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CHAPTER 1 INTRODUCTION

1.1 Subjects

Second-order cone programs (SOCPs for brevity) are optimization problems given in the

form

minimize f(x) subject to Φ(x) ∈ Q, (1.1)

where both function f : Rn → R and mapping Φ: Rn → Rm+1 are twice continuously

differentiable (C2-smooth) around the reference points, and where the underlying set Q is

the second-order/Lorentz/ice-cream cone in Rm+1 defined by

Q :=
{
y = (y0, yr) ∈ R× Rm

∣∣ ‖yr‖ ≤ y0

}
. (1.2)

Problems of this type are mathematically challenging while being important for various

applications; see, e.g., [1, 5, 6, 42, 46, 47] and the bibliographies therein. A remarkable

feature of SOCPs, which significantly distinguishes them from nonlinear programs (NLPs)

and the like, is the nonpolyhedrality of the underlying second-order coneQ in the definition

of the SOCP constraint system

Γ :=
{
x ∈ Rn

∣∣Φ(x) ∈ Q
}
. (1.3)

The Karush-Kuhn-Tucker (KKT) optimality system associated with (1.1) is given by

∇xL(x, λ) = ∇f(x) +∇Φ(x)∗λ = 0, λ ∈ NQ
(
Φ(x)

)
, (1.4)
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where L(x, λ) := f(x) + 〈λ,Φ(x)〉 is the (standard) Lagrangian of problem (1.1) with

(x, λ) ∈ Rn × Rm+1. Assume that x̄ ∈ Rn is a stationary point of (1.1), i.e., there exists

some λ̄ ∈ Rm+1 such that (x̄, λ̄) satisfies the KKT system (1.4). Such a vector λ̄ is call

a Lagrange multiplier associated with x̄. For each x̄ ∈ Rn, define the set of Lagrange

multipliers associated with x̄ by

Λ(x̄) :=
{
λ ∈ Rm+1

∣∣ ∇xL(x̄, λ) = 0, λ ∈ NQ
(
Φ(x̄)

)}
. (1.5)

Thus x̄ is a stationary point of (1.1) if and only if Λ(x̄) 6= ∅.

The intention of this dissertation is to conduct a comprehensive second-order varia-

tional analysis for SOCPs by using appropriate tools of second-order generalized differen-

tiation and to illustrate some applications of the obtained results in both stability analysis

ans numerical analysis. Our main contribution is threefold:

• proving the twice epi-differentiability of the indicator function of Q and of the aug-

mented Lagrangian associated with SOCP (1.1), and deriving explicit formulae for

the calculation of the second epi-derivatives of both functions;

• establishing a precise formula–entirely via the initial data– for calculating the graph-

ical derivative of the normal cone mapping generated by the constraint set Γ in (1.3)

without imposing any nondegeneracy condition;

• conducting a complete convergence analysis of the Augmented Lagrangian Method

(ALM) for SOCPs (1.1) with solvability, stability and local convergence analysis of

both exact and inexact versions of the ALM under fairly mild assumptions.
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1.2 Second-Order Generalized Differentiation

Our main devices in second-order variation analysis for SOCPs are second epi-derivative

and graphical derivative of the normal cone mapping, see Sect. 2.1 for precise definitions of

these constructions.

Rockafellar [55] introduced the concept of the twice epi-differentiability for noncon-

vex extended-real-valued functions. Second epi-derivative is proved to accumulate vital

second-order information of such functions and therefor plays an important role in mod-

ern second-order variational analysis, see, e.g., [37]. In this dissertation, we pay a major

attention to the second epi-derivative due to its ability to characterize the second-order

growth condition and thus to provide a second-order sufficient condition for strict local

minimizers of a given function. Twice epi-differentiability and it calculation of the second

epi-derivatives of the indicator function δQ and of the augmented Lagrangian function as-

sociated with SOCP (1.1) are established without imposing any assumption. By employing

the geometry of the second-order cone Q in (1.2), we obtain explicit formulae for second

epi-derivative for both functions, which are new to the best of our knowledge. The ob-

tained results are then showed to have great applications in investigating the constraint

system (1.3) and SOCPs (1.1).

Another necessary optimality of the SOCP (1.1) can be read as the following variational

system via the constraint set Γ:

0 ∈ ∇f(x) +NΓ(x). (1.6)

The optimality conditions (1.4) and (1.6) are equivalent under some suitable qualification



4

conditions, see Sect. 3.1. These carry certain first-order information about SOCPs via the

first-order derivative ∇f and the limiting normal cones NQ and NΓ, see Sect. 2.1 for defi-

nitions of normal cones. Therefore, generalized differentiation of normal cone mappings

leads us to second-order construction. Study of the nonrobust, tangentially generated

graphical derivative (of the normal cone mapping), which is of its own interest, has come

to our attention by it application to characterizing the so-called isolated calmness property

for parametric constraint or variational systems, see, e.g., [9, 11, 40] and the references

therein. Developing calculation for such nonrobust object is a challenging issue, especially

when the underlying cone Q is not a polyhedral, see Remark 3.12. We precisely calculate

the graphical derivative of the normal cone mapping generated by (1.3) under merely the

metric subregularity constraint qualification. The results obtained here seem to be the

first one in the literature for nonpolyhedral problems without imposing any nodegeneracy

assumptions.

1.3 Essence of the ALM

The augmented Lagrangian L : Rn×Rm+1× (0,∞)→ R associated with the SOCP (1.1)

is defined by

L(x, λ, ρ) := f(x) +
ρ

2
dist2

(
Φ(x) + ρ−1λ;Q

)
− 1

2
ρ−1‖λ‖2, (x, λ, ρ) ∈ Rn × Rm+1 × (0,∞),

(1.7)

where λ ∈ Rm+1 is a (vector) multiplier, and where ρ > 0 is a penalty parameter of L. The

principal idea of the augmented Lagrangian method (ALM) for (1.1) is to solve a sequence

of unconstrained problems which objectives are defined by the augmented Lagrangian
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(1.7) at a given multiplier-parameter pair (λ, ρ); namely,

minimize L(x, λ, ρ) over x ∈ Rn. (1.8)

This means that, given a multiplier λ and a penalty parameter ρ, the ALM solves the

unconstrained problem (1.8) for the primal variable x and uses the obtained value to

update both the multiplier and penalty parameter in the next iteration.

The ALM was first proposed independently by Hestenes and Powell for nonlinear pro-

gramming problems (NLPs) with equality constraints [25, 48] and was originally known

as the method of multipliers. For the latter framework, Powell observed in [48] that the

ALM converges locally with an arbitrarily linear rate if one started the method with a suffi-

ciently high penalty factor (but without the requirement of driving the penalty parameter

to infinity) and from a point sufficiently close to a primal-dual pair that satisfies the stan-

dard second-order sufficient conditions (SOSC). This is an appealing feature of the ALM,

since it provides a numerical stability that cannot be achieved in the usual smooth penalty

method.

The ALM was largely extended to various settings of NLPs as well as convex program-

ming with both equality and inequality constraints by Rockafellar [52, 53, 54]; see also

the monographs [4, 45, 61] and the references therein. The classical results for the linear

convergence of the ALM in NLP framework impose the SOSC, the linear independence

constraint qualification (LICQ), and the strict complementarity condition, which all to-

gether guarantee the uniqueness of the primal solution as well as the corresponding dual

solution/multiplier.
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More recently, the study of the ALM has been growing with important theoretical de-

velopments. On one hand, various attempts have been made to relax the restrictive as-

sumptions for the convergence of this method in the NLP settings. In such a framework,

Fernández and Solodov achieved in [14] a remarkable progress for NLPs by proving that

the linear convergence of the primal-dual sequence in the ALM can be ensured if the SOSC

alone is satisfied. This result significantly improved the classical ones for NLPs by verifying

that neither the LICQ nor the strict complementarity condition is required for local con-

vergence analysis of the ALM. A further improvement was obtained in Izmailov et al. [28]

by showing that the conventional SOSC utilized in [14] can be replaced by the noncriti-

cality of Lagrange multipliers for problems with equality constraints. On the other hand,

the ALM has been studied for other major classes of constrained optimization including

SOCPs [33] and semidefinite programming problems (SDPs) [64]. For C2-cone reducible

problems of conic programming (in the sense of Bonnans and Shapiro [6]), Kanzow and

Steck [30, 31] established the linear convergence of the primal-dual sequence generated

by modified versions of the ALM under the SOSC and strong Robinson constraint qualifi-

cation; the latter yields that the Lagrange multiplier is unique. However, the solvability of

subproblems in the ALM was not addressed in these papers. We also refer the reader to

the paper by Cui et al. [8] and the bibliography therein for recent developments on the

ALM for particular classes of convex composite problems of conic programming.

The major goal of Chapters 4 and 5 is to develop both exact and inexact versions of the

ALM for SOCPs under fairly mild assumptions. We aim first at establishing the solvability

and Lipschitzian stability of the ALM subproblems by imposing merely the corresponding
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SOSC for (1.1) in the general case of nonunique Lagrange multipliers. Having this, we

verify a local primal-dual convergence of iterates with an arbitrary linear rate by assuming

in addition the uniqueness of multipliers. Similarly to Fernández and Solodov [14], our

approach revolves around the second-order growth condition for the augmented Lagrangian

(1.7). To the best of our knowledge, the origin of such a second-order growth condition for

NLPs goes back to Rockafellar in [59, Theorem 7.4] from which [14] significantly benefits.

However, in contrast to [59], [14] as well as to the vast majority of other publications on

numerical optimization, we achieve our goal for (1.1) by employing the concepts of the

second subderivative and twice epi-differentiability of extended-real-valued functions in the

framework of second-order variational analysis.

We next recall some properties of the augmented Lagrangian (1.7) that are used below;

see, e.g., [60, Exercise 11.56].

Proposition 1.1 (properties of the augmented Lagrangian). For (1.7) with (x, λ, ρ) ∈

Rn × Rm+1 × (0,∞) the following hold:

(i) The function ρ 7→ L(x, λ, ρ) is nondecreasing.

(ii) The function λ 7→ L(x, λ, ρ) is concave.

It follows from the direct differentiation of (1.7) that for any ρ > 0 we have

∇xL(x, λ, ρ) = ∇f(x) +∇Φ(x)∗Π−Q
(
ρΦ(x) + λ

)
),

∇λL(x, λ, ρ) = ρ−1
[
Π−Q

(
ρΦ(x) + λ

)
− λ
]
,

(1.9)

which allows us to readily deduce that (x̄, λ̄) is a solution to the KKT system (1.4) if and
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only if for any ρ > 0 this pair satisfies the equation

(
∇xL(x, λ, ρ),∇λL(x, λ, ρ)

)
= (0, 0). (1.10)

Finally, let us list some properties of the projection mapping for the second-order cone

Q that are extensively exploited in studying of augmented Lagragians:

(P1) p = ΠQ(y) if and only if p ∈ Q, 〈y − p, p〉 = 0, and y − p ∈ −Q.

(P2) For every y ∈ Rm+1 we have y = ΠQ(y) + Π−Q(y).

(P3) For every y ∈ Rm+1 we have
〈
ΠQ(y),Π−Q(y)

〉
= 0.

(P4) λ ∈ NQ(y) if and only if ΠQ(y + λ) = y.

1.4 Overview of the Contents

Chapter 2 is mainly devoted to the study of twice epi-differentiability (in the sense of

Rockafellar [57]) of the indicator function δQ of the second-order cone (1.2). We start

by reviewing some important notions of variational analysis and generalized differentia-

tion that are broadly used throughout the whole dissertation. The main result here not

only justifies the twice epi-differentiability of δQ, but also establishes a precise formula

for calculating the second epi-derivative of this function in terms of the given data of Q

without any additional assumptions. We conclude by presenting some of its consequences

and related properties.

Chapter 3 concerns computation of graphical derivative of the normal cone mapping to

the constraint set (1.3). The first section is devoted to the study of second-order proper-

ties of the SOCP constraint system (1.3) by using the twice epi-differentiability of δQ and

the metric subregularity constraint qualification (MSCQ) for (1.3), which seems to be the
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weakest constraint qualification that has been investigated and employed recently in the

(polyhedral) NLP framework; see [19, 16, 7]. Among the most important results obtained

in this first section we mention the following: (i) a constructive description of generalized

normals to the critical cone at the point in question under MSCQ, and (ii) a characteriza-

tion of the uniqueness of Lagrange multipliers together with an appropriate error bound

estimate (automatic in the polyhedral case) at stationary points via a new constraint qual-

ification in conic programming, which happens to be in the case of (1.3) a dual form of the

strict Robinson constraint qualification (SRCQ) from [6, 9]. We also present here novel ap-

proximate duality relationships for a linear conic optimization problem associated with the

second-order coneQ that play a significant role in establishing the main result of the paper.

In the next section, we derive a new formula allowing us to precisely calculate the graphi-

cal derivative of the normal cone mapping generated by (1.3), merely under the validity of

MSCQ. The obtained major result is the first in the literature for nonpolyhedral constraint

systems without imposing nondegeneracy. As discussed below, its proof is significantly dif-

ferent from the recent ones given in [7, 16, 19] for polyhedral systems, even in the latter

case. It is also largely different from the approaches developed in [20, 40, 41] for conic

programs under nondegeneracy assumptions. We present in the end of this section a non-

trivial example of a two-dimensional constraint system (1.3) with the three-dimensional

second-order cone Q illustrating applications of the graphical derivative formula. In this

example the MSCQ condition holds at any feasible point of (1.3) while the nondegener-

acy and metric regularity/Robinson constraint qualification fail therein. Finally, we apply

the obtained graphical derivative formula to deriving a complete characterization of the

isolated calmness property for solution maps to canonically perturbed variational systems
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associated with SOCP and give a numerical example.

Chapter 4 conducts a comprehensive second-order variational analysis of the augmented

Lagrangian associated with the SOCP (1.1), see (1.7) for definition of this function. Based

on the obtained precise computation of the second subderivative of (1.7), we characterize

here the second-order growth condition for (1.7) via the SOSC and then establish its uniform

counterpart needed in the general case of nonunique Lagrange multipliers.

Chapter 5 focuses on convergence analysis of the Augmented Lagrangian Method (ALM)

for SOCPs (1.1). In the first section, we provide an error bound estimate for the canoni-

cally perturbed KKT system associated with (1.1) under the SOSC and a certain calmness

property of the multiplier mapping with respect to perturbations that automatically holds

for NLPs. We also present here an example showing that the imposed calmness property is

essential for the validity of the error bound in the SOCP setting and then discuss efficient

conditions ensuring the fulfillment of this calmness for nonpolyhedral SOCPs. We then

give a detailed solvability, stability, and local convergence analysis of the suggested ALM

algorithm for SOCPs that strongly exploits the SOSC and obtained second-order growth

conditions. Our analysis includes the proof of solvability of the ALM subproblems in both

exact and inexact versions and then establishes the linear convergence of primal-dual iter-

ates to the designated solution of the KKT systems under the SOSC by using the established

robust isolated calmness and upper Lipschitzian properties of the corresponding perturbed

multiplier mappings. In this way we obtain explicit relationships between the constants

involved in the algorithm and the imposed assumptions on the given data.
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1.5 Notation

Our notation and terminology are standard in variational analysis, conic programming,

and generalized differentiation; see, e.g., [6, 38, 60]. Recall that B and S stand for the

closed unit ball and the unit sphere, respectively, of the space in question, and that Bγ(x) :=

x + γB is the closed ball centered at x with radius γ > 0. A∗ indicates the transpose of a

matrix A, while ϕ∗ and K∗ signify respectively the conjugate of a function ϕ and the polar

cone of a set K. Given a nonempty set Ω ⊂ Rn, the symbols int Ω, ri Ω, bd Ω, and Ω⊥ signify

its interior, relative interior, boundary, and orthogonal complement space, respectively.

The indicator function of Ω is defined by δΩ(x) := 0 for x ∈ Ω and δΩ(x) := ∞ otherwise,

dist(x; Ω) signifies the distance between x ∈ Rn and the set Ω, and the projection of x onto

Ω is denoted by ΠΩ(x). The symbol x Ω→ x̄ indicates that x → x̄ with x ∈ Ω. As in (1.2),

we often decompose a vector y ∈ Q ⊂ Rm+1 into y = (y0, yr) with y0 ∈ R and yr ∈ Rm.

Taking this decomposition into account, denote ỹ := (−y0, yr). Similarly, for a mapping

Φ: Rn → Rm+1 with Φ = (Φ0, . . . ,Φm), we often implement the decomposition of the

vector Φ(x) into (Φ0(x),Φr(x)) ∈ R × Rm and denote by Φ̃(x) the vector (−Φ0(x),Φr(x))

for any x ∈ Rn.
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CHAPTER 2 TWICE EPI-DIFFERENTIABILITY OF THE INDICATOR FUNCTION OF
THE SECOND-ORDER CONE

2.1 Tools of Variational Analysis

In this first section, we briefly review constructions of variational analysis and gener-

alized differentiation; see [6, 39, 60] for more details and references. Given a nonempty

set Θ ⊂ Rn with x̄ ∈ Θ, the (Bouligand-Severi) tangent/contingent cone TΘ(x̄) to Θ at x̄ is

defined by

TΘ(x̄) :=
{
w ∈ Rn

∣∣ ∃ tk↓0, wk → w as k →∞ with x̄+ tkw
k ∈ Θ

}
, (2.1)

while the (Mordukhovich) basic/limiting normal cone NΘ(x̄) to Θ at this point is given by

NΩ(x̄) := Lim sup
x→x̄

[
cone

(
x− ΠΩ(x)

)]
, (2.2)

where ΠΘ : Rn ⇒ Rn stands for the Euclidean projector onto the set Θ. If the set Θ is

convex, then constructions (2.1) and (2.2) reduce, respectively, to the classical tangent

and normal cones of convex analysis. In this setting, it then holds that

NΘ(x̄) :=
{
v ∈ Rn

∣∣ 〈v, x− x̄〉 ≤ 0
}

] and TΘ(x̄) = NΘ(x̄)∗.
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n the case where Θ = Q, the second-order cone (1.2), we get, respectively, the expressions

TQ(y) =



Rm+1 if y ∈ intQ,

Q if y = 0,

{
y′ ∈ Rm+1

∣∣ 〈ỹ, y′〉 ≤ 0
}

if y ∈ (bdQ) \ {0},

NQ(y) =



{0} if y ∈ intQ,

−Q if y = 0,

R+ỹ if y ∈ (bdQ) \ {0}.

(2.3)

Given further an extended-real-valued function ϕ : Rn → R := (∞,∞], its domain and

epigraph are defined, respectively, by

domϕ :=
{
x ∈ Rn

∣∣ ϕ(x) <∞
}

and epiϕ :=
{

(x, α) ∈ Rn+1
∣∣ ϕ(x) ≤ α

}
.

