1/N) rate. These results are based on estimates of strong convexity of the barrier function, extended with a penalty to the boundary of the symmetric cone

    Fast Second-order Cone Programming for Safe Mission Planning

    Full text link
    This paper considers the problem of safe mission planning of dynamic systems operating under uncertain environments. Much of the prior work on achieving robust and safe control requires solving second-order cone programs (SOCP). Unfortunately, existing general purpose SOCP methods are often infeasible for real-time robotic tasks due to high memory and computational requirements imposed by existing general optimization methods. The key contribution of this paper is a fast and memory-efficient algorithm for SOCP that would enable robust and safe mission planning on-board robots in real-time. Our algorithm does not have any external dependency, can efficiently utilize warm start provided in safe planning settings, and in fact leads to significant speed up over standard optimization packages (like SDPT3) for even standard SOCP problems. For example, for a standard quadrotor problem, our method leads to speedup of 1000x over SDPT3 without any deterioration in the solution quality. Our method is based on two insights: a) SOCPs can be interpreted as optimizing a function over a polytope with infinite sides, b) a linear function can be efficiently optimized over this polytope. We combine the above observations with a novel utilization of Wolfe's algorithm to obtain an efficient optimization method that can be easily implemented on small embedded devices. In addition to the above mentioned algorithm, we also design a two-level sensing method based on Gaussian Process for complex obstacles with non-linear boundaries such as a cylinder

    Variational Analysis In Second-Order Cone Programming And Applications

    Get PDF
    This dissertation conducts a second-order variational analysis for an important class on nonpolyhedral conic programs generated by the so-called second-order/Lorentz/ice-cream cone. These second-order cone programs (SOCPs) are mathematically challenging due to the nonpolyhedrality of the underlying second-order cone while being important for various applications. The two main devices in our study are second epi-derivative and graphical derivative of the normal cone mapping which are proved to accumulate vital second-order information of functions/constraint systems under investigation. Our main contribution is threefold: - proving the twice epi-differentiability of the indicator function of the second-order cone and of the augmented Lagrangian associated with SOCPs, and deriving explicit formulae for the calculation of the second epi-derivatives of both functions; - establishing a precise formula-entirely via the initial data-for calculating the graphical derivative of the normal cone mapping generated by the constraint set of SOCPs without imposing any nondegeneracy condition; - conducting a complete convergence analysis of the Augmented Lagrangian Method (ALM) for SOCPs with solvability, stability and local convergence analysis of both exact and inexact versions of the ALM under fairly mild assumptions. These results have strong potentials for applications to SOCPs and related problems. Among those presented in this dissertation we mention characterizations of the uniqueness of Lagrange multipliers together with an error bound estimate for second-order cone constraints; of the isolated calmness property for solutions maps of perturbed variational systems associated with SOCPs; and also of (uniform) second-order growth condition for the augmented Lagrangian associated with SOCPs

    On second-order cone positive systems

    Full text link
    Internal positivity offers a computationally cheap certificate for external (input-output) positivity of a linear time-invariant system. However, the drawback with this certificate lies in its realization dependency. Firstly, computing such a realization requires to find a polyhedral cone with a potentially high number of extremal generators that lifts the dimension of the state-space representation, significantly. Secondly, not all externally positive systems posses an internally positive realization. Thirdly, in many typical applications such as controller design, system identification and model order reduction, internal positivity is not preserved. To overcome these drawbacks, we present a tractable sufficient certificate of external positivity based on second-order cones. This certificate does not require any special state-space realization: if it succeeds with a possibly non-minimal realization, then it will do so with any minimal realization. While there exist systems where this certificate is also necessary, we also demonstrate how to construct systems, where both second-order and polyhedral cones as well as other certificates fail. Nonetheless, in contrast to other realization independent certificates, the present one appears to be favourable in terms of applicability and conservatism. Three applications are representatively discussed to underline its potential. We show how the certificate can be used to find externally positive approximations of nearly externally positive systems and demonstrated that this may help to reduce system identification errors. The same algorithm is used then to design state-feedback controllers that provide closed-loop external positivity, a common approach to avoid over- and undershooting of the step response. Lastly, we present modifications to generalized balanced truncation such that external positivity is preserved where our certificate applies

    A second order cone formulation of continuous CTA model

    Get PDF
    The final publication is available at link.springer.comIn this paper we consider a minimum distance Controlled Tabular Adjustment (CTA) model for statistical disclosure limitation (control) of tabular data. The goal of the CTA model is to find the closest safe table to some original tabular data set that contains sensitive information. The measure of closeness is usually measured using l1 or l2 norm; with each measure having its advantages and disadvantages. Recently, in [4] a regularization of the l1 -CTA using Pseudo-Huber func- tion was introduced in an attempt to combine positive characteristics of both l1 -CTA and l2 -CTA. All three models can be solved using appro- priate versions of Interior-Point Methods (IPM). It is known that IPM in general works better on well structured problems such as conic op- timization problems, thus, reformulation of these CTA models as conic optimization problem may be advantageous. We present reformulation of Pseudo-Huber-CTA, and l1 -CTA as Second-Order Cone (SOC) op- timization problems and test the validity of the approach on the small example of two-dimensional tabular data set.Peer ReviewedPostprint (author's final draft
    corecore