Given x̄ ∈ domϕ, the (first-order) subdifferential of ϕ at x̄ is defined via the epigraph epiϕ

by

∂ϕ(x̄) :=
{
v ∈ Rn

∣∣ (v,−1) ∈ Nepiϕ(x̄, ϕ(x̄))
}
. (2.4)

Considering next a set-valued mapping F : Rn ⇒ Rm with its domain and graph given by

domF :=
{
x ∈ Rn

∣∣ F (x) 6= ∅
}

and gphF :=
{

(x, y) ∈ Rn × Rm
∣∣ y ∈ F (x)

}
,
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we define the following generalized differential notions for F induced by the above tangent

and normal cones to its graph. Given (x̄, ȳ) ∈ gphF , the graphical derivative of F at (x̄, ȳ)

is

DF (x̄, ȳ)(u) :=
{
v ∈ Rm

∣∣ (u, v) ∈ TgphF (x̄, ȳ)
}
, u ∈ Rn, (2.5)

while the limiting coderivative to F at (x̄, ȳ) is defined by

D∗F (x̄, ȳ)(v) :=
{
u ∈ Rn

∣∣ (u,−v) ∈ NgphF (x̄, ȳ)
}
, v ∈ Rm. (2.6)

Recall that F : Rn ⇒ Rm is metrically regular around (x̄, ȳ) ∈ gphF if there is ` ≥ 0

such that we have the distance estimate

dist
(
x;F−1(y)

)
≤ ` dist

(
y;F (x)

)
for all (x, y) close to (x̄, ȳ). (2.7)

We say that F is metrically subregular at (x̄, ȳ) if the estimate in (2.7) holds for all x close

to x̄ and y = ȳ.

The mapping F is said to be calm at (x̄, ȳ) ∈ gphF if there exist τ ≥ 0 and neighbor-

hoods U of x̄ and V of ȳ for which

F (x) ∩ V ⊂ F (x̄) + τ‖x− x̄‖B whenever x ∈ U. (2.8)

It is known that F is metrically subregular at (x̄, ȳ) ∈ gphF if and only if it inverse F−1 is

calm at (ȳ, x̄) ∈ gphF−1.

It is said that F has the isolated calmness property at (x̄, ȳ) ∈ gphF if (2.8) holds with
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the replacement of F (x̄) by {ȳ} on the right-hand side therein. Furthermore, F has the

robust isolated calmness property at (x̄, ȳ) if

F (x) ∩ V ⊂ {ȳ}+ `‖x− x̄‖B with F (x) ∩ V 6= ∅ for all x ∈ U. (2.9)

Properties of this type go back to Robinson [49] who introduced the upper Lipschitzian

version of calmness corresponding to (2.8) with V = Rm. Similarly to (2.9), we say that

F has the robust isolated upper Lipschitzian property if (2.9) holds with V = Rm. It is well

known that (2.8) is equivalent to the metric subregularity of the inverse mapping F−1 at

(ȳ, x̄). These “one point" properties are more subtle and essentially less investigated than

their robust “two-points" counterparts (as metric regularity and Lipschitz-like/Aubin ones),

while their importance for optimization theory, numerical algorithms, and applications has

been broadly recognized in the literature; see, e.g., [8, 11, 12, 17, 24, 29, 39, 36, 65] with

the references and discussions therein.

Turning now to the constructions of second-order variational analysis, for a function

ϕ : Rn → R, define the parametric family of second-order difference quotients at x̄ for v̄ ∈ Rn

by

∆2
tϕ(x̄, v̄)(w) =

ϕ(x̄+ tw)− ϕ(x̄)− t〈v̄, w〉
1
2
t2

with w ∈ Rn, t > 0. (2.10)

If ϕ(x̄) is finite, the second subderivative of ϕ at x̄ for v̄ and w is defined by

d2ϕ(x̄, v̄)(w) = lim inf
t↓0

w′→w

∆2
tϕ(x̄, v̄)(w′). (2.11)

Following [60, Definition 13.6], a function ϕ : Rn → R is said to be twice epi-differentiable
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at x̄ for v̄ if the sets epi ∆2
tϕ(x̄, v̄) converge to epi d2ϕ(x̄, v̄) as t ↓ 0. If in addition the sec-

ond subderivative is a proper function (i.e., does not take the value −∞ and is finite at

some point), then we say that ϕ is properly twice epi-differentiable at x̄ for v̄. The twice

epi-differentiability of ϕ at x̄ for v̄ can be understood equivalently by [60, Proposition 7.2]

as that for every w ∈ Rn and every sequence tk ↓ 0 there exists a sequence wk → w with

∆2
tk
ϕ(x̄, v̄)(wk)→ d2ϕ(x̄, v̄)(w).

Twice epi-differentiability, together with a precise calculation of the second subderivative

(2.11) of the augmented Lagrangian (1.7) associated with (1.1), plays a major role in our

developments. This property was introduced by Rockafellar in [57] who verified it for

fully amenable compositions. Quite recently [34, 35, 37], the class of extended-real-valued

functions satisfying this property has been dramatically enlarged by showing that twice

epi-differentiability holds under parabolic regularity, which covers the SOCP setting; see

more details in the cited papers.

2.2 Twice Epi-Differentiability of the Indicator Function of Q

We begin our second-order analysis with the study of twice epi-differentiability of the

indicator function δQ of the second-order cone (1.2). The notions of first- and second-order

epi-differentiability for extended-real-valued functions were introduced by Rockafellar in

[57], where he proved the twice epi-differentiability of convex piecewise linear-quadratic

functions in finite dimensions. This result was extended in [60, Theorem 14.14] to the

class of fully amenable functions based on their polyhedral structure. Furthermore, Do

[10, Example 2.10] established the twice epi-differentiability of the indicator function of
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convex polyhedric sets in reflexive Banach spaces while Levy [32, Theorem 2.1] proved

this fact in the general nonreflexive Banach space setting. Note that polyhedric sets reduce

to polyhedral ones in finite dimensions.

The following theorem justifies the twice epi-differentiability of the indicator function

δQ of the second-order cone (1.2) and calculates its second-order epi-derivative via the

given data of Q. Recall that

K := TQ(x̄) ∩
{
ȳ
}⊥ (2.12)

defines the critical cone of Q at x̄ for ȳ.

Theorem 2.1. (second-order epi-derivative of the indicator function of Q). Given any

x̄ from the second-order cone Q in (1.2), we have that the indicator function δQ is twice

epi-differentiable at x̄ for every ȳ ∈ NQ(x̄) and its second-order epi-derivative is calculated by

d2δQ(x̄|ȳ)(v) =


0 if x̄ ∈ [int(Q) ∪ {0}], v ∈ K,
‖ȳ‖
‖x̄‖

(‖vr‖2 − v2
0) if x̄ ∈ bd (Q) \ {0}, v ∈ K,

∞ if v /∈ K.

(2.13)

Proof. Fix x̄ ∈ Q, ȳ ∈ NQ(x̄), and v ∈ Rm+1 and denote by ∆(x̄, ȳ)(v) the right-hand side of

(2.13). To verify formula (2.13), we apply [60, Proposition 7.2] that gives us the following

description of the twice epi-differentiability of δQ at x̄ for ȳ:

• For every sequences tk ↓ 0 and vk → v the second-order difference quotients (2.10)

satisfy

lim inf
k→∞

∆2
tk
δQ(x̄|ȳ)(vk) ≥ ∆(x̄, ȳ)(v). (2.14)
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• For every sequence tk ↓ 0 there is some sequence vk → v satisfying the inequality

lim sup
k→∞

∆2
tk
δQ(x̄|ȳ)(vk) ≤ ∆(x̄, ȳ)(v). (2.15)

We split the proof into considering the three cases for x̄ ∈ Q in representation (2.13).

Case 1: x̄ ∈ int(Q). In this case we have NQ(x̄) = {0} and hence ȳ = 0. Fix v ∈ K =

Rm+1 and observe from (2.13) that ∆(x̄, 0)(v) = 0. Picking an arbitrary sequence vk → v

as k →∞, we arrive at

∆2
tk
δQ(x̄|0)(vk) =

δQ(x̄+ tkv
k)− δQ(x̄)− tk · 0

1
2
t2k

= 0

for all k sufficiently large. This tells us that

lim
k→0

∆2
tk
δQ(x̄|0)(vk) = 0 = ∆(x̄, 0)(v),

which justifies conditions (2.14) and (2.15), and, therefore, formula (2.13) in this case.

Case 2: x̄ = 0. In this case we have ȳ ∈ NQ(x̄) = −Q. Pick v ∈ Rm+1 and let vk → v as

k →∞. Using (2.10) gives us the representations

∆2
tk
δQ(0|ȳ)(vk) =

δQ(tkv
k)− δQ(0)− tk〈ȳ, vk〉

1
2
t2k

=


−〈ȳ, v

k〉
1
2
tk
≥ 0 if vk ∈ Q,

∞ if vk /∈ Q.

(2.16)

If v ∈ K, we conclude from the above definition of ∆(x̄, ȳ)(v) that ∆(0, ȳ)(v) = 0. Thus

(2.14) comes directly from (2.16), while (2.15) can be justified by choosing vk = v for any
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k. Pick now v /∈ K = Q ∩ {ȳ}⊥ and observe that it amounts to saying that either v /∈ Q

or 〈ȳ, v〉 < 0. It follows from the definition of ∆(x̄, ȳ)(v) in this case that ∆(0, ȳ)(v) = ∞,

and hence inequality (2.15) holds. To verify (2.14), pick an arbitrary sequence vk → v. If

v /∈ Q, then we can assume without loss of generality that vk /∈ Q for all k, which together

with (2.16) ensures (2.14). The verification of (2.14) for 〈ȳ, v〉 < 0 is similar.

Case 3: x̄ ∈ bd (Q) \ {0}. Defining the mapping ψ : Rm+1 → R2 by

ψ(x0, xr) :=
(
‖xr‖2 − x2

0,−x0

)
, (x0, xr) ∈ R× Rm, (2.17)

observe the following representations of the Lorentz cone and its indicator function, re-

spectively:

Q =
{
x ∈ Rm+1

∣∣ ψ(x) ∈ R2
−
}

and δQ = δR2
−
◦ ψ. (2.18)

For any v ∈ Rm+1 and t > 0 we form the vector

w :=
ψ(x̄+ tv)− ψ(x̄)

t
(2.19)

and use it to write down the relationships

δQ(x̄+ tv) = δR2
−

(ψ(x̄) + tw) and δQ(x̄) = δR2
−

(
ψ(x̄)

)
. (2.20)

It is easy to see that ∇ψ(x̄) is surjective due to x̄ ∈ bd (Q) \ {0}. Employing the first-order

chain rule, we get NQ(x̄) = ∇ψ(x̄)∗NR2
−

(ψ(x̄)). This together with ȳ ∈ NQ(x̄) yields the
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existence of some λ̄ ∈ NR2
−

(ψ(x̄)) for which ȳ = ∇ψ(x̄)∗λ̄. This allows us to arrive at

−t〈ȳ, v〉 = −t〈∇ψ(x̄)∗λ̄, v〉 = −t〈λ̄, w〉+ 〈λ̄, t(w −∇ψ(x̄)v)〉.

Furthermore, it follows from (2.19) that

t
(
w −∇ψ(x̄)v

)
= ψ(x̄+ tv)− ψ(x̄)− t∇ψ(x̄)v =

1

2
t2
〈
∇2ψ(x̄)v, v

〉
+ o(t2),

which in turn leads us to the representation

−t〈ȳ, v〉 = −t〈λ̄, w〉+
1

2
t2
〈
∇2〈λ̄, ψ〉(x̄)v, v

〉
+ o(t2).

Combining the latter with (2.20) and (2.10) readily yields

∆2
t δQ(x̄|ȳ)(v) =

δR2
−

(ψ(x̄) + tw)− δR2
−

(ψ(x̄))− t〈λ̄, w〉
1
2
t2

+
〈
∇2〈λ̄, ψ〉(x̄)v, v

〉
+
o(t2)

t2

= ∆2
t δR2

−

(
ψ(x̄)|λ̄

)
(w) +

〈
∇2〈λ̄, ψ〉(x̄)v, v

〉
+
o(t2)

t2
. (2.21)

Pick next arbitrary sequences vk → v and tk ↓ 0, and define wk :=
ψ(x̄+ tkv

k)− ψ(x̄)

tk
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similarly to (2.19). Since wk → ∇ψ(x̄)v as k →∞, we conclude from (2.21) that

lim inf
k→∞

∆2
tk
δQ(x̄|ȳ)(vk) = lim inf

k→∞

{
∆2
tk
δR2
−

(
ψ(x̄)|λ̄

)
(wk) +

〈
∇2〈λ̄, ψ〉(x̄)vk, vk

〉
+
o(t2k)

t2k

}
≥

〈
∇2〈λ̄, ψ〉(x̄)v, v

〉
+ inf

uk→∇ψ(x̄)v
lim inf
k→∞

∆2
tk
δR2
−

(
ψ(x̄)|λ̄

)
(uk)

≥


〈
∇2〈λ̄, ψ〉(x̄)v, v

〉
if ∇ψ(x̄)v ∈ TR2

−

(
ψ(x̄)

)
∩ {λ̄}⊥,

∞ otherwise,

where the last inequality comes from [60, Proposition 13.9] in which the twice epi-differentiability

of the indicator function of a convex polyhedron was established. On the other hand, it

follows from the surjectivity of ∇ψ(x̄) and (2.18) that

v ∈ TQ(x̄) ∩ {ȳ}⊥ ⇐⇒ ∇ψ(x̄)v ∈ TR2
−

(
ψ(x̄)

)
∩ {λ̄}⊥,

which in turn leads us to the estimate

lim inf
k→∞

∆2
tk
δQ(x̄|ȳ)(vk) ≥


〈
∇2〈λ̄, ψ〉(x̄)v, v

〉
if v ∈ TQ(x̄) ∩ {ȳ}⊥,

∞ otherwise.

(2.22)

To finish the proof of (2.14), recall that λ̄ ∈ NR2
−

(ψ(x̄)) with x̄ = (x̄0, x̄r) ∈ bd (Q) \ {0}.

Therefore we get the representation λ̄ = (ᾱ, 0) with some ᾱ ≥ 0 and so deduce from here

and the notation ˜̄x introduced in Sect. 2.1 the following equalities:

ȳ = ∇ψ(x̄)∗λ̄ =

−2x̄0 −1

2x̄r 0


ᾱ

0

 = 2ᾱ˜̄x,
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which yield ᾱ =
‖ȳ‖
2‖˜̄x‖ =

‖ȳ‖
2‖x̄‖

. Employing now (2.17) brings us to the relationships

〈λ̄, ψ〉(x̄) = ᾱ(−x̄2
0 + ‖x̄r‖2), ∇2〈λ̄, ψ〉(x̄) = 2ᾱ

−1 0

0 I

 ,
〈
∇2〈λ̄, ψ〉(x̄)v, v

〉
= 2ᾱ(−v2

0 + ‖vr‖2) =
‖ȳ‖
‖x̄‖

(−v2
0 + ‖vr‖2). (2.23)

Unifying it with (2.22) verifies the first condition (2.14) in the second-order epi-differentiability.

It remains to prove the other condition (2.15) in the framework of Case 3. The latter

inequality clearly holds when the right-hand side of it equals infinity. Thus we only need

to consider the situation where v ∈ K with the critical cone K described by

K = TQ(x̄) ∩ {ȳ}⊥ =


{
u ∈ Rm+1

∣∣ 〈u, ˜̄x〉 ≤ 0
}

if ȳ = 0,{
u ∈ Rm+1

∣∣ 〈u, ˜̄x〉 = 0
}

if ȳ 6= 0.

Construct a sequence vk → v satisfying (2.15) based on the position of v in K as follows:

Case 3(i): v ∈ bd (K) ∩ Q or v ∈ int(K). Having v = (v0, vr) ∈ R × Rm, define vk := v

for any k and claim that x̄+ tv = (x̄0 + tv0, x̄r + tvr) ∈ Q when t > 0 is small enough. This

is clear if v ∈ bd (K) ∩Q. To justify the claim, it suffices to show that

x̄0 + tv0 ≥ ‖x̄r + tvr‖ (2.24)

for all small t > 0 provided that v ∈ int(K). We easily derive that 〈˜̄x, v〉 < 0 and ‖x̄r‖ =

x̄0 > 0 from the facts that v ∈ int(K) and x̄ = (x̄0, x̄r) ∈ bd (Q) \ {0}, respectively. This
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yields

x̄0 + tv0 > 0 and 〈vr, x̄r〉 − x̄0v0 + t(‖vr‖2 − v2
0) < 0

for t sufficiently small. The above inequalities tell us that (x̄0 + tv0)2 > ‖x̄r + tvr‖2, which

thus verifies (2.24). Letting tk ↓ 0, we deduce from x̄+ tkv ∈ Q and v ∈ {ȳ}⊥ that

∆2
tk
δQ(x̄|ȳ)(vk) =

δQ(x̄+ tkv)− δQ(x̄)− tk〈ȳ, v〉
1
2
t2k

= 0 (2.25)

for k sufficiently large. It is not hard to see furthermore that

∆(x̄, ȳ)(v) =
‖ȳ‖
‖x̄‖

(−v2
0 + ‖vr‖2) = 0.

Combining this with (2.25) justifies (2.15) under the imposed conditions on v.

Case 3(ii): v = (v0, vr) ∈ bd (K) \ Q. Assume without loss of generality that ‖x̄‖ =

‖v‖ = 1. Remembering that ˜̄x = (−x̄0, x̄r) according to the notation of Sect. 2.1, we

conclude from −x̄0v0 + 〈x̄r, vr〉 = 〈˜̄x, v〉 = 0 and x̄ = (x̄0, x̄r) ∈ bd (Q) \ {0} that

‖vr‖2 − v2
0 ≥ 0. (2.26)

Letting tk ↓ 0 and employing (2.21) and (2.23) yield

lim sup
k→∞

∆2
tk
δQ(x̄|ȳ)(vk) = lim sup

k→∞
∆2
tk
δR2
−

(
ψ(x̄)|λ̄

)
(wk) +

‖ȳ‖
‖x̄‖

(−v2
0 + ‖vr‖2). (2.27)
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Define further the sequence of vectors vk by

vk :=
xk − x̄
tk

with xk := x̄+ αkv − βk˜̄x and βk =
α2
k(−v2

0 + ‖vr‖2)

4x̄0(x̄0 + αkv0)
, (2.28)

where αk > 0 is chosen—we will show in the claim below that such a number αk does exist

for each k—so that ‖xk − x̄‖ = tk and xk ∈ bd (Q). It follows from construction (2.28) of

vk = (vk0 , v
k
r ) ∈ R× Rm that the vectors wk defined in (2.19) admit the representations

wk =
ψ(x̄+ tkv

k)− ψ(x̄)

tk
=

1

tk

(
(0,−x̄0 − tkvk0 , )− (0,−x̄0)

)
= (0,−vk0 , ),

This tells us that 〈λ̄, wk〉 = 〈(ᾱ, 0), (0,−vk0 , )〉 = 0 and implies in turn that

∆2
tk
δR2
−

(
ψ(x̄)|λ̄

)
(wk) =

δR2
−

(
ψ(x̄+ tkv

k)
)
− δR2

−

(
ψ(x̄)

)
− tk〈λ̄, wk〉

1
2
t2k

= 0 for all k ∈ IN.

It allows us to arrive at the equality

lim sup
k→∞

∆2
tk
δR2
−

(
ψ(x̄)|λ̄

)
(wk) = 0,

which together with (2.27) justifies the second twice epi-differentiability requirement

(2.15).

Let us now verify the aforementioned claim formulated as follows.

Claim. For any v0 ≥ 0 in Case 3(ii) and any k ∈ IN there is αk > 0 satisfying (2.28) such

that xk ∈ bd (Q) and ‖xk− x̄‖ = tk. If v0 < 0 in this case, then we can select αk ∈ (0,− x̄0

v0
) as

k ∈ IN so that the above conditions on xk from (2.28) are also satisfied.
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We prove this claim by arguing in parallel for both cases of v0 ≥ 0 and v0 < 0. Pick

v0 ≥ 0 (resp. v0 < 0) satisfying (2.26) and observe that βk ≥ 0 when αk > 0 (resp. when

αk ∈ (0,− x̄0

v0
)) in (2.28). Employing x̄2

0 = ‖x̄r‖2 and x̄0v0 = 〈x̄r, vr〉, we obtain by the direct

calculation that the relationship

−
(
(1 + βk)x̄0 + αkv0

)2
+ ‖(1− βk)x̄r + αkvr‖2 = 0

is valid in both cases and yields in turn the inequality

‖(1− βk)x̄r + αkvr‖ = (1 + βk)x̄0 + αkv0 > 0.

This confirms that if v0 ≥ 0 (resp. v0 < 0), then for any αk > 0 (resp. αk ∈ (0,− x̄0

v0
)) we

have

xk =
(
(1 + βk)x̄0 + αkv0, (1− βk)x̄r + αkvr

)
∈ bd (Q).

Now it remains to show that for each k ∈ IN there exists αk from the intervals above such

that ‖xk − x̄‖ = tk. To proceed, consider the polynomial

p(α) =
(
(−v2

0 + ‖vr‖2)2 + 16x̄2
0v

2
0

)
α4 + 32x̄3

0v0α
3 + 16(x̄4

0 − t2kx̄2
0v

2
0)α2 − 32t2kx̄

3
0v0α− 16t2kx̄

4
0.

Since p(0) = −16t2kx̄
4
0 < 0 and the leading coefficient of p(α) is positive, this polynomial

has a positive zero, which we denote by αk. It follows from

t2k = ‖xk − x̄‖2 = ‖αkv − βk̂̄x‖2 = α2
k + β2

k = α2
k +

α4
k(−v2

0 + ‖vr‖2)2

16x̄2
0(x̄0 + αkv0)2

(2.29)
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that any root αk > 0 satisfies all our requirements in (2.28) provided that v0 ≥ 0. If v0 < 0,

we need to show in addition that there is a root of p(α) belonging to the interval (0,− x̄0

v0

).

But it is an immediate consequence of the conditions

p
(
− x̄0

v0

)
=

(−v2
0 + ‖vr‖2)2x̄4

0

v4
0

> 0 and p(0) = −16t2kx̄
4
0 < 0,

which therefore finish the proof of this claim.

Let us finally show that vk → v as k →∞. From (2.29) we get that αk → 0 since tk ↓ 0

as k → ∞. Remembering that ‖vk‖ = 1 = ‖v‖, it follows directly from (2.28) and (2.29)

that

‖vk − v‖2 = 2− 2〈vk, v〉 = 2− 2αk
tk

= 2− 2αk√
α2
k + β2

k

= 2− 2√
1 +

β2
k

α2
k

→ 2− 2 = 0

as k →∞, and hence vk → v. The the proof of the theorem is complete.

Remark 2.2. (comparison with known results). Twice epi-differentiability of δQ in The-

orem 2.1 can be obtained by combining some known results about the second-order cone

Q. Indeed, it has been realized that the projection mapping ΠQ to the second-order cone is

always directionally differentiable; see, e.g., [47, Lemma 2]. Thus we can conclude from

[60, Corollary 13.43] that the indicator function δQ is twice epi-differentiable at any x̄ ∈ Q

for every ȳ ∈ NQ(x̄). However, the established formula (2.13) for the second epi-derivative

formula for δQ cannot be obtained from the aforementioned arguments, and therefore is

new to the best of our knowledge.

In the rest of this section we present some immediate consequences of Theorem 2.1
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important in second-order variational analysis of SOCPs. The first one uses the established

twice epi-differentiability of δQ to verify a derivative-coderivative relationship for the nor-

mal cone to Q.

Corollary 2.3. (derivative-coderivative relationship between the normal cone to Q).

Let x̄ ∈ Q and ȳ ∈ NQ(x̄). Then we have the inclusion

(DNQ)(x̄, ȳ)(v) ⊂ (D∗NQ)(x̄, ȳ)(v) for all v ∈ Rm+1.

Proof. It follows from [60, Theorem 13.57] that the claimed inclusion holds for any convex

set whose indicator function is twice epi-differentiable at the reference point. The latter is

the case for the second-order cone Q due to Theorem 2.1.

The next corollary provides a precise calculation for the graphical derivative (2.5) of the

normal cone to Q that is significant for the subsequent material of the paper. The tangent

cone to the graph of NQ has been calculated before by using different approaches; see,

e.g., [66, Lemma 6.6]. Based on such calculations, it is possible to compute the graphical

derivative of NQ. Here we present another device that employs on the new second-order

formula (2.13).

Corollary 2.4. (graphical derivative of the normal cone toQ). Let x̄ ∈ Q and ȳ ∈ NQ(x̄).

Then for all v = (v0, vr) ∈ R× Rm the graphical derivative of NQ admits the representation

(DNQ)(x̄, ȳ)(v) =


NK(v) if x̄ ∈ [int(Q) ∪ {0}],
‖ȳ‖
‖x̄‖

(−v0, vr) +NK(v) if x̄ ∈ bd (Q) \ {0},

where the critical cone K is defined in (2.12).
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Proof. It follows from [60, Theorem 13.40] and from the twice epi-differentiability of δQ

established in Theorem 2.1 that for all v ∈ Rm+1 we have

(DNQ)(x̄, ȳ)(v) = ∂
(1

2
d2δQ(x̄|ȳ)

)
(v),

where the subdifferential on the right-hand side is defined in (2.4). Combining this with

the second epi-derivative formula from Theorem 2.1 verifies the claimed representation.

Now we discuss relationships between the obtained results and a major condition intro-

duced and employed in [41] for representing the graphical derivative of the normal cone

mappings in conic programming under the nondegeneracy condition. Let us first recall

this notion.

Definition 2.5. (projection derivative condition). Given a closed set Ω ⊂ Rn, assume

that the projection operator ΠΩ : Rn ⇒ Rn admits the classical directional derivative Π′Ω(x;h)

at each x ∈ Rn in any direction h. We say that Ω satisfies the PROJECTION DERIVATION

CONDITION (PDC) at x ∈ Ω if

Π′Ω(x+ y;h) = ΠK(x,y)(h) whenever y ∈ NΩ(x) and h ∈ Rn,

where K(x, y) := TΩ(x) ∩ {y}⊥ signifies the critical cone of Ω at x for y.

It is proved in [41] that PDC is valid for any convex set Ω satisfying the extended poly-

hedrality condition from [6, Definition 3.52] (this includes convex polyhedra) and may
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also hold in nonpolyhedral settings. Furthermore, PDC holds at the vertex of any convex

cone Ω. On the other hand, we show below that PDC fails at every nonzero boundary

point of the nonpolyhedral second-order cone Q despite its second-order regularity [6]

and other nice properties.

To proceed, we first present a useful characterization of PDC important for its own

sake.

Proposition 2.6. (graphical derivative description of the projection derivation condi-

tion). Let Ω ⊂ Rn be a convex set. Then PDC holds at x̄ ∈ Ω if and only if

(DNΩ)(x̄, ȳ)(v) = NK(x̄,ȳ)(v) for all ȳ ∈ NΩ(x̄) and v ∈ Rn. (2.30)

Proof. Assuming that PDC holds at x̄, take ȳ ∈ NΩ(x̄) and v ∈ Rn. To verify the in-

clusion “⊂" in (2.30), pick w ∈ (DNΩ)(x̄, ȳ)(v) and get by definition (2.5) that (v, w) ∈

TgphNΩ
(x̄, ȳ). Then it follows from the projection representation in [60, Proposition 6.17]

that

ΠΩ(x) =
(
I +NΩ

)−1
(x) for any x ∈ Rn. (2.31)

Employing elementary tangent cone calculus gives us the representation

TgphNΩ
(x̄, ȳ) =

{
(v, w)

∣∣ (v + w, v) ∈ Tgph ΠΩ
(x̄+ ȳ, ȳ)

}
=

{
(v, w)

∣∣ v = Π′Ω(x̄+ ȳ; v + w)
}

whenever ȳ ∈ NΩ(x̄).
(2.32)

The above relationships readily imply that

v = Π′Ω(x̄+ ȳ; v + w) = ΠK(x̄,ȳ)(v + w) =
(
I +NK(x̄,ȳ)

)−1
(v + w).
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This leads us in turn to w ∈ NK(x̄,ȳ)(v) and hence justifies the inclusion “⊂" in (2.30). The

opposite inclusion can be verified similarly.

Conversely, suppose that equality (2.30) is satisfied. Pick h ∈ Rn, ȳ ∈ NΩ(x̄), and

v = Π′Ω(x̄+ ȳ;h). Employing (2.32) tells us that (v, h−v) ∈ TgphNΩ
(x̄, ȳ), and hence we get

h− v ∈ NK(x̄,ȳ)(v) due to (2.30). Combining the latter with (2.31) gives us v = ΠK(x̄,ȳ)(h),

which verifies PDC.

Now we are ready to demonstrate the aforementioned failure of PDC for the second-

order cone Q ⊂ Rm+1 with m ≥ 2 on its entire boundary off the origin. If m = 1, then Q is

a convex polyhedron, and hence it satisfies the PDC condition.

Corollary 2.7. (failure of PDC for the second-order cone at its nonzero boundary

points). Given x̄ ∈ Q ⊂ Rm+1 with m ≥ 2, PDC fails whenever x̄ ∈ bd (Q) \ {0}.

Proof. Suppose on the contrary that PDC holds at some x̄ ∈ bd (Q) \ {0}. Thus for every

ȳ ∈ NQ(x̄) condition (2.30) is satisfied. Pick ȳ = (ȳ0, ȳr) ∈ NQ(x̄) =
{
t˜̄x | t ≥ 0

}
with

ȳ 6= 0. It tells us that ȳ0 6= 0 and ȳr 6= 0. Employing the graphical derivative formula

from Corollary 2.4 together with the PDC description in Proposition 2.6 as Ω = Q and

K(x̄, ȳ) = K shows that

NK(v) = (DNQ)(x̄, ȳ)(v) =
‖ȳ‖
‖x̄‖

(−v0, vr) +NK(v) for all v = (v0, vr) ∈ R× Rm.

Since ȳ 6= 0, we obtain (−v0, vr) ∈ NK(v) = K∗ ∩ {v}⊥ for all v ∈ K = TQ(x̄) ∩ {ȳ}⊥ =

{v ∈ Rm+1| 〈ȳ, v〉 = 0}. It says, in particular, that for all v ∈ K with v = (v0, vr) we should

have (−v0, vr) ∈ K
∗

= Rȳ. Pick a vector a ∈ Rm with a 6= 0 and 〈a, ȳr〉 = 0 (such a vector

always exists by m ≥ 2) and put v := (0, a). It is clear that v ∈ K while v 6∈ Rȳ, which is a
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contradiction that justifies the claimed statement.
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CHAPTER 3 COMPUTATION OF GRAPHICAL DERIVATIVE OF THE NORMAL CONE
MAPPING

3.1 Remarkable Properties of Second-Order Cone Constraints

In this section we derive new properties of the second-order cone Q, which are impor-

tant in what follows while being also of their own interest. The derivation of some of the

results below employs those obtained in the previous section.

Our first result here provides a complete description of the set of Lagrange multipliers

associated with stationary points of the constraint system Γ in (1.3). Given a stationary

pair (x, x∗) ∈ gphNΓ, define the set of Lagrange multipliers associated with (x, x∗) by

Λ(x, x∗) :=
{
λ ∈ NQ

(
Φ(x)

) ∣∣∇Φ(x)∗λ = x∗
}

(3.1)

and the critical cone to Γ at (x, x∗) by

K(x, x∗) := TΓ(x) ∩ {x∗}⊥. (3.2)

If Φ(x̄) = 0 for some x̄ with (x̄, x̄∗) ∈ gphNΓ, then the Lagrange multiplier set reduces to

Λ(x̄, x̄∗) =
{
λ ∈ −Q

∣∣∇Φ(x̄)∗λ = x̄∗
}
. (3.3)

Following [6, Definition 4.74], we say that the strict complementarity condition holds

for Λ(x̄, x̄∗) from (3.3) if there is a multiplier λ ∈ int(−Q) such that ∇Φ(x̄)∗λ = x̄∗. The

next result provides a precise description of the Lagrange multiplier set (3.3) that plays

a significant role in our method of conducting the second-order analysis of Γ. A part of
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this analysis is inspired by the unpublished work of Shapiro and Nemirovski [62] about

the “no duality gap" property in linear conic programs generated by convex cones; see, in

particular, the proof of [62, Proposition 3] and the discussion after it.

Proposition 3.1. (description of Lagrange multipliers for the second-order cone). Let

(x̄, x̄∗) ∈ gphNΓ with Φ(x̄) = 0, and let Λ(x̄, x̄∗) 6= ∅ for the set of Lagrange multipliers (3.3).

Then one of the following alternatives holds for Λ(x̄, x̄∗):

(LMS1) The strict complementarity condition holds for Λ(x̄, x̄∗) from (3.3). In this case

we get that for any λ̄ ∈ Λ(x̄, x̄∗) there are numbers `, ε > 0 ensuring the error bound estimate

dist
(
λ; Λ(x̄, x̄∗)

)
≤ `
(
dist(λ;−Q) + ‖∇Φ(x̄)∗λ− x̄∗‖

)
whenever λ ∈ Bε(λ̄). (3.4)

(LMS2) Λ(x̄, x̄∗) = {λ̄} for some multiplier λ̄ ∈ bd (−Q) \ {0}.

(LMS3) Λ(x̄, x̄∗) =
{
tλ̄
∣∣ t ≥ 0

}
for some λ̄ ∈ bd (−Q). In this case we have x̄∗ = 0.

Proof. The validity of (3.4) in (LMS1) follows from [2, Corollary 5]. Suppose that

the strict complementarity condition fails. If Λ(x̄, x̄∗) is a singleton, then either (LMS2)

or (LMS3) with λ̄ = 0 holds. Suppose now that Λ(x̄, x̄∗) is not a singleton and pick λ̄ ∈

Λ(x̄, x̄∗) such that λ̄ 6= 0. We claim that Λ(x̄, x̄∗) ⊂ R+λ̄. Assuming the contrary allows us

to find 0 6= λ ∈ Λ(x̄, x̄∗) such that λ 6∈ R+λ̄. Since the strict complementarity condition

fails, we have λ̄, λ ∈ bd (−Q)\{0}. Define λα := αλ̄+ (1−α)λ with α ∈ (0, 1) and observe

that λα ∈ int(−Q); otherwise λ ∈ R+λ̄. This observation amounts to saying that the strict

complementarity condition holds for Λ(x̄, x̄∗), which is a contradiction. Thus we arrive at

the inclusion Λ(x̄, x̄∗) ⊂ R+λ̄, which together with Λ(x̄, x̄∗) not being a singleton results

in 0 ∈ Λ(x̄, x̄∗). It follows from the latter that Λ(x̄, x̄∗) = R+λ̄, telling us that (LMS3) is
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satisfied. Since 0 ∈ Λ(x̄, x̄∗) in case (LMS3), we get x̄∗ = 0 in this case and hence complete

the proof of the proposition. 4

To proceed with our further analysis, we introduce an appropriate (very weak) con-

straint qualification for the second-order cone constraint system (1.3). This condition has

been recently employed in the polyhedral framework of NLPs to conduct a second-order

analysis of the classical equality and inequality constraint systems with C2-smooth data;

see [7, 16, 19]. It has also been studied in [18] in nonpolyhedral settings via first-order

and second-order constructions of variational analysis. However, to the best of our knowl-

edge, it has never been implemented before for the second-order variational analysis of

nonpolyhedral systems as we do in this paper.

Definition 3.2. (metric subregularity constraint qualification). We say that system (1.3)

satisfies the METRIC SUBREGULARITY CONSTRAINT QUALIFICATION (MSCQ) at x̄ ∈ Γ with

modulus κ > 0 if the mapping x 7→ Φ(x)−Q is metrically subregular at (x̄, 0) with modulus

κ.

Using (2.7) with the fixed vector y = ȳ = 0, observe that the introduced MSCQ with

modulus κ for (1.3) can be equivalently described as the existence of a neighborhood U of

x̄ such that

dist(x; Γ) ≤ κ dist
(
Φ(x);Q

)
for all x ∈ U. (3.5)

Note that the defined MSCQ property of (1.3) is robust in the sense that its validity at

x̄ ∈ Γ yields this property at any x ∈ Γ near x̄. Furthermore, it is clear (Example 3.13 be-

low) that the MSCQ from Definition 3.2 is strictly weaker than the qualification condition

corresponding to the metric regularity of the mapping x 7→ Φ(x)−Q around (x̄, 0) therein.
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The latter is well known to be equivalent to the Robinson constraint qualification (RCQ),

which is the basic qualification condition in conic programming:

NQ
(
Φ(x̄)

)
∩ ker∇Φ(x̄)∗ = {0}. (3.6)

An important role of MSCQ and its calmness equivalent for inverse mappings has been rec-

ognized in generalized differential calculus of variational analysis. In particular, it follows

from [23, Theorem 4.1] and the convexity of Q that there is a neighborhood U of x̄ such

that

NΓ(x) = N̂Γ(x) = ∇Φ(x)∗NQ
(
Φ(x)

)
for all x ∈ Γ ∩ U, (3.7)

where N̂Ω(x̄) stands for the regular/Fréchet normal cone to Ω at x̄ ∈ Ω defined by

N̂Ω(x̄) :=
{
v ∈ Rn

∣∣∣ lim sup
x

Ω→x̄

〈v, x− x̄〉
‖x− x̄‖

≤ 0
}
,

which is dual to the tangent cone (2.1), i.e, N̂Ω(x̄) = T ∗Ω(x̄). The first equality in (3.7)

postulates the normal regularity of Γ at any point x ∈ Γ near x̄. Note also that the validity

of MSCQ for Γ at x̄ ∈ Γ ensures by [24, Proposition 1] the tangent cone calculus rule

TΓ(x) =
{
v ∈ Rn

∣∣ ∇Φ(x)v ∈ TQ
(
Φ(x)

)}
for all x ∈ Γ ∩ U. (3.8)

To proceed further, recall that the second-order coneQ is reducible at its nonzero bound-

ary points to a convex polyhedron in the sense of [6, Definition 3.135]; this was first shown

in [5, Lemma 15]. In what follows we use a different reduction of Q via the mapping ψ
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from (2.17) that allows us to simplify the subsequent calculations. Indeed, the alternative

representation (2.18) of the second-order cone Q via the mapping ψ from (2.17) in the

proof of Case 3 of Theorem 2.1 is instrumental to furnish the reduction of Q to R2
− at its

nonzero boundary points. Observe that the Jacobian matrix ∇ψ(x) has full rank and

Γ =
{
x ∈ Rn

∣∣ (ψ ◦ Φ)(x) ∈ R2
−
}

whenever Φ(x) ∈ bd (Q) \ {0}. (3.9)

By showing below that the metric subregularity of the mapping x 7→ Φ(x) − Q at

nonzero boundary points yields the one for x 7→ (ψ ◦ Φ)(x)− R2
−, we open the door to the

usage in this case the results for convex polyhedra established in [19].

Lemma 3.3. (propagation of metric subregularity for nonzero boundary points of Q).

Let x̄ ∈ Γ be such that Φ(x̄) ∈ bd (Q) \ {0}. Then the metric subregularity of the mapping

x 7→ Φ(x)−Q at (x̄, 0) ensures the one for x 7→ (ψ ◦Φ)(x)−R2
− at (x̄, 0) with ψ : Rm+1 → R2

taken from (2.17).

Proof. To verify the lemma, we need to establish the existence of a positive number κ

and a neighborhood V of x̄ such that the metric estimate

dist(x; Γ) ≤ κ dist
(
(ψ ◦ Φ)(x);R2

−
)

for all x ∈ V (3.10)

holds. Let us first show that there are a constant c > 0 and a neighborhood U of x̄ for

which

dist
(
Φ(x);Q

)
≤ c dist

(
(ψ ◦ Φ)(x);R2

−
)

for all x ∈ U. (3.11)

Indeed, employing the decomposition of Φ(x) = (Φ0(x),Φr(x)) together with the direct
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calculations tells us that

dist
(
Φ(x);Q

)
=



0 if Φ(x) ∈ Q,

‖Φ(x)‖ if Φ(x) ∈ −Q,
√

2

2

(
‖Φr(x)‖ − Φ0(x)

)
if Φ(x) /∈ Q ∪ (−Q);

(3.12)

dist
(
(ψ◦Φ)(x);R2

−
)

=



0 if Φ(x) ∈ Q,

−Φ0(x) if Φ(x) ∈ −Q,

‖Φr(x)‖2 − Φ2
0(x) if Φ(x) /∈ Q ∪ (−Q) and Φ0(x) ≥ 0,

√
(‖Φr(x)‖2 − Φ2

0(x))2 + Φ2
0(x) if Φ(x) /∈ Q ∪ (−Q) and Φ0(x) < 0.

It follows from x̄ ∈ Γ and Φ0(x̄) = ‖Φr(x̄)‖ 6= 0 that there exists a neighborhood U of x̄

such that the inequality Φ0(x) >
1

2
Φ0(x̄) holds whenever x ∈ U . Pick x ∈ U and observe

that the two cases may occur: either (a) Φ(x) ∈ Q for which we have dist(Φ(x);Q) =

dist((ψ ◦ Φ)(x);R2
−) = 0, and hence estimate (3.11) is clearly satisfied, or (b) Φ(x) /∈ Q,

which means that ‖Φr(x)‖ > Φ0(x). This yields

dist
(
(ψ ◦ Φ)(x);R2

−
)

=
(
‖Φr(x)‖ − Φ0(x)

)(
‖Φr(x)‖+ Φ0(x)

)
≥ 2

√
2 Φ0(x)dist

(
Φ(x);Q

)
≥
√

2 Φ0(x̄)dist
(
Φ(x);Q

)
,

which justifies estimate (3.11) with c :=
(√

2Φ0(x̄)
)−1. Combining this and estimate (3.5)
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leads us to (3.10) and thus completes the proof of the proposition. 4

The next result is of its own interest while being important for calculating the graphical

derivative of the normal cone mapping given in the next section.

Theorem 3.4. (normal cone to the critical cone of ice-cream constraint systems). Let

(x̄, x̄∗) ∈ gphNΓ and let MSCQ hold at x̄ ∈ Γ. Then for any λ ∈ Λ(x̄, x̄∗) and v ∈ K(x̄, x̄∗)

the normal cone to the critical cone K(x̄, x̄∗) is represented by

NK(x̄,x̄∗)(v) = N̂K(x̄,x̄∗)(v) = ∇Φ(x̄)∗
[
TNQ(Φ(x̄))(λ) ∩ {∇Φ(x̄)v}⊥

]
. (3.13)

Proof. It follows from [51, Corollary 16.4.2], (3.7), and the normal-tangent duality

that (
K(x̄, x̄∗)

)∗
=
(
TΓ(x̄) ∩ {x̄∗}⊥

)∗
= cl

(
NΓ(x̄) + Rx̄∗

)
. (3.14)

We proceed with verifying the following statement:

Claim. If Φ(x̄) ∈ Q \ {0}, then

cl (NΓ(x̄) + Rx̄∗) = NΓ(x̄) + Rx̄∗. (3.15)

Furthermore, (3.15) is also valid if Φ(x̄) = 0 and if either (LMS1) or (LMS3) holds.

To justify the claim, we split the arguments into the three cases depending on the

position of the vector Φ(x̄) in the second-order cone Q:

Case 1: Φ(x̄) ∈ intQ. This gives us x̄∗ = 0, which immediately yields (3.15).

Case 2: Φ(x̄) ∈ bdQ \ {0}. Then the normal cone to Γ at x̄ is a convex polyhedron.

Using this together with [51, Corollary 19.3.2] ensures the validity of (3.15).



39

Case 3: Φ(x̄) = 0 and either (LMS1) or (LMS3) holds. If the strict complementarity

condition in (LMS1) is satisfied, we have λ ∈ int(−Q) such that ∇Φ(x̄)∗λ = x̄∗, which

shows together with (3.7) that

NΓ(x̄) + Rx̄∗ = ∇Φ(x̄)∗NQ
(
Φ(x̄)

)
+ R∇Φ(x̄)∗λ = ∇Φ(x̄)∗

(
−Q+ Rλ

)
.

Pick η ∈ Rm+1 and find t > 0 sufficiently small so that λ+ tη ∈ −Q. This leads us to

tη = λ+ tη − λ ∈ −Q+ Rλ,

and therefore we get η ∈ −Q+ Rλ. It tells us that −Q+ Rλ = Rm+1, which results in

NΓ(x̄) + Rx̄∗ = ∇Φ(x̄)∗
(
−Q+ Rλ

)
= ∇Φ(x̄)∗Rm+1

and hence verifies (3.15) in this setting. To finish the proof of the claim, it remains to

recall that under (LMS3) we have x̄∗ = 0, and thus (3.15) is satisfied.

To proceed with the proof of the theorem, we check first that (3.13) holds for all the

cases in the above claim. Picking any λ ∈ Λ(x̄, x̄∗) and v ∈ K(x̄, x̄∗), deduce from (3.15)

that

NK(x̄,x̄∗)(v) = N̂K(x̄,x̄∗)(v) =
(
K(x̄, x̄∗)

)∗ ∩ {v}⊥ = (NΓ(x̄) + Rx̄∗) ∩ {v}⊥. (3.16)
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For each v∗ ∈ NK(x̄,x̄∗)(v) we find by (3.7) and (3.16) some µ̃ ∈ NQ(ȳ) and α ∈ R with

v∗ = ∇Φ(x̄)∗µ̃+ αx̄∗ = ∇Φ(x̄)∗(µ̃+ αλ).

Letting µ := µ̃ + αλ, we get λ + εµ = (1 + εα)λ + εµ̃ ∈ NQ(ȳ) for any small ε ≥ 0, which

leads us to the inclusion µ ∈ TNQ(ȳ)(λ). Taking it into account and using (3.16) give us

〈µ,∇Φ(x̄)v〉 = 〈v∗, v〉 = 0, and thus show that v∗ belongs to the set on the right-hand side

of (3.13).

To verify the opposite inclusion in (3.13), pick µ ∈ TNQ(ȳ)(λ) with 〈µ,∇Φ(x̄)v〉 = 0 and

find sequences tk ↓ 0 and µk → µ with λ + tkµk ∈ NQ(ȳ) for all k ∈ IN. It follows from

(3.7) that

∇Φ(x̄)∗(λ+ tkµk) ∈ NΓ(x̄) =
(
TΓ(x̄)

)∗
.

Using this, for any w ∈ K(x̄, x̄∗) we get

tk〈µk,∇Φ(x̄)w〉 = 〈x̄∗, w〉+ tk〈µk,∇Φ(x̄)w〉 = 〈λ+ tkµk,∇Φ(x̄)w〉 ≤ 0.

The passage to the limit as k →∞ gives us the relationships

〈∇Φ(x̄)∗µ,w〉 = 〈µ,∇Φ(x̄)w〉 ≤ 0,

which imply that ∇Φ(x̄)∗µ ∈
(
K(x̄, x̄∗)

)∗. Combining it with (3.16) and 〈µ,∇Φ(x̄)v〉 = 0

leads us to ∇Φ(x̄)∗µ ∈ N̂K(x̄,x̄∗)(v), and thus justifies the inclusion “⊃ ” in (3.13) and the

equality therein under the assumptions of the above claim.
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Continuing the proof of the theorem, we need to justify (3.13) in the setting where

Φ(x̄) = 0 and (LMS2) hold. Since Λ(x̄, x̄∗) = {λ̄} with λ̄ = (λ̄0, λ̄r) ∈ bd (−Q) \ {0} in this

case, and since MSCQ is satisfied at x̄, we have by using (3.8) that

K(x̄, x̄∗) = TΓ(x̄) ∩ {x̄∗}⊥ =
{
v ∈ Rn

∣∣ ∇Φ(x̄)v ∈ Q and 〈v,∇Φ(x̄)∗λ̄〉 = 0
}

=
{
v ∈ Rn

∣∣ ∇Φ(x̄)v ∈ Q and 〈∇Φ(x̄)v, λ̄〉 = 0
}

=
{
v ∈ Rn

∣∣ ∇Φ(x̄)v ∈ Q ∩ {λ̄}⊥
}

=
{
v ∈ Rn

∣∣ ∇Φ(x̄)v ∈ R+
̂̄λ},

where ̂̄λ = (−λ̄0, λ̄r). Pick now v ∈ K(x̄, x̄∗) and observe that

NK(x̄,x̄∗)(v) = ∇Φ(x̄)∗NR+
̂̄λ(∇Φ(x̄)v

)
= ∇Φ(x̄)∗

[(
R+
̂̄λ)∗ ∩ {∇Φ(x̄)v}⊥

]
= ∇Φ(x̄)∗

[
T−Q(λ̄) ∩ {∇Φ(x̄)v}⊥

]
= ∇Φ(x̄)∗

[
TNQ(z̄)(λ̄) ∩ {∇Φ(x̄)v}⊥

]
,

where the first equality (chain rule) holds by Robinson’s seminal result from [50] since

R+
̂̄λ is a convex polyhedron and the constraint mapping ∇Φ(x̄)v is linear. This justifies

(3.13) in the case under consideration and thus completes the proof of the theorem. 4

A similar result to Theorem 3.4 was established in [19, Lemma 1] for polyhedral con-

straint systems with equality and inequality constraints coming from problems of nonlinear

programming. The nonpolyhedral nature of the second-order cone Q creates significant

difficulties in comparison with the polyhedral NLP structure that are successfully overcome

in the proof above.

Now we present the main result of this section giving a characterization of the simul-

taneous fulfillment of the uniqueness of Lagrange multipliers associated with stationary

points of (1.3) and a certain error bound estimate, which is automatic for polyhedral sys-
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tems. Both properties are algorithmically important; see, e.g., the book [29] that strongly

employs the uniqueness of Lagrange multipliers in polyhedral NLP systems and its charac-

terization via the strict Mangasarian-Fromovitz constraint qualification condition (SMFCQ)

for Newton-type methods.

While dealing with the set Γ in the next theorem, the only point x̄ that needs to be

taken care of is the one for which Φ(x̄) = 0. This comes from the observation made right

before Lemma 3.3 on the reducibility of Q at its nonzero boundary points to the convex

polyhedron R2
−.

Theorem 3.5. (characterization of uniqueness of Lagrange multipliers with error

bound estimate for second-order cone constraints). Let (x̄, x̄∗) ∈ gphNΓ, and let

λ̄ ∈ Λ(x̄, x̄∗) with Φ(x̄) = 0. Then the following statements are equivalent:

(i) λ̄ is a unique multiplier, and for some ` > 0 the error bound estimate holds:

dist(λ; Λ(x̄, x̄∗)) ≤ ` ‖∇Φ(x̄)∗λ− x̄∗‖ for all λ ∈ −Q. (3.17)

(ii) The dual qualification condition is satisfied:

(DNQ)
(
Φ(x̄), λ̄

)
(0) ∩ ker∇Φ(x̄)∗ = {0}. (3.18)

If in this case λ̄ ∈ bd (−Q) \ {0}, then (3.18) implies that the matrix ∇Φ(x̄) has full rank.

(iii) The strict Robinson constraint qualification holds:

∇Φ(x̄)Rn − TQ
(
Φ(x̄)

)
∩ {λ̄}⊥ = Rm+1. (3.19)
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Proof. Assume that (ii) is satisfied and pick any λ ∈ Λ(x̄, x̄∗). We first show that λ = λ̄,

which verifies the uniqueness of Lagrange multipliers. It readily follows from (3.3) that

λ− λ̄ ∈ ker∇Φ(x̄)∗ and λ− λ̄ ∈ −Q+ Rλ̄. (3.20)

Then Corollary 2.4 tells us that (DNQ)(z̄, λ̄)(0) = NK(0) = K∗ with K = TQ(Φ(x̄))∩{λ̄}⊥ =

Q∩ {λ̄}⊥. Therefore we arrive at the relationships

λ− λ̄ ∈ −Q+ Rλ̄ ⊂
(
Q∩ {λ̄}⊥

)∗
= (DNQ)(Φ(x̄), λ̄)(0). (3.21)

Using them together with (3.18) and the first inclusion in (3.20), we get λ = λ̄.

To verify now the error bound (3.17) in (i), we use Λ(x̄, x̄∗) = {λ̄} and arguing by

contradiction. So for any k ∈ IN there is λk ∈ −Q satisfying the conditions

‖λk − λ̄‖ > k‖∇Φ(x̄)∗λk − x̄∗‖ = k‖∇Φ(x̄)∗(λk − λ̄)‖.

Assume without loss of generality that λk−λ̄
‖λk−λ̄‖

→ η as k → ∞ with ‖η‖ = 1. Thus passing

to the limit in the above inequality brings us to

∇Φ(x̄)∗η = 0. (3.22)
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On the other hand, we have the inclusions

λk − λ̄
‖λk − λ̄‖

∈ −Q+ Rλ̄ ⊂
(
Q∩ {λ̄}⊥

)∗
,

which together with (3.21) ensure the relationships

η ∈
(
Q∩ {λ̄}⊥

)∗
= (DNQ)

(
Φ(x̄), λ̄

)
(0).

Combining the latter with (3.22) and taking into account (ii) lead us to η = 0, which

contradicts the fact that ‖η‖ = 1 and thus justifies the error bound estimate (3.17) in (i).

To verify next the converse implication (i) =⇒ (ii), take η ∈ (DNQ)(Φ(x̄), λ̄)(0) ∩

ker∇Φ(x̄)∗ and get by the definition of the graphical derivative that (0, η) ∈ TgphNQ(Φ(x̄), λ̄).

This allows us to find sequences tk ↓ 0 and (vk, ηk)→ (0, η) as k →∞ such that (Φ(x̄), λ̄) +

tk(v
k, ηk) ∈ gphNQ and therefore λ̄ + tkη

k ∈ NQ(Φ(x̄) + tkv
k) ⊂ −Q. Employing estimate

(3.17) brings us to

‖λ̄+ tkη
k − λ̄‖ = dist

(
λ̄+ tkη

k; Λ(x̄, x̄∗)
)
≤ `‖∇Φ(x̄)∗(λ̄+ tkη

k)− x̄∗‖,

which implies in turn that ‖ηk‖ ≤ `‖∇Φ(x̄)∗ηk‖. Passing to the limit as k →∞ tells us that

‖η‖ ≤ `‖∇Φ(x̄)∗η‖. By η ∈ ker∇Φ(x̄)∗ we get η = 0 and thus arrive at (3.18).

To finish the proof of (ii), suppose that λ̄ = (λ̄0, λ̄r) ∈ bd (−Q) \ {0} and conclude from

the graphical derivative formula in Corollary 2.4 that

(DNQ)
(
Φ(x̄), λ̄

)
(0) =

(
Q∩ {λ̄}⊥

)∗
=
(
R+
̂̄λ)∗ =

{
(w0, wm) ∈ R×Rm

∣∣ 〈wr, λ̄r〉 −w0λ̄0 ≤ 0
}
.
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It gives us by (3.18) that ker∇Φ(x̄)∗ = {0}, and thus the matrix ∇Φ(x̄) is of full rank.

To complete the proof of the theorem, it remains to show that the qualification condi-

tions (3.18) and (3.19) are equivalent for the case of (1.3). Indeed, it follows from (3.19)

that

(
TQ(Φ(x̄)) ∩ {λ̄}⊥

)∗ ∩ ker∇Φ(x̄)∗ =
(
TQ(Φ(x̄)) ∩ {λ̄}⊥ −∇Φ(x̄)Rn

)∗
= {0},

and hence the dual qualification condition (3.18) holds by Corollary 2.4. To verify the

converse implication, we deduce from (3.18) that

cl
(
∇Φ(x̄)Rn − TQ(Φ(x̄)) ∩ {λ̄}⊥

)
= Rm+1.

Since ∇Φ(x̄)Rn − TQ(Φ(x̄)) ∩ {λ̄}⊥ is convex, it has nonempty relative interior. Hence it

follows from [60, Proposition 2.40] that the relationships

Rm+1 = ri (Rm+1) = ri
[
cl
(
∇Φ(x̄)Rn − TQ

(
Φ(x̄)

)
∩ {λ̄}⊥

)]
= ri

(
∇Φ(x̄)Rn − TQ

(
Φ(x̄)

)
∩ {λ̄}⊥

)
⊂

(
∇Φ(x̄)Rn − TQ

(
Φ(x̄)

)
∩ {λ̄}⊥

)

are satisfied. This justifies (3.19) and thus ends the proof of the theorem. 4

Remark 3.6. (discussions on constraint qualifications for second-order cone systems).

(i) Condition (3.19) was introduced in [6] as “strict constraint qualification" in conic

programming and then was called “strict Robinson constraint qualification" (SRCQ) in [9].
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In the case of NLPs this condition reduces to the strict Mangasarian-Fromovitz constraint

qualification (SMFCQ) discussed before the formulation of Theorem 3.5. But in contrast

to NLPs, where SMFCQ is well known as a characterization of the uniqueness of Lagrange

multipliers, it is not the case for nonpolyhedral conic programs (including SOCPs), where

SRCQ fails to be a characterization of this property; cf. [6, Propositions 4.47 and 4.50].

As proved in Theorem 3.5, SRCQ characterizes the uniqueness of Lagrange multipliers for

the second-order cone constraint system (1.3) along with the error bound estimate (3.17),

which is automatic for polyhedral systems as in NLPs due to the classical Hoffman lemma.

Observe that, while being equivalent to SRCQ in the framework under consideration, the

obtained form of dual qualification condition (3.18) seems to be new in conic programming.

(ii) It is worth highlighting the result of Theorem 3.5(ii) showing that the dual qualifi-

cation condition (3.18) yields the full rank of ∇Φ(x̄) in (1.3) if λ̄ ∈ bd (−Q) \ {0}. This is

not the case for NLP constraint systems while reflecting the “fattiness" of the second-order

cone Q.

(iii) Note that the equivalence between (3.18) and (3.19) holds true if we replace Q

with any closed convex sets that is C2-cone reducible in the sense of [6, Definition 1.135].

This can be shown by observing that the left-hand side of (3.19) is convex in this case,

and therefore it has a nonempty relative interior in finite dimensions; cf. the proof of [6,

Proposition 2.97]. Note also that Theorem 3.5 can be extended to any C2-cone reducible

with the corresponding modifications of the error bound estimate (3.17). It is beyond the

scope of this paper to provide a proof for such a general framework, and thus we postpone

it to our future publications.
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To proceed further, define the mapping H : Rn × Rm+1 → Rn×n by

H(x;λ) :=


− λ0

Φ0(x)
∇Φ̂(x)∗∇Φ(x) if Φ(x) =

(
Φ0(x),Φr(x)

)
∈ bd (Q) \ {0},

0 otherwise,

(3.23)

where x ∈ Γ, λ = (λ0, λr) ∈ R × Rm, and ∇Φ̂(x) = (−∇Φ0(x),∇Φr(x)). This form is

a simplification of the one used in [5], reflects a nonzero curvature of the second-order

cone Q at boundary points, and thus is not needed for polyhedra. Recall that ∇Φ(x) is an

(m+ 1)× n matrix and hence ∇Φ̂(x)∗∇Φ(x) is an n× n matrix in (3.23).

In our derivation of the formula for calculating the graphical derivative of the normal

cone mapping NΓ in Section 5, we appeal to the linear conic optimization problem

min
λ∈Rm+1

{
−
〈
v,
(
∇2〈λ,Φ〉(x̄) +H(x;λ)

)
v
〉 ∣∣ ∇Φ(x̄)∗λ = x̄∗ and λ ∈ NQ

(
Φ(x̄)

)}
(3.24)

generated by the second-order cone Q, where (x̄, x̄∗) ∈ gphNΓ and v ∈ K(x̄, x̄∗). Denote

by Λ(x̄, x̄∗; v) the set of optimal solutions to (3.24). The following result shows that if the

primal problem (3.24) has an optimal solution, then its dual problem has an approximate

feasible solution for which the optimal values of the primal and dual problems are “almost

the same." This is one of the principal differences between the polyhedral case with the

exact duality therein and the nonpolyhedral ice-cream setting. The duality result obtained

below is known in case (LMS1) of Proposition 3.1 (actually in this setting we have the

exact duality; see, e.g., [61, Theorem 4.14]), but even in this case our proof is new.
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Theorem 3.7. (approximate duality in linear second-order cone optimization). Taking

(x̄, x̄∗) ∈ gphNΓ and v ∈ K(x̄, x̄∗), suppose that Λ(x̄, x̄∗) 6= ∅ and Φ(x̄) = 0. Then for every

λ̃ ∈ Λ(x̄, x̄∗; v) and any small ε > 0 there exists zε ∈ Rn for which we have the relationships

dist
(
∇Φ(x̄)zε + 〈v,∇2Φ(x̄)v〉;Q

)
≤ ε and 〈x̄∗, zε〉+

〈
v,∇2〈λ̃,Φ〉(x̄)v

〉
≥ −ε. (3.25)

Proof. It follows from (3.23) that under Φ(x̄) = 0 the optimization problem (3.24)

reduces to

min
λ∈Rm+1

{
−
〈
v,∇2〈λ,Φ〉(x̄)v

〉 ∣∣ ∇Φ(x̄)∗λ = x̄∗ and λ ∈ −Q
}
. (3.26)

The dual problem of (3.26) can be calculated via [6, page 125] and [60, Example 11.41]

as

max
z∈Rn

{
〈x̄∗, z〉

∣∣ ∇Φ(x̄)z +
〈
v,∇2Φ(x̄)v

〉
∈ TQ

(
Φ(x̄)

)}
. (3.27)

Employing Proposition 3.1, we examine all the three possible cases for the set of Lagrange

multipliers Λ(x̄, x̄∗). Picking any v ∈ K(x̄, x̄∗) and ε > 0 sufficiently small, consider first

case (LMS1) in Proposition 3.1 and use the error bound estimate (3.4). This estimate

allows us to use the intersection rule from [26, Proposition 3.2] for the normal cone to

Λ(x̄, x̄∗) and thus to deduce for any λ̃ ∈ Λ(x̄, x̄∗; v) that

0 ∈ −〈v,∇2Φ(x̄)v〉+NΛ(x̄,x̄∗)(λ̃) ⊂ −〈v,∇2Φ(x̄)v〉+N−Q(λ̃) + rge∇Φ(x̄).
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This allows us to find some z ∈ Rn for which we get

∇Φ(x̄)z + 〈v,∇2Φ(x̄)v〉 ∈ N−Q(λ̃) ⊂ Q = TQ
(
Φ(x̄)

)
.

Since −Q is a convex cone, this inclusion leads us to
〈
λ̃,∇Φ(x̄)z+〈v,∇2Φ(x̄)v

〉
= 0. Hence

〈x̄∗, z〉 = 〈λ̃,∇Φ(x̄)z〉 = −
〈
v,∇2〈λ̃,Φ〉(x̄)v

〉
,

which in turns implies that z is an optimal solution for the dual problem (3.27) and that

the optimal values of the primal and dual problems agree. Letting zε := z justifies the

validity of both relationships in (3.25) in case (LMS1).

In case (LMS2) of Proposition 3.1, the set of Lagrange multipliers is a singleton and so

is bounded. Using [60, Proposition 11.39] tells us that the optimal values of the primal

problem (3.26) and the dual problem (3.27) agree. Therefore we arrive at

sup
z∈Rn

{
〈x̄∗, z〉

∣∣ ∇Φ(x̄)z +
〈
v,∇2Φ(x̄)v

〉
∈ TQ

(
Φ(x̄)

)}
= −

〈
v,∇2〈λ,Φ〉(x̄)v

〉

that allows us for any ε > 0 to find zε satisfying the second condition in (3.25) together

with

∇Φ(x̄)zε +
〈
v,∇2Φ(x̄)v

〉
∈ TQ

(
Φ(x̄)

)
= Q.

Thus zε satisfies the first condition in (3.25) as well, which completes the proof in case

(LMS2).
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Consider finally case (LMS3) in Proposition 3.1 where there is λ̄ ∈ bd (−Q) such that

Λ(x̄, x̄∗) = ker∇Φ(x̄)∗ ∩ (−Q) =
{
tλ̄
∣∣ t ≥ 0

}
.

In this case the primal problem (3.26) can be equivalently written as

min
λ∈Rm+1

{
−
〈
v,∇2〈λ,Φ〉(x̄)v

〉 ∣∣ λ = αλ̄, α ≥ 0
}
. (3.28)

Since Λ(x̄, x̄∗; v) 6= ∅, we arrive at
〈
v, ∇2〈λ̄, Φ〉(x̄)v

〉
≤ 0. Examine the two possible situa-

tions:

(1)
〈
v,∇2〈λ̄,Φ〉(x̄)v

〉
< 0. In this setting problem (3.28) has a unique optimal so-

lution λ = 0. Using the arguments similar to the case (LMS2) and applying again [60,

Proposition 11.39], we can find some zε satisfying both relationships in (3.25).

(2)
〈
v,∇2〈λ̄,Φ〉(x̄)v

〉
= 0. In this setting the set of optimal solutions to problem (3.28)

is the entire ray {tλ̄ | t ≥ 0}. Consider now a modified version of (3.26) defined by

min
λ=(λ0,λr)∈R×Rm

{
−
〈
v,∇2〈λ,Φ〉(x̄)v

〉 ∣∣ ∇Φ(x̄)∗λ = 0, λ ∈ −Q, −λ0 ≤ 1
}
. (3.29)

Since λ ∈ −Q, we get ‖λr‖ ≤ −λ0. This implies that the feasible region of problem (3.29)

is nonempty and bounded, and so is the set of its optimal solutions. Moreover, its optimal

value is zero due to
〈
v,∇2〈λ̄,Φ〉(x̄)v

〉
= 0. It follows from [60, Theorem 11.39(a)] that

the optimal value of the dual problem of (3.29) given by

max
(z,α)∈Rn×R

{
〈0, z〉 − α

∣∣ ∇Φ(x̄)z + (α, 0, . . . , 0) +
〈
v,∇2Φ(x̄)v

〉
∈ Q, α ≥ 0

}
(3.30)
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is zero as well. Thus we arrive at the equality

sup
(z,α)∈Rn×R

{
−α
∣∣∇Φ(x̄)z + (α, 0, . . . , 0) +

〈
v,∇2Φ(x̄)v

〉
∈ Q, α ≥ 0

}
= 0.

This tells us that for any ε > 0 there exists a feasible solution (zε, αε) ∈ Rn × R to (3.30)

such that −αε > −ε. Therefore we have the estimates

dist
(
∇Φ(x̄)zε + 〈v,∇2Φ(x̄)v〉;Q

)
≤ ‖(αε, 0, . . . , 0)‖ = αε < ε,

which verify the first condition in (3.25). Since x̄∗ = 0 and
〈
v,∇2〈λ̄,Φ〉(x̄)v

〉
= 0, we get

the second condition in (3.25) and thus complete the proof of the theorem. 4

We conclude this section by deriving a second-order sufficient condition for strict local

minima in SOCPs needed in what follows. Consider the problem

min ϕ0(x) subject to x ∈ Γ, (3.31)

where ϕ0 : Rn → R is twice differentiable, and where Γ is taken from (1.3). Such a second-

order sufficient condition was established in [6, Theorem 3.86] under the validity of the

Robinson constraint qualification (3.6) that is equivalent to the metric regularity of the

mapping x 7→ Φ(x) − Q. It occurs that the same result holds under weaker assumptions

on the latter mapping including the validity of MSCQ that guarantees the existence of

Lagrange multipliers.

Proposition 3.8. (second-order sufficient condition for strict local minimizers in SOCP).

Let x̄ ∈ Γ be a feasible solution to (3.31) with Φ(x̄) = 0, and let Λ(x̄, x̄∗) 6= ∅ for x̄∗ :=
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−∇ϕ0(x̄). Taking any λ̄ ∈ Λ(x̄, x̄∗), impose the so-called second-order sufficient condition

(SOSC) for optimality:

〈∇2
xxL(x̄, λ̄)u, u〉 > 0 for all 0 6= u ∈

{
u ∈ Rn

∣∣ ∇Φ(x̄)u ∈ Q ∩ {λ̄}⊥
}
, (3.32)

where L(x, λ) := ϕ0(x) + 〈λ,Φ(x)〉. Then x̄ is indeed a strict local minimizer for problem

(3.31).

Proof. Suppose that x̄ is not a strict local minimizer for (3.31) and thus find a sequence

xk → x̄ as k → ∞ with Φ(xk) ∈ Q and ϕ0(xk) < ϕ0(x̄); hence xk 6= x̄. Define uk := xk−x̄
‖xk−x̄‖

and assume without loss of generality that uk → ū for some 0 6= ū ∈ Rn. It tells us that

∇Φ(x̄)ū ∈ Q and 〈∇ϕ0(x̄), ū〉 ≤ 0.

Combining this with λ̄ ∈ Λ(x̄,−∇ϕ0(x̄)) yields ∇Φ(x̄)ū ∈ Q ∩ {λ̄}⊥. It is not hard to see

that

ϕ0(xk)− ϕ0(x̄) + 〈λ̄,Φ(xk)〉 ≤ 0,

which implies by the twice differentiability of ϕ0 and Φ at x̄ that

〈∇2
xxL(x̄, λ̄)ū, ū〉 ≤ 0 with ū 6= 0.

This contradicts (3.32) and hence completes the proof of the proposition. 4

3.2 Graphical Derivative of the Normal Cone Mapping

Here we present the main result of the paper on calculating the graphical derivative

of the normal cone mapping generated by the constraint system (1.3) under imposing
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merely the MSCQ condition. Great progress in this direction was recently made by Gfrerer

and Outrata [19] (preprint of 2014) who calculated this second-order object for polyhe-

dral/NLP constraint systems under MSCQ and a certain additional condition instead of the

standard nondegeneracy and Mangasarian-Fromovitz constraint qualifications. Then the

additional condition to MSCQ was relaxed in [16] and fully dropped subsequently by Chieu

and Hien [7] in the NLP setting. Various calculating formulas for the graphical derivative

of the normal cone mappings to nonpolyhedral (including ice-cream) constraints were de-

rived in [20, 40, 41]. However, all these results were obtained under the nondegeneracy

condition (a conic extension of the classical linear independence of constraint gradients in

NLPs). Thus the graphical derivative formula for the second-order cone constraints given

in the next theorem is new even under the Robinson constraint qualification. Furthermore,

our proof of this result is significantly different in the major part from that in [19] and the

subsequent developments for polyhedral systems; see Remark 3.12 for more discussions.

Theorem 3.9. (graphical derivative of the normal cone mapping for the second-order

cone constraint systems). Let (x̄, x̄∗) ∈ gphNΓ, and let MSCQ from Definition 3.2 hold at

x̄ with modulus κ. Then the tangent cone to gphNΓ is represented by

TgphNΓ
(x̄, x̄∗) =

{
(v, v∗)

∣∣ v∗ ∈
(
∇2〈λ,Φ〉(x̄) +H(x̄;λ)

)
v +NK(x̄,x̄∗)(v)

for some λ ∈ Λ(x̄, x̄∗; v)
}
,

(3.33)

where Λ(x̄, x̄∗; v) is the set of optimal solutions to (3.24) with H defined in (3.23). Conse-

quently, for all v ∈ Rn we have the graphical derivative formula

(DNΓ)(x̄, x̄∗)(v) =
{(
∇2〈λ,Φ〉(x̄) +H(x̄;λ)

)
v
∣∣ λ ∈ Λ(x̄, x̄∗; v)

}
+NK(x̄,x̄∗)(v). (3.34)
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Proof. It is sufficient to justify the tangent cone formula (3.33), which immediately yields

the graphical derivative one (3.34) by definition (2.5). We split the proof of (3.33) into

three different cases depending on the position of Φ(x̄) in Q. First assume that Φ(x̄) ∈

int(Q) and thus get

x̄∗ ∈ NΓ(x̄) = ∇Φ(x̄)∗NQ(Φ(x̄)) = {0}, TΓ(x̄) = Rn, and K(x̄, x̄∗) = Rn.

By the continuity of Φ around x̄ we find a neighborhood U of x̄ such that Φ(x) ∈ int(Q)

and NΓ(x) = {0} whenever x ∈ U . This tells us that

gphNΓ ∩ [U × Rn] = U × {0},

which obviously provides the tangent cone representation

TgphNΓ
(x̄, 0) = Rn × {0}. (3.35)

On the other hand, it follows from Λ(x̄, x̄∗) = {0} that Λ(x̄, x̄∗; v) = {0} for all v ∈ K(x̄, x̄∗).

This shows that the right-hand side of (3.33) amounts to Rn × {0}. Combining it with

(3.35) verifies the tangent cone formula (3.33) in this case.

Next we consider the case where Φ(x̄) ∈ bd (Q) \ {0}. As argued above, Γ can be

described in this case by (3.9) via the mapping ψ from (2.17). Using Lemma 3.3 confirms

that the mapping x 7→ ψ ◦Φ(x)−R2
− is metrically subregular at (x̄, 0). Thus it follows from
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[19, Theorem 1] that

TgphNΓ
(x̄, x̄∗) =

{
(v, v∗)

∣∣ v∗ ∈ ∇2〈λ̃, ψ ◦ Φ〉(x̄)v +NK(x̄,x̄∗)(v) for some λ̃ ∈ Λ̃(x̄, x̄∗; v)
}
,

(3.36)

where Λ̃(x̄, x̄∗; v) is the set of optimal solutions to the linear program

min
λ̃∈R2

{
−
〈
v,∇2〈λ̃, ψ ◦ Φ〉(x̄)v

〉 ∣∣∇(ψ ◦ Φ)(x̄)∗λ̃ = x̄∗, λ̃ ∈ NR2
−

(
ψ ◦ Φ(x̄)

)}
.

Define the set of Lagrange multipliers for the modified constraint system (3.9) by

Λ̃(x̄, x̄∗) =
{
λ̃ ∈ R2

−
∣∣∇(ψ ◦ Φ)(x̄)∗λ̃ = x̄∗, λ̃ ∈ NR2

−

(
ψ ◦ Φ(x̄)

)}
.

It is not hard to observe the implication

λ̃ ∈ Λ̃(x̄, x̄∗) =⇒ λ := ∇ψ
(
Φ(x̄)

)∗
λ̃ ∈ Λ(x̄, x̄∗), (3.37)

where Λ(x̄, x̄∗) is taken from (3.1). Conversely, we claim that

λ = (λ0, λr) ∈ Λ(x̄, x̄∗) =⇒ λ̃ :=
(
− λ0

2Φ0(x̄)
, 0
)
∈ Λ̃(x̄, x̄∗). (3.38)

To verify (3.38), we need to show that any λ = (λ0, λr) ∈ Λ(x̄, x̄∗) can be represented as

λ = ∇ψ(Φ(x̄))∗λ̃ with some λ̃ ∈ NR2
−

(ψ ◦Φ(x̄)). Since Φ(x̄) = (Φ0(x̄),Φr(x̄)) ∈ bd (Q)\{0},

it follows that (ψ ◦Φ)(x̄) = (0,−Φ0(x̄)) and Φ0(x̄) > 0, which lead us to NR2
−

((ψ ◦Φ)(x̄)) =

R+ × {0}. Thus we need to find some α ≥ 0 such that the pair λ̃ = (α, 0) satisfies the
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equation

λ = ∇ψ
(
Φ(x̄)

)∗
λ̃ =

−2Φ0(x̄) −1

2Φr(x̄) 0


α

0

 = 2αΦ̂(x̄),

which is clearly fulfilled for α = − λ0

2Φ0(x̄)
and hence justifies the claimed implication

(3.38). Using these observations brings us to the following relationships:

∇2〈λ̃, ψ ◦ Φ〉(x̄) = ∇2
(
α(−Φ2

0(·) + ‖Φr(·)‖2)
)

(x̄) = 2α∇
[
Φ̂(·)∗∇Φ(·)

]
(x̄)

= 2α
[
∇Φ̂(x̄)∗∇Φ(x̄) + 〈Φ̂(x̄),∇2Φ(x̄)〉

]
= 2α∇Φ̂(x̄)∗∇Φ(x̄) + 〈2αΦ̂(x̄),∇2Φ(x̄)〉

= − λ0

Φ0(x̄)
∇Φ̂(x̄)∗∇Φ(x̄) + 〈λ,∇2Φ(x̄)〉 = H(x̄;λ) +∇2〈λ,Φ〉(x̄).

Combining it with (3.37) and (3.38) confirms that (3.36) reduces to (3.33) in this case.

It remains to consider the most difficult nonpolyhedral case where Φ(x̄) = 0. We begin

with verifying the inclusion “⊂" in (3.33). Picking any (v, v∗) ∈ TgphNΓ
(x̄, x̄∗), observe that

it suffices to show the validity of the following two inclusions:

v ∈ K(x̄, x̄∗) and v∗ −∇2〈λ̄,Φ〉(x̄)v ∈ NK(x̄,x̄∗)(v) for some λ̄ ∈ Λ(x̄, x̄∗; v). (3.39)

To proceed, we get from the tangent cone definition (2.1) that for (v, v∗) ∈ TgphNΓ
(x̄, x̄∗)

there are sequences tk ↓ 0 and (vk, vk,∗)→ (v, v∗) as k →∞ such that

(xk, xk,∗) := (x̄+ tkv
k, x̄∗ + tkv

k,∗) ∈ gphNΓ, k ∈ IN.
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Let us split the subsequent proof of the inclusion “⊂" in (3.33) into the four steps.

Step 1: There exists a sequence {λk ∈ Λ(xk, xk,∗)} with λk → λ̄ as k → ∞ for some

λ̄ ∈ Λ(x̄, x̄∗). To verify this statement, we deduce first directly from [18, Lemma 2.1] and

the robustness of MSCQ that there is a positive number δ such that xk ∈ Γ∩Bδ(x̄) and that

Λ(xk, xk,∗) ∩ κ‖xk,∗‖B 6= ∅ for all k ∈ IN,

where κ > 0 is the constant taken from Definition 3.2. This allows us to find λk ∈

Λ(xk, xk,∗) so that ‖λk‖ ≤ κ‖xk,∗‖ for all k ∈ IN. Thus the boundedness of {xk,∗} yields

the one for {λk}, and therefore λk → λ̄ for some λ̄ ∈ Rm+1 along a subsequence. In this

way we conclude that λ̄ ∈ Λ(x̄, x̄∗), where the latter set is represented by (3.3) due to

Φ(x̄) = 0.

Step 2: We have v ∈ TΓ(x̄) ∩ {x̄∗}⊥ = K(x̄, x̄∗). The equality here is by the definition

of the critical cone (3.2); so getting the first one in (3.39) requires only the verification of

the claimed inclusion. Recall from (3.8) that TΓ(x̄) =
{
w ∈ Rn

∣∣∇Φ(x̄)w ∈ Q
}

. It follows

from xk ∈ Γ and Φ(x̄) = 0 that

Φ(xk) = tk∇Φ(x̄)vk + o(tk) ∈ Q for all k ∈ IN.

Dividing the latter by tk and passing to the limit as k → ∞ yield ∇Φ(x̄)v ∈ Q, and so

v ∈ TΓ(x̄). Since λ̄ ∈ Λ(x̄, x̄∗) and 〈λk,Φ(xk)〉 = 0 for all k ∈ IN, we get

〈x̄∗, v〉 = 〈∇Φ(x̄)∗λ̄, v〉 = 〈λ̄,∇Φ(x̄)v〉 = lim
k→∞
〈λk,∇Φ(x̄)vk〉

= lim
k→∞

〈λk,Φ(xk) + o(tk)〉
tk

= lim
k→∞

〈
λk,

o(tk)

tk

〉
= 0
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and thus finish the proof of the statement in Step 2.

Step 3: We have the inclusion v∗ − ∇2〈λ̄,Φ〉(x̄)v ∈
(
K(x̄, x̄∗)

)∗ for the multiplier λ̄ ∈

Λ(x̄, x̄∗) constructed in Step 1. Indeed, by the definition of xk,∗ we get

vk,∗ =
xk,∗ − x̄∗

tk
=
∇Φ(xk)∗λk − x̄∗

tk
=
∇Φ(x̄)∗λk + tk∇2〈λk,Φ〉(x̄)vk + o(tk)− x̄∗

tk
,

which in turn leads us to the equality

vk,∗ −∇2〈λk,Φ〉(x̄)vk +
o(tk)

tk
= ∇Φ(x̄)∗

λk

tk
− x̄∗

tk
. (3.40)

Using λk ∈ −Q = NQ(Φ(x̄)) and (3.14) yields vk,∗ −∇2〈λk,Φ〉(x̄)vk +
o(tk)

tk
∈ (K(x̄, x̄∗))∗.

Since (K(x̄, x̄∗))∗ is closed, the passage to the limit as k →∞ gives us the desired inclusion.

Step 4: We have λ̄ ∈ Λ(x̄, x̄∗; v) and
〈
v, v∗ −∇2〈λ̄,Φ〉(x̄)v

〉
= 0 for the multiplier λ̄

constructed above. We first show that

〈
v,∇2〈λ,Φ〉(x̄)v

〉
≤
〈
v,∇2〈λ̄,Φ〉(x̄)v

〉
for any λ ∈ Λ(x̄, x̄∗), (3.41)

which verifies the inclusion λ̄ ∈ Λ(x̄, x̄∗; v). Picking λ ∈ Λ(x̄, x̄∗) gives us λ ∈ −Q by (3.3).

Using this together with Φ(xk) ∈ Q and 〈λk,Φ(xk)〉 = 0, we get the relationships

0 ≤ −〈λ,Φ(xk)〉 = 〈λk − λ,Φ(xk)〉

= tk〈λk − λ,∇Φ(x̄)vk〉+
1

2
t2k
〈
vk,∇2〈λk − λ,Φ〉(x̄)vk

〉
+ o(t2k)

= tk〈∇Φ(x̄)∗λk − x̄∗, vk〉+
1

2
t2k
〈
vk,∇2〈λk − λ,Φ〉(x̄)vk

〉
+ o(t2k).
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Dividing by t2k and employing (3.40) bring us to

0 ≤
〈
vk, vk,∗ −∇2〈λk,Φ〉(x̄)vk +

o(tk)

tk

〉
+

1

2

〈
vk,∇2〈λk − λ,Φ〉(x̄)vk

〉
+
o(t2k)

t2k
,

which implies by passing to the limit as k →∞ that

0 ≤
〈
v, v∗ −∇2〈λ̄,Φ〉(x̄)v

〉
+

1

2

〈
v,∇2〈λ̄− λ,Φ〉(x̄)v

〉
. (3.42)

It follows from the relationships proved in Steps 2 and 3 that

〈
v, v∗ −∇2〈λ̄,Φ〉(x̄)v

〉
≤ 0. (3.43)

which together with (3.42) yields (3.41). Finally, since (3.42) holds for any λ ∈ Λ(x̄, x̄∗),

letting λ = λ̄ therein results in the inequality

〈
v, v∗ −∇2〈λ̄,Φ〉(x̄)v

〉
≥ 0.

Combining it with (3.43) justifies Step 4, and thus we arrive at the inclusion “⊂" in (3.33).

Now we give a detailed proof of the opposite inclusion in (3.33), which occurs to be

more involved. Pick (v, v∗) from the right-hand side of (3.33), which satisfies (3.39) in the

case of Φ(x̄) = 0 under consideration. We proceed by showing that there are sequences

tk ↓ 0 and xk → x̄ as k →∞ satisfying the conditions

x̄+ tkv − xk = o(tk) and dist
(
x̄∗ + tkv

∗;NΓ(xk)
)

= o(tk), k ∈ IN. (3.44)
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These guarantee the existence of xk,∗ ∈ NΓ(xk) such that

(xk, xk,∗) =
(
x̄+ tk

(
v +

o(tk)

tk

)
, x̄∗ + tk

(
v∗ +

o(tk)

tk

))
∈ gphNΓ,

and thus we arrive at (v, v∗) ∈ TgphNΓ
(x̄, x̄∗), which is the goal.

To begin with, we conclude by the choice of (v, v∗) and the usage of Theorem 3.4 that

there are λ ∈ Λ(x̄, x̄∗; v) and µ ∈ T−Q(λ) satisfying the equalities

v∗ = ∇2〈λ,Φ〉(x̄)v +∇Φ(x̄)∗µ and 〈µ,∇Φ(x̄)v〉 = 0. (3.45)

It comes from µ ∈ T−Q(λ) that there are sequences ti ↓ 0 and µi → µ as i → ∞ with

λ + tiµi ∈ −Q. Choose α > 0 so small that α‖∇2〈λ,Φ〉(x̄)‖ ≤ 1

2
holds. This ensures

that the matrix I + α∇2〈λ,Φ〉(x̄) is positive-definite, where I is the n × n identity matrix.

Proposition 3.8 tells us that there exists r > 0 such that x̄ is the strict global minimizer for

the problem

min
x∈Rn

{
‖x̄+ αx̄∗ − x‖2

∣∣x ∈ Γ ∩ Br(x̄)
}
. (3.46)

For any fixed k ∈ IN we select a positive number εk <
(
16αk2(κ‖x̄∗‖+ 1)

)−1. Since λ solves

the linear optimization problem (3.26), Theorem 3.7 ensures the existence of zk ∈ Rn with

dist
(
∇Φ(x̄)zk +

〈
v,∇2Φ(x̄)v

〉
;Q
)
≤ εk and 〈x̄∗, zk〉+

〈
v,∇2〈λ,Φ〉(x̄)v

〉
≥ −εk. (3.47)
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Picking next i ∈ IN, consider yet another optimization problem

min
x∈Rn

{
‖x̄+ tiv +

1

2
t2i z

k + α(x̄∗ + tiv
∗)− x‖2

∣∣x ∈ Γ ∩ Br(x̄)
}
, (3.48)

which admits an optimal solution due to the classical Weierstrass theorem. It is not hard to

check that xi → x̄ as i→∞. Indeed, suppose that xi → x̃ for some x̃ along a subsequence,

we see that

‖x̄+ αx̄∗ − x̃‖2 ≤ ‖x̄+ αx̄∗ − x‖2 for all x ∈ Γ ∩ Br(x̄),

which yields x̃ = x̄ since x̄ is the strict global minimizer for (3.46). Assume now without

loss of generality that xi ∈ intBr(x̄) for i ∈ IN sufficiently large and utilize the first-order

necessary optimality condition from [38, Proposition 5.1] at xi for problem (3.48) to get

the following inclusion:

α(x̄∗ + tiv
∗) + ti

( x̄+ tiv − xi

ti
+

1

2
tiz

k
)
∈ NΓ(xi). (3.49)

It follows from Φ(x̄) = 0 and the twice differentiability of Φ around x̄ that

Φ(x̄+ tiv +
1

2
t2i z

k) = ti∇Φ(x̄)v +
1

2
t2i

(
(∇Φ(x̄)zk +

〈
v,∇2Φ(x̄)v

〉 )
+ o(t2i ).

Since v satisfies (3.39), we get ∇Φ(x̄)v ∈ TQ(Φ(x̄)) = Q. Taking this into account along

with the first inequality in (3.47), we obtain the estimate

dist
(

Φ(x̄+ tiv +
1

2
t2i z

k);Q
)
≤ εk

2
t2i + o(t2i ),
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which together with the assumed MSCQ at x̄ results in

dist
(
x̄+ tiv +

1

2
t2i z

k; Γ
)
≤ κεk

2
t2i + o(t2i ).

This guarantees that for any i ∈ IN there exists x̃i ∈ Γ such that

‖x̄+ tiv +
1

2
t2i z

k − x̃i‖ ≤ κεk
2
t2i + o(t2i ), (3.50)

and so we verify that x̃i → x̄ as i→∞. This tells us that x̃i ∈ Γ∩Br(x̄) for all i sufficiently

large. Since xi is a global minimizer for (3.48), we get

∥∥x̄+ tiv +
1

2
t2i z

k + α(x̄∗ + tiv
∗)− xi

∥∥2 ≤
∥∥x̄+ tiv +

1

2
t2i z + α(x̄∗ + tiv

∗)− x̃i
∥∥2

for all large i, which together with (3.50) leads us to the estimates

∥∥x̄+ tiv +
1

2
t2i z

k − xi
∥∥2

+ 2α
〈
x̄∗ + tiv

∗, x̄+ tiv +
1

2
t2i z

k − xi
〉

≤
∥∥x̄+ tiv +

1

2
t2i z

k − x̃i
∥∥2

+ 2α
〈
x̄∗ + tiv

∗, x̄+ tiv +
1

2
t2i z

k − x̃i
〉

≤
∥∥x̄+ tiv +

1

2
t2i z

k − x̃i
∥∥2

+ 2α (‖x̄∗‖+ ti‖v∗‖)
∥∥x̄+ tiv +

1

2
t2i z

k − x̃i
∥∥

≤ ακ‖x̄∗‖εkt2i + o(t2i ).
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These yield in turn the relationships

∥∥x̄+ tiv +
1

2
t2i z

k − xi
∥∥2 ≤ −2α

〈
x̄∗ + tiv

∗, x̄+ tiv +
1

2
t2i z

k − xi
〉

+ ακ‖x̄∗‖εkt2i + o(t2i )

= 2α
[
〈x̄∗ + tiv

∗, xi − x̄〉 − ti〈x̄∗, v〉 − t2i 〈v∗, v〉 −
1

2
t2i 〈x̄∗, zk〉

]
+ακ‖x̄∗‖εkt2i + o(t2i ). (3.51)

Recall further from the first inclusion in (3.39) that v ∈ K(x̄, x̄∗) and hence 〈x̄∗, v〉 = 0. It

follows from (3.45) and (3.47), respectively, that

〈v∗, v〉 =
〈
v,∇2〈λ,Φ〉(x̄)v

〉
and − 〈x̄∗, zk〉 ≤

〈
v,∇2〈λ,Φ〉(x̄)v

〉
+ εk. (3.52)

Next we are going to find an upper estimate for the first term on the right-hand side of

the equality in (3.51). It follows from both equalities in (3.45) that

〈x̄∗ + tiv
∗, xi − x̄〉 =

〈
∇Φ(x̄)∗λ+ ti

(
∇2〈λ,Φ〉(x̄)v +∇Φ(x̄)∗µ

)
, xi − x̄

〉
=

〈
λ+ tiµ,∇Φ(x̄)(xi − x̄)

〉
+ ti

〈
v,∇2〈λ,Φ〉(x̄)(xi − x̄)

〉
=

〈
λ+ tiµi,∇Φ(x̄)(xi − x̄)

〉
+ ti

〈
µ− µi,∇Φ(x̄)(xi − x̄)

〉
+ti
〈
v,∇2〈λ,Φ〉(x̄)(xi − x̄)

〉
=

〈
λ+ tiµi,Φ(xi)− 1

2
〈xi − x̄,∇2Φ(x̄)(xi − x̄)〉

〉
+ ti

〈
v,∇2〈λ,Φ〉(x̄)(xi − x̄)

〉
+ o(ti‖xi − x̄‖) + o(‖xi − x̄‖2)

= 〈λ+ tiµi,Φ(xi)〉 − 1

2

〈
xi − x̄,∇2〈λ,Φ〉(x̄)(xi − x̄)

〉
+ti
〈
v,∇2〈λ,Φ〉(x̄)(xi − x̄)

〉
+ o(ti‖xi − x̄‖) + o(‖xi − x̄‖2).
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Using these together with λ+ tiµi ∈ −Q and Φ(xi) ∈ Q brings us to the estimate

〈x̄∗ + tiv
∗, xi − x̄〉 ≤ −1

2

〈
x̄− xi,∇2〈λ,Φ〉(x̄)(x̄− xi)

〉
− ti

〈
v,∇2〈λ,Φ〉(x̄)(x̄− xi)

〉
+o(ti‖xi − x̄‖) + o(‖xi − x̄‖2). (3.53)

Combining now the conditions in (3.51)–(3.53), we arrive at the following relationships:

∥∥x̄+ tiv +
1

2
t2i z

k − xi
∥∥2 ≤ 2α

[
− 1

2

〈
x̄− xi,∇2〈λ,Φ〉(x̄)(x̄− xi)

〉
− ti

〈
v,∇2〈λ,Φ〉(x̄)(x̄− xi)

〉
−t2i

〈
v,∇2〈λ,Φ〉(x̄)v

〉
+

1

2
t2i
(〈
v,∇2〈λ,Φ〉(x̄)v

〉
+ εk

) ]
+o(ti‖xi − x̄‖) + o(‖xi − x̄‖2) + ακ‖x̄∗‖εkt2i + o(t2i )

= −α
[ 〈
x̄− xi,∇2〈λ,Φ〉(x̄)(x̄− xi)

〉
+ 2ti

〈
v,∇2〈λ,Φ〉(x̄)(x̄− xi)

〉
+t2i

〈
v,∇2〈λ,Φ〉(x̄)v

〉 ]
+ αεkt

2
i + ακ‖x̄∗‖εkt2i

+o(ti‖xi − x̄‖) + o(‖xi − x̄‖2) + o(t2i )

= −α
〈
x̄+ tiv − xi,∇2〈λ,Φ〉(x̄)(x̄+ tiv − xi)

〉
+ α(κ‖x̄∗‖+ 1)εkt

2
i

+o(ti‖xi − x̄‖) + o(‖xi − x̄‖2) + o(t2i )

≤ 1

2
‖x̄+ tiv − xi‖2 + α(κ‖x̄∗‖+ 1)εkt

2
i

+o(ti‖xi − x̄‖) + o(‖xi − x̄‖2) + o(t2i ),

where the last inequality comes from the fact that the matrix
1

2
I+α∇2〈λ,Φ〉(x̄) is positive-

semidefinite. This allows us to conclude that

∥∥x̄+tiv+
1

2
t2i z

k−xi
∥∥2−1

2
‖x̄+tiv−xi‖2 ≤ α(κ‖x̄∗‖+1)εkt

2
i +o(ti‖xi−x̄‖)+o(‖xi−x̄‖2)+o(t2i ),
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which verifies the inequality

1

2
‖x̄+ tiv − xi‖2 + t2i 〈zk, x̄− xi〉+ t3i 〈zk, v〉+

1

4
t4i ‖zk‖2 ≤ α(κ‖x̄∗‖+ 1)εkt

2
i + o(ti‖xi − x̄‖)

+o(‖xi − x̄‖2) + o(t2i ).

Since εk <
1

16α(κ‖x̄∗‖+ 1)
, the latter inequality can be simplified as

‖x̄+ tiv − xi‖2 ≤ 2α(κ‖x̄∗‖+ 1)εkt
2
i + o(ti‖xi − x̄‖) + o(‖xi − x̄‖2) + o(t2i ) (3.54)

≤ 1

8
t2i + o(t2i ) + o(ti‖xi − x̄‖) + o(‖xi − x̄‖2),

and therefore we get for all i sufficiently large that

‖x̄+ tiv − xi‖ ≤
1

2

(
ti + ‖xi − x̄‖

)
.

In this way we arrive at the estimates

‖xi − x̄‖ ≤ ‖x̄+ tiv − xi‖+ ti‖v‖ ≤
1

2
ti +

1

2
‖xi − x̄‖+ ti‖v‖,

which in turn imply that ‖xi− x̄‖ = O(ti) and so o(ti‖xi− x̄‖) = o(‖xi− x̄‖2) = o(t2i ). Using

these relationships together with (3.54) gives us

‖x̄+ tiv − xi‖2 ≤ 2α(κ‖x̄∗‖+ 1)εkt
2
i + o(t2i ),
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and so we come by passing to the limit as i→∞ to the inequalities

lim
i→∞

‖x̄+ tiv − xi‖2

t2i
≤ 2α(κ‖x̄∗‖+ 1)εk ≤

1

8k2
.

Remember that k ∈ IN has been fixed through the above proof of the inclusion “⊃" in

(3.33). This allows us to find an index ik for which we have the estimates

‖x̄+ tikv − xik‖
tik

≤ 1

2k
and tik‖zk‖ ≤

1

k
. (3.55)

Repeating this process for any k ∈ IN, we construct sequences tik and xik that satisfy (3.55)

and such that tik ↓ 0 and xik → x̄ as k →∞. Combining finally (3.55) and (3.49) leads us

to

dist
(
x̄∗ + tikv

∗;NΓ(xik)
)

tik
≤ 1

k
.

It yields (3.44) with tk := tik and xk := xik and so completes the proof of the theorem.

It is worth mentioning an equivalent version of the pointbased formula (3.33) in The-

orem 3.9, which is an ice-cream counterpart of the polyhedral result established recently

by Gfrerer and Ye [21, Theorem 4].

Corollary 3.10. (representation of the tangent cone to the normal cone graph for ice-

cream constraint systems with bounded Lagrange multipliers). Under the assumptions

of Theorem 3.9 there is δ > 0 such that for all x ∈ Γ ∩ Bδ(x̄) and all x∗ ∈ NΓ(x) we have the
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representations

TgphNΓ
(x, x∗) =

{
(v, v∗)

∣∣ v∗ ∈
(
∇2〈λ,Φ〉(x) +H(x;λ)

)
v +NK(x,x∗)(v)

for some λ ∈ Λ(x, x∗; v) ∩ κ‖x∗‖B
}
,

(3.56)

(DNΓ)(x, x∗)(v) =
{(
∇2〈λ,Φ〉(x) +H(x;λ)

)
v
∣∣ λ ∈ Λ(x, x∗; v) ∩ κ‖x∗‖B

}
+NK(x,x∗)(v).

(3.57)

Proof. We first observe in Step 1 of the proof of Theorem 3.9 that the limit of {λk} actually

belongs to the set Λ(x̄, x̄∗) ∩ κ‖x̄∗‖B. Thus the claimed representations for x = x̄ follow

immediately. The robustness of MSCQ allows us to select δ > 0 so that this condition holds

at any x ∈ Γ ∩ Bδ(x̄) with the same modulus κ. It implies therefore that both (3.56) and

(3.57) are satisfied for all such x.

The next consequence of Theorem 3.9 concerns an important case of the tangent cone

formula in the case where x̄∗ = 0, which is used in what follows.

Corollary 3.11. (simplification of the graphical derivative formula for x̄∗ = 0). Let

x̄∗ = 0 in the framework of Theorem 3.9. Then we have

TgphNΓ
(x̄, 0) =

{
(v, v∗)

∣∣ v∗ ∈ NK(x̄,0)(v)
}

= gphNK(x̄,0) (3.58)

and correspondingly the graphical derivative formula

(DNΓ)(x̄, 0)(v) = NK(x̄,0)(v) = ∇Φ(x̄)∗
[
NQ
(
Φ(x̄)

)
∩ {∇Φ(x̄)v}⊥

]
. (3.59)

Proof. If x̄∗ = 0, we deduce from (3.56) that λ = 0. Using this together with H(x̄;λ) = 0

for λ = 0, we arrive at (3.58) and hence at (3.59).
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Remark 3.12. (discussions on the graphical derivative formulas).

(i) First we highlight some important differences between our proof of Theorem 3.9

for nonpolyhedral second-order constraint systems and its polyhedral counterpart for NLPs

in [19, Theorem 1] and in the similar devices from [7, 16]. Unlike the latter proof that

exploits the Hoffman lemma to verify the inclusion “⊂" in (3.33), we do not appeal to any

error bound estimate; this is new even for polyhedral systems. Our approach is applicable

to other cone-constrained frameworks; however, we believe that some error bound estimate

is needed for the general setting. The reason for avoiding error bounds in the proof of

Theorem 3.9 is that in the ice-cream case we have the inclusion NQ(x) ⊂ NQ(0) for any

x ∈ Rm+1. Another difference between our proof and that in [19] lies in the justification

of the inclusion “⊃" in the tangent cone formula. Indeed, the proof in [19] employs the

exact duality, which holds in the polyhedral setting. In contrast, our proof relies on the

approximate duality established in Theorem 3.7.

(ii) The first result on the tangent cone and the graphical derivative of normal cone

mapping to the general conic constraint system

Γ :=
{
x ∈ Rn

∣∣ Φ(x) ∈ Θ
}
, (3.60)

where Θ ⊂ Rm is a closed and convex, was established by Mordukhovich, Outrata and

Ramírez [40, Theorem 3.3] under the nondegeneracy condition from [6] and the rather

restrictive assumption on the convexity of Γ. This result was derived not in the form

of (3.33) but in terms of the directional derivative of the projection mapping associated
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with Θ. Later the same authors improved this result in [41, Theorem 5.2] by dropping

the convexity of Γ under the projection derivation condition discussed in Sect. 3.1, which

enabled them to write the main result for (3.60) in the form of (3.33). However, as proved

in Corollary 2.7, this PDC does not hold at nonzero boundary points of Q and so [41,

Theorem 5.2]—obtained also under the nondegeneracy condition —cannot be utilized in

the ice-cream framework when Φ(x̄) ∈ bd (Q) \ {0}.

(iii) Quite recently, Gfrerer and Outrata [20, Theorem 2] calculated the graphical

derivative of the normal mapping to (3.60) under nondegeneracy condition when Θ is

not necessarily convex. Combining their result with Corollary 2.4 above in the ice-cream

framework, we see that it agrees with Theorem 3.33 provided that the nondegeneracy con-

dition is satisfied. However, our results can be applied to much broader settings since it

only demands the fulfillment of MSCQ. As mentioned above, our results seem to be new for

SOCPs even under RCQ (3.6), which is equivalent to the metric regularity of x 7→ Φ(x)−Q

around (x̄, 0). Note that in the latter case the Lagrange multiplier set Λ(x̄, x̄∗) admits either

the (LMS1) or the (LMS2) representation from its description in Proposition 3.3.

Next we illustrate the applicability of the main result in Theorem 3.9 to the ice-cream

constraint systems at points where neither nondegeneracy nor Robinson constraint quali-

fication is satisfied.

Example 3.13. (calculation of graphical derivative for ice-cream normal cone sys-

tems). Define the mapping Φ : R2 → R3 by

Φ(x) :=
(√

2x2
1 + x2, x

2
1 +

1√
2
x2, x

2
1 −

1√
2
x2

)
for x = (x1, x2) ∈ R2
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and consider the constraint system associated with the three-dimensional ice-cream cone

Q3:

Γ =
{
x ∈ R2

∣∣Φ(x̄) ∈ Q3

}
=
{

(x1, x2) ∈ R2
∣∣x2 ≥ 0

}
.

Given any x ∈ Γ, we claim that the mapping x 7→ Φ(x) − Q3 is metrically subregular at

(x, 0), i.e., MSCQ holds at x. To begin with, observe by (3.12) and direct calculations that

dist
(
(x1, x2); Γ

)
=


0 if x2 ≥ 0,

−x2 if x2 < 0;

dist
(
Φ(x1, x2);Q3

)
=



0 if x2 ≥ 0,

−
√

2x2 if x1 = 0, x2 < 0,

√
2

2

(
− x2 +

√
2x4

1 + x2
2 −
√

2x2
1

)
otherwise,

which gives us dist((x1, x2); Γ) ≤
√

2dist(Φ(x1, x2);Q3) for all (x1, x2) ∈ R2 and thus verifies

the validity of MSCQ at any x ∈ Γ. It is not hard to check that

NΓ(x) =


{(0, 0)} if x2 > 0,

{0} × R− if x2 = 0,

∅ if x2 < 0

and TΓ(x) =


R2 if x2 > 0,

R× R+ if x2 = 0,

∅ if x2 < 0.
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On the other hand, the direct calculation tells us that

TgphNΓ
(x̄, x̄∗) =



[R× (0,∞)× {(0, 0)}] ∪ [R× {0} × {0} × R−] if x2 = 0, x̄∗ = 0,

R× {0} × {0} × R if x2 = 0, x̄∗ 6= 0,

R2 × {(0, 0)} if x2 > 0, x̄∗ = 0.

(3.61)

Let us now apply Theorem 3.9 to calculate the tangent cone to gphNΓ and the graphical

derivative of the normal cone mapping. For λ = (λ0, λ1, λ2) ∈ R3 we have

∇Φ(x)∗ =

2
√

2x1 2x1 2x1

1
1√
2
− 1√

2

 , ∇2〈λ,Φ〉(x) =

2
√

2λ0 + 2λ1 + 2λ2 0

0 0

 .

Consider further the following five characteristic cases:

Case 1: x̄ = (0, 0) and x̄∗ = (0, 0) ∈ NΓ(x̄). In this case we have Φ(x̄) = 0, H(x̄;λ) = 0,

and K(x̄, x̄∗) = TΓ(x̄) = R× R+. Applying Corollary 3.11 tells us that

TgphNΓ
(x̄, x̄∗) = gphNK(x̄,x̄∗) =

[
R× (0,∞)× {(0, 0)}

]
∪
[
R× {0} × {0} × R−

]
,

(DNΓ)(x̄, x̄∗)
(
(v1, v2)

)
= NK(x̄,x̄∗)

(
(v1, v2)

)
=


{

(0, 0)
}

if v2 > 0,

{
0
}
× R− if v2 = 0

for v = (v1, v2), which agrees with the calculation in (3.61).

Case 2: x̄ = (0, 0) and x̄∗ = (0,−1) with K(x̄, x̄∗) = R × {0}. Take
(
(v1, v2), (v∗1, v

∗
2)
)
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from the right-hand side of (3.33) and observe that for any v := (v1, v2) ∈ K(x̄, x̄∗) it holds

NK(x̄,x̄∗)(v) = {0}×R and Λ(x̄, x̄∗; v) =


{

(−1,
1√
2
,

1√
2

)
}

if v1 6= 0,

{
λ ∈ −Q3

∣∣√2λ0 + λ1 − λ2 = −
√

2
}

if v1 = 0.

Thus Theorem 3.9 gives us the following inclusions:

(i) if v1 6= 0 and v2 = 0, then

v∗ ∈

−2
√

2 +
√

2 +
√

2 0

0 0


v1

0

+ {0} × R =
{

0
}
× R;

(ii) if v1 = v2 = 0, then there exists λ ∈ Λ(x̄, x̄∗; v) such that

v∗ ∈

2
√

2λ1 + 2λ2 + 2λ3 0

0 0


0

0

+ {0} × R =
{

0
}
× R.

We therefore arrive at the tangent cone formula

TgphNΓ
(x̄, x̄∗) =

{
(v, v∗)

∣∣ v2 = 0 and v∗1 = 0
}
,

which yields for v = (v1, v2) with v2 = 0 the graphical derivative one

(DNΓ)(x̄, x̄∗)
(
(v1, v2)

)
=
{

0
}
× R.

Thus in this case we again agree with the calculation in (3.61).
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Case 3: x̄ = (1, 0) and x̄∗ = (0, 0) ∈ NΓ(x̄). Observe that in this case we have Φ(x̄) ∈

bd (Q3) \ {0}, K(x̄, x̄∗) = R× R+, and it follows from (3.23) that

H(x;λ) = − λ0√
2

 0 −2
√

2

−2
√

2 0

 .

Applying Corollary 3.11 gives us the same formulas for TgphNΓ
and DNΓ as in Case 1.

Case 4: x̄ = (1, 0) and x̄∗ = (0,−1) ∈ NΓ(x̄) with K(x̄, x̄∗) = R × {0}. Taking(
(v1, v2), (v∗1, v

∗
2)
)

from the right-hand side of (3.33), observe that for all v = (v1, v2) ∈

K(x̄, x̄∗) we get NK(x̄,x̄∗)(v) = {0} × R. It is easy to check that

Λ(x̄, x̄∗) = Λ(x̄, x̄∗; v) =
{(
− 1,

1√
2
,

1√
2

)}
,

which implies that for any λ ∈ Λ(x̄, x̄∗; v) we have

∇2〈λ,Φ〉(x̄) +H(x̄;λ) =

−2
√

2 +
√

2 +
√

2 0

0 0

+
1√
2

 0 −2
√

2

−2
√

2 0

 =

 0 −2

−2 0

 .

Appealing to Theorem 3.9 tells us that

TgphNΓ
(x̄, x̄∗) =

{(
(v1, v2), (v∗1, v

∗
2)
) ∣∣ v2 = 0, v∗ ∈ (0,−2v1) + {0} × R

}
=

{(
(v1, v2), (v∗1, v

∗
2)
) ∣∣ v2 = 0, v∗1 = 0

}
,

which readily implies that for any v = (v1, v2) with v2 = 0 we get

(DNΓ)(x̄, x̄∗)
(
(v1, v2)

)
=
{

0
}
× R.
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Case 5: x̄ = (0, 1) and x̄∗ = (0, 0). In this case we have K(x̄, x̄∗) = R2 and so

NK(x̄,x̄∗)(v) = {(0, 0)} for all v ∈ R2. It is easy to see that Λ(x̄, x̄∗) = (
√

2,−1, 1)R−,

which tells us that the Lagrange multipliers set has the representation in (LMS3) of Propo-

sition 3.1. Employing again Corollary 3.11 ensures the validity of the relationships

TgphNΓ
(x̄, x̄∗) = gphNK(x̄,x̄∗) = R2 ×

{
(0, 0)

}
,

and therefore we arrive at the graphical derivative formula

(DNΓ)(x̄, x̄∗)((v1, v2)) =
{

(0, 0)
}
, v ∈ R2,

which illustrates the applicability of Theorem 3.9 under the imposed MSCQ condition.

Since the set of Lagrange multipliers is unbounded in some cases above, both metric regu-

larity (which equivalent to the Robinson constraint qualification characterizing the bound-

edness of Lagrange multipliers) and nondegeneracy conditions fail in this example. This

completes our considerations in this example.

3.3 Application to Isolated Calmness

In this section, we provide an application of Theorem 3.9 to an important stability

property well recognized in variational analysis and optimization; see, e.g., [9, 11, 40]

and the references therein. Recall that a mapping F : Rn ⇒ Rm is said to be isolatedly calm

at (x̄, ȳ) ∈ gphF if there exist a constant ` ≥ 0 and neighborhoods U of x̄ and V of ȳ such

that

F (x) ∩ V ⊂ {ȳ}+ `‖x− x̄‖B for all x ∈ U.
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In what follows we apply the graphical derivative formula established above to character-

ize the isolated calmness property of the parametric variational system

S(p) =
{
x ∈ Rn

∣∣ p ∈ f(x) +NΓ(x)
}

(3.62)

generated by the the ice-cream cone Q ⊂ Rm+1 via (1.3), where f : Rn → Rn is a dif-

ferentiable mapping. The following theorem provides a complete characterization of the

isolated calmness of the variational system (3.62) entirely via its given data.

Theorem 3.14. (characterization of isolated calmness for ice-cream variational sys-

tems). Let (p̄, x̄) ∈ gphS with S taken from (3.62). In addition to the standing assumptions

on Γ from (1.3) and the MSCQ condition of Theorem 3.9, suppose that f is Fréchet differen-

tiable at x̄ ∈ Γ. Then S enjoys the isolated calmness property at (p̄, x̄) if and only if

 0 ∈ ∇f(x̄)v +
(
∇2〈λ,Φ〉(x̄) +H(x̄;λ)

)
v +NK(x̄,p̄−f(x̄))(v)

λ ∈ Λ
(
x̄, p̄− f(x̄); v

)
∩ κ ‖p̄− f(x̄)‖B

=⇒ v = 0, (3.63)

where κ > 0 is the metric subregularity constant of the mapping x 7→ Φ(x)−Q at (x̄, 0).

Proof. We invoke a graphical derivative characterization of the isolated calmness prop-

erty (3.3) for arbitrary closed-graph multifunctions written as

DF (x̄, ȳ)(0) = {0}. (3.64)

This result goes back to Rockafellar [56] although it was not explicitly formulated in [56];

see [11, Theorem 4C.1] with the commentaries. It easily follows from the Fréchet differ-

entiability of f at x̄ and the structure of S in (3.62) that v ∈ DS(p̄, x̄)(u) if and only if
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u ∈ ∇f(x̄)v + (DNΓ)(x̄, p̄− f(x̄))(v). Using now the calmness criterion (3.64) and substi-

tuting there the graphical derivative formula from Corollary 3.10, we arrive at the claimed

characterization (3.63). 4

Finally in this section, we present a numerical example of the ice-cream variational

system (3.62) where the application of Theorem 3.14 allows us to reveal that the isolated

calmness property holds at some feasible points while failing at other ones.

Example 3.15. (verification of isolated calmness). Consider the variational system

(3.62) with the mapping f : R2 → R2 given by

f(x) :=
(
x1, x

2
2

)
for x = (x1, x2)

and the constraint set Γ taken from Example 3.13. We examine the following cases:

Case 1: x̄ = (0, 0) and p̄ = f(x̄) = (0, 0). In this case we have

∇f(x̄)v +DNΓ

(
x̄, p̄− f(x̄)

)(
(v1, v2)

)
=

v1

0

+


{(0, 0)} if v2 > 0,

{0} × R− if v2 = 0.

Invoking the corresponding calculations from Example 3.13 shows implication (3.63) does

not hold. Thus the isolated calmness of (3.62) fails at this point (p̄, x̄).

Case 2: x̄ = (0, 0) and p̄ = (0,−1). In this case we have p̄− f(x̄) = (0,−1) and

∇f(x̄)v +DNΓ

(
x̄, p̄− f(x̄)

)(
(v1, v2)

)
=

v1

0

+ {0} × R if v2 = 0.
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It is clear that implication (3.63) holds for this case, and so does the isolated calmness at

(p̄, x̄).

Case 3: x̄ = (1, 0) and p̄ = f(x̄) = (1, 0). The right-hand side of the inclusion in (3.63)

for this case is the same as that in Case 1. Therefore we come up with the same conclusion

that isolated calmness does not hold at this point.

Case 4: x̄ = (1, 0) and p̄ = (1,−1). We get the validity of the same implication (3.63)

as that in Case 2 and therefore justify the isolated calmness of (3.62) at the point under

consideration.

Case 5: x̄ = (0, 1) and p̄ = f(x̄) = (0, 1). Then the right-hand side of the inclusion in

(3.63) reduces to (v1, 2v2) + {(0, 0)}. It is easy to see that implication (3.63) holds, which

therefore justifies the isolated calmness of (3.62) in this case.
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CHAPTER 4 SECOND-ORDER VARIATIONAL ANALYSIS OF AUGMENTED
LAGRANGIANS

This chapter aims at providing characterizations of the second-order growth condition

for the penalized problem (1.8), and thus a second-order sufficient condition for strict lo-

cal minimizers of this problem. Our main device to obtain such characterizations is the

second subderivative (2.11). As observed by Rockafellar [58, Theorem 2.2], the second-

order growth condition for a proper extended-real-valued function can be characterized

via its second subderivative. Using this rather simple albeit powerful result for the penal-

ized problem (1.8) requires the calculation of the second subderivative of the augmented

Lagrangian (1.7).

4.1 Twice Epi-Differentiability of Augmented Lagrangians

We begin with the following assertion that calculates the second subderivative of the

Moreau envelope of a convex function. Given ϕ : Rn → R and ρ > 0, recall that the Moreau

envelope of ϕ relative to ρ is defined by the infimal convolution

(e1/ρϕ)(x) := inf
w

{
ϕ(w) + ρ

2
‖w − x‖2

}
, x ∈ Rn. (4.1)

Proposition 4.1 (second subderivatives of Moreau envelopes). Let ϕ : Rn → R be a

proper, lower semicontinuous (l.s.c.), and convex function, and let v̄ ∈ ∂ϕ(x̄). If ϕ is twice

epi-differentiable at x̄ for v̄, then for any ρ > 0 the Moreau envelope e1/ρϕ is properly twice

epi-differentiable at x̄+ ρ−1v̄ for v̄ and its second subderivative at this point is calculated by

d2(e1/ρϕ)(x̄+ ρ−1v̄, v̄)(w) = e1/2ρ

(
d2ϕ(x̄, v̄)

)
(w) for all w ∈ Rn. (4.2)
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Proof. Fix ρ > 0. It follows from [60, Theorem 11.23] that

(e1/ρϕ)∗(z) = ϕ∗(z) + 1
2
ρ−1‖z‖2 for all z ∈ Rn. (4.3)

Because ϕ is proper, convex, and twice epi-differentiable at x̄ for v̄, we deduce from [60,

Proposition 13.20] that d2ϕ(x̄, v̄) is proper, l.s.c., and convex as well. Furthermore, it

follows from [60, Theorem 13.21] that the proper twice epi-differentiability of ϕ at x̄ for

v̄ yields this property for the conjugate function ϕ∗. Employing [60, Proposition 12.19]

tells us that the inclusion v̄ ∈ ∂ϕ(x̄) ensures that ∇(e1/ρϕ)(x̄+ ρ−1v̄) = v̄. Combining these

facts with (4.3) and the sum rule for twice epi-differentiability from [60, Exercise 13.18]

implies that (e1/ρϕ)∗ is properly twice epi-differentiable at v̄ for x̄+ρ−1v̄ and that its second

subderivative is given by

d2(e1/ρϕ)∗(x̄+ ρ−1v̄, v̄)(w) = d2ϕ∗(v̄, x̄)(w) + ρ−1‖w‖2 for all w ∈ Rn. (4.4)

This together with [60, Theorem 13.21] yields the proper twice epi-differentiability of

(e1/ρϕ)∗ at x̄ + ρ−1v̄ for v̄. Thus the second subderivative of the latter function can be

calculated by

1
2
d2(e1/ρϕ)(x̄+ ρ−1v̄, v̄)(w) =

(
1
2
d2(e1/ρϕ)∗(x̄+ ρ−1v̄, v̄)

)∗
(w)

= inf
u∈Rn

{(
1
2
d2ϕ∗(v̄, x̄)

)∗
(u) + 1

2
ρ‖u− w‖2

}
= inf

u∈Rn

{
1
2
d2ϕ(x̄, v̄)(u) + 1

2
ρ‖u− w‖2

}
,
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where the first equality comes from [60, Theorem 13.21], the second one is due to (4.4)

and [3, Proposition 14.1(i)], and the last equality follows from [60, Theorem 13.21]. This

readily justifies the claimed formula for the second subderivative of e1/ρϕ at x̄ + ρ−1v̄ for

v̄.

The second subderivative of the Moreau envelope for general prox-regular functions

was established in [60, Exercise 13.45]. However, there are several differences between

the latter result and Proposition 4.1. Firstly, the result of [60] was obtained for v̄ = 0

and ρ > 0 sufficiently large. Our result does not demand neither of these requirements.

Secondly, there is the coefficient 1/2 in [60, Exercise 13.45], which does not appear in

(4.2). The price for a nicer formula, however, is confining ourselves to the framework to

convex functions.

Proposition 4.1 allows us to obtain the required calculation of the second subderivative

of the augmented Lagrangian (1.7).

Theorem 4.2 (second epi-derivatives of augmented Lagrangians). Let (x̄, λ̄) be a solu-

tion to the KKT system (1.4). Then for any ρ > 0 the function x 7→ L(x, λ̄, ρ) defined via the

augmented Lagrangian (1.7) is twice epi-differentiable at x̄ for 0 and its second subderivative

is given by

d2
xL
(
(x̄, λ̄, ρ), 0

)
(w) =

〈
w,∇2

xxL(x̄, λ̄)w
〉

+Qx̄,λ̄,ρ(∇Φ(x̄)w) + ρ dist2
(
∇Φ(x̄)w;KQ(Φ(x̄), λ̄)

)
,

(4.5)
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for w ∈ Rn, where the quadratic function Qx̄,λ̄,ρ : Rm+1 → R is defined by

Qx̄,λ̄,ρ(v) :=


0 if Φ(x̄) ∈ (intQ) ∪ {0} or λ̄ = 0,

ρ‖λ̄‖
ρ‖Φ(x̄)‖+ ‖λ̄‖

(
‖vr‖2 − 〈λ̄r, vr〉

2

‖λ̄r‖2

)
if Φ(x̄) ∈ (bdQ) \ {0} and λ̄ 6= 0.

(4.6)

Proof. Since (x̄, λ̄) is a solution to the KKT system (1.4), we have ∇xL(x̄, λ̄, ρ) = 0, where

∇xL is calculated in (1.9). The twice epi-differentiability of the function x 7→ L(x, λ̄, ρ) at x̄

for v̄ = 0 follows from [35, Theorem 8.3(i)]. Let us proceed with the second subderivative

calculation for the latter function. If either Φ(x̄) ∈ (intQ) ∪ {0} or λ̄ = 0, then by (2.13)

we get

d2δQ
(
Φ(x̄), λ̄

)
(w) = δKQ(Φ(x̄),λ̄)(w) whenever w ∈ Rm+1.

Employing again [35, Theorem 8.3(i,iii)] and the second subderivative calculation (4.2)

from Proposition 4.1 for the Moreau envelope (4.1) of ϕ = δQ tells us that

d2
xL
(
(x̄, λ̄, ρ), 0

)
(w) =

〈
w,∇2

xxL(x̄, λ̄)w
〉

+ e1/2ρ

(
d2δQ(Φ(x̄), λ̄)

)
(w)

=
〈
w,∇2

xxL(x̄, λ̄)w
〉

+ inf
u∈Rm+1

{
δKQ(Φ(x̄),λ̄)(u) + ρ‖u−∇Φ(x̄)w‖2

}
=

〈
w,∇2

xxL(x̄, λ̄)w
〉

+ ρ dist2
(
∇Φ(x̄)w;KQ(Φ(x̄), λ̄)

)
,

which verifies formula (4.5) with Qx̄,λ̄,ρ(w) from (4.6) in this case. Assuming next that

Φ(x̄) ∈ (bdQ) \ {0} and λ̄ 6= 0, define the function θ(y) := 1
2
dist2(y;Q) for y ∈ Rm+1. It is

well known that θ is continuously differentiable on Rm+1 and its gradient is given by

∇θ(y) = Π−Q(y) whenever y ∈ Rm+1.
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Since Φ(x̄) ∈ (bdQ) \ {0} and 0 6= λ̄ ∈ NQ(Φ(x̄)), we get ȳ /∈ Q∪ (−Q) with ȳ = (ȳ0, ȳr) :=

Φ(x̄) + ρ−1λ̄. This clearly yields ‖ȳr‖ > 0, and so we arrive at

∇θ(y) = Π−Q(y) =
1

2

(
1− y0

‖yr‖

)(
− ‖yr‖, yr

)
=

1

2

(
y0 − ‖yr‖, yr − y0

yr
‖yr‖

)

for all y close to ȳ. This confirms, in particular, that θ is C2-smooth around ȳ with

∇2θ(ȳ) = ∇Π−Q(ȳ) =
1

2

 1 − ȳ∗r
‖ȳr‖

− ȳr
‖ȳr‖

Im −
ȳ0

‖ȳr‖
Im +

ȳ0

‖ȳr‖
ȳrȳ
∗
r

‖ȳr‖2

 , (4.7)

where Im the m × m identity matrix, and where ȳ∗r stands for the corresponding vector

row. Since Φ(x̄) ∈ (bdQ) \ {0} and λ̄ ∈ NQ(Φ(x̄)) \ {0}, it follows that λ̄ = tΦ̃(x̄) =

t (−Φ0(x̄),Φr(x̄)) for some t > 0 and λ̄0 = −‖λ̄r‖. Thus we have

ȳ = Φ(x̄) + ρ−1λ̄ =
1

t

(
− λ̄0, λ̄r

)
+

1

ρ

(
λ̄0, λ̄r

)
=

(
t− ρ
tρ

λ̄0,
t+ ρ

tρ
λ̄r

)
=

(
ρ− t
tρ
‖λ̄r‖,

ρ+ t

tρ
λ̄r

)
.

Plugging the latter into (4.7) gives us the gradient formula

∇Π−Q(ȳ) =
1

2

 1 − λ̄∗r
‖λ̄r‖

− λ̄r
‖λ̄r‖

2t

ρ+ t
Im +

ρ− t
ρ+ t

λ̄rλ̄
∗
r

‖λ̄r‖2

 ,
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which being combined with (4.7) and λ̄0 = −‖λ̄r‖ results in

〈
∇2θ(ȳ)v, v

〉
=

1

2

(
v2

0 −
2v0

‖λ̄r‖
〈λ̄r, vr〉+

2t

ρ+ t
‖vr‖2 +

ρ− t
ρ+ t

〈λ̄r, vr〉2

‖λ̄r‖2

)
=

1

2

[
v2

0 − 2v0
〈λ̄r, vr〉
‖λ̄r‖

+

(
〈λ̄r, vr〉
‖λ̄r‖

)2
]

+
t

ρ+ t

(
‖vr‖2 − 〈λ̄r, vr〉

2

‖λ̄r‖2

)
=

(λ̄0v0)2 + 2λ̂0v0〈λ̄r, vr〉+ 〈λ̄r, vr〉2

2‖λ̄r‖2
+

t

ρ+ t

(
‖vr‖2 − 〈λ̄r, vr〉

2

‖λ̄r‖2

)
=
〈λ̄, v〉2

‖λ̄‖2
+

t

ρ+ t

(
‖vr‖2 − 〈λ̄r, vr〉

2

‖λ̄r‖2

)
= dist2

(
v;KQ(Φ(x̄), λ̄)

)
+

‖λ̄‖
ρ‖Φ(x̄)‖+ ‖λ̄‖

(
‖vr‖2 − 〈λ̄r, vr〉

2

‖λ̄r‖2

)
, (4.8)

for all v = (v0, vr) ∈ Rm+1. In the last equality we use the facts that KQ(Φ(x̄), λ̄) = {λ̄}⊥

and ‖λ̄‖ = t‖Φ(x̄)‖. It follows from the twice differentiability of θ at ȳ that the function

x 7→ L(x, λ̄, ρ) is twice differentiable at x̄ with its second subderivative computed by

d2
xL((x̄, λ̄, ρ), 0)(w) =

〈
∇2
xxL(x̄, λ̄, ρ)w,w

〉
=
〈
w,∇2

xxL(x̄, λ̄)w
〉

+ ρ
〈
∇2θ(ȳ)v, v

〉

with v = ∇Φ(x̄)w. Combining this and (4.8) gives us the claimed second subderivative

formula in this case and thus finishes the proof of the theorem.

4.2 Second-Order Growth Conditions of Augmented Lagrangians

We recall first in this section the following result from [35, Proposition 7.3] justifying

the ability of the second subderivertive (2.11) to characterize the second-order growth

condition for SOCPs.

Proposition 4.3 (SOSC yields second-order growth). Let (x̄, λ̄) ∈ Rn×Rm+1 be a solution
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to the KKT system (1.4), and let the second-order sufficient condition

〈
∇2
xxL(x̄, λ̄)w,w

〉
+ d2δQ

(
Φ(x̄), λ̄

)(
∇Φ(x̄)w

)
> 0 for all w ∈ Rn \ {0}. (4.9)

hold. Then there exist positive numbers `, γ such that the second-order growth condition

f(x) ≥ f(x̄) + `
2
‖x− x̄‖2 for all x ∈ Bγ(x̄) with Φ(x) ∈ Q (4.10)

is satisfied for the second-order cone program (1.1).

Observe that the presented SOSC (4.9) is equivalent to the second-order conditions

used for SOCPs in Proposition 3.8 (for the case of Φ(x̄) = 0) and in other publications

[5, 30]. This indeed follows from the second subderivative formula (2.13). Note also

that SOSC (4.9) is stronger than the conventional second-order sufficient condition for

(1.1), the latter requires the supremum of the quadratic term in (4.9) over all the La-

grange multipliers from (1.5) be positive. This stronger condition is in fact equivalent

to the second-order growth (4.10) under an appropriate constraint qualification; see [35,

Theorem 7.2]. Let us now provide an equivalent version of SOSC (4.9) that is often used

in what follows.

Remark 4.4 (equivalent version of SOSC). It is not hard to check that the formulated

SOSC (4.9) amounts to saying that there exists a number ¯̀> 0 such that we have

〈
∇2
xxL(x̄, λ̄)w,w

〉
+ d2δQ

(
Φ(x̄), λ̄

)(
∇Φ(x̄)w

)
≥ ¯̀‖w‖2 for all w ∈ Rn. (4.11)

Conversely, the fulfillment of (4.11) at (x̄, λ̄) ensures that for any ` ∈ (0, ¯̀) there exists a
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positive number γ such that the second-order growth condition (4.10) is satisfied at x̄.

Now we are ready to establish complete pointwise characterizations of the second-

order growth condition for the penalized problem (1.8) in terms of SOSC (4.9) and the

second subderivative of the augmented Lagrangian (1.7).

Theorem 4.5 (characterizations of second-order growth condition for augmented La-

grangians). Let (x̄, λ̄) be a solution to the KKT system (1.4) for SOCP (1.1). Then the

following assertions are equivalent:

(i) The second-order sufficient condition (4.9) holds at (x̄, λ̄).

(ii) There exists a constant ρλ̄ > 0 such that for any ρ ≥ ρλ̄ we have

d2
xL((x̄, λ̄, ρ), 0)(w) > 0 whenever w ∈ Rn \ {0}. (4.12)

(iii) There exist positive constants ρλ̄, γλ̄, and `λ̄ such that for any ρ ≥ ρλ̄ we have

L(x, λ̄, ρ) ≥ f(x̄) + `λ̄‖x− x̄‖2 for all x ∈ Bγλ̄(x̄). (4.13)

Proof. Since (x̄, λ̄) is a solution to the KKT system (1.4), for all ρ > 0 we have L(x̄, λ̄, ρ) =

f(x̄) and ∇xL(x̄, λ̄, ρ) = 0. Assuming that (ii) holds, deduce from [60, Theorem 13.24]

that the second-order growth condition (4.13) for ρ = ρλ̄ follows from (4.12) with the

same constant ρ. Appealing now to Proposition 1.1(i) tells us that

L(x, λ, ρ) ≥ L(x, λ, ρλ̄) whenever ρ ≥ ρλ̄.
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This combined with (4.13) for ρ = ρλ̄ justifies the second-order growth condition for any

ρ ≥ ρλ̄ and thus verifies (iii). The opposite implication (iii) =⇒ (ii) follows directly from

the definition of the second subderivative.

Assume now that (ii) holds and let ρ ≥ ρλ̄. To justify (i), pick w ∈ Rn \ {0} with

v := ∇Φ(x̄)w ∈ KQ(Φ(x̄), λ̄). We now show that

d2δQ
(
Φ(x̄), λ̄

)(
v
)
≥ Qx̄,λ̄,ρ(v) + ρ dist2

(
v;KQ(Φ(x̄), λ̄)

)
(4.14)

for all ρ > 0. If either Φ(x̄) ∈ (intQ) ∪ {0} or λ̄ = 0, we get from (2.13) and (4.6) that

d2δQ
(
Φ(x̄), λ̄

)(
v
)

= Qx̄,λ̄,ρ(v) + ρ dist2
(
v;KQ(Φ(x̄), λ̄)

)
= 0 (4.15)

where the last equality comes from ∇Φ(x̄)w ∈ KQ(Φ(x̄), λ̄). Otherwise, if Φ(x̄) ∈ (bdQ) \

{0} and λ̄ 6= 0, then we get that KQ(Φ(x̄), λ̄) = {λ̄}⊥. It follows from v ∈ KQ(Φ(x̄), λ̄) and

λ̄ ∈ bd (−Q) \ {0} that

〈vr, λ̄r〉2 = v2
0λ̄

2
0 = v2

0‖λ̄r‖2 and ‖vr‖2 ≥ v2
0. (4.16)
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We then deduce from (2.13) and (4.6) that

d2δQ
(
Φ(x̄), λ̄

)(
v
)
−Qx̄,λ̄,ρ(v)− ρ dist2

(
v;KQ(Φ(x̄), λ̄)

)
=

‖λ̄‖
‖Φ(x̄)‖

(
‖vr‖2 − v2

0

)
− ρ‖λ̄‖
ρ‖Φ(x̄)‖+ ‖λ̄‖

(
‖vr‖2 − 〈λ̄r, vr〉

2

‖λ̄r‖2

)
=

‖λ̄‖2

‖Φ(x̄)‖(ρ‖Φ(x̄)‖+ ‖λ̄‖)
(
‖vr‖2 − v2

0

)
− ρ‖λ̄‖
ρ‖Φ(x̄)‖+ ‖λ̄‖

(
v2

0 −
〈λ̄r, vr〉2

‖λ̄i,r‖2

)
≥ 0, (4.17)

where the last inequality is due to estimates in (4.16). Thus, we justify (4.14) for v ∈

KQ(Φ(x̄), λ̄). Note that (4.14) is obvious if v /∈ KQ(Φ(x̄), λ̄) = dom d2δQ
(
Φ(x̄), λ̄

)
. Re-

ferring to (4.5), we get SOSC (4.9) from (4.12) and (4.14). Thus we are done with

(ii) =⇒ (i).

To complete the proof of the theorem, it remains to verify implication (i) =⇒ (ii).

Since the second subderivative is positive homogenous of degree 2, to prove (4.12) it is

neccesary and sufficient to verify the condition: for all ρ > 0 sufficiently large we get

d2L
(
(x̄, λ̄; ρ)|0

)
(w) > 0 whenever w ∈ S. (4.18)

Assuming that (i) holds, we first justify the claim that (4.18) holds for all w ∈ S with

v := ∇Φ(x̄)w ∈ KQ(Φ(x̄), λ̄). It is worth mentioning that the quadratic function (in w) on

the left-hand side of SOSC (4.9) must attain its minimum value on the compact set S. Let

`0 denote such a value, then by (4.9) we have `0 > 0. We now show that

Qx̄,λ̄,ρ(v) + ρ dist2
(
v;KQ(Φ(x̄), λ̄)

)
≥ d2δQ

(
Φ(x̄), λ̄

)(
v
)
− `0

2
(4.19)
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for all ρ > 0 sufficiently large. In the above proof of the implication (ii) =⇒ (i), it is

proved that the latter holds for all ρ > 0 whenever Φ(x̄) ∈ (intQ) ∪ {0} or λ̄ = 0, see

(4.15). Turning now to the remaining case with Φ(x̄) ∈ (bdQ) \ {0} and λ̄ 6= 0. Recall

from (4.16) and (4.17) that

Qx̄,λ̄,ρ(v) + ρ dist2
(
v;KQ(Φ(x̄), λ̄)

)
− d2δQ

(
Φ(x̄), λ̄

)(
v
)

= − ‖λ̄‖2

‖Φ(x̄)‖(ρ‖Φ(x̄)‖+ ‖λ̄‖)
(
‖vr‖2 − v2

0

)
≥ − ‖λ̄‖2‖v‖2

‖Φ(x̄)‖(ρ‖Φ(x̄)‖+ ‖λ̄‖)

≥ − ‖λ̄‖2‖∇Φ(x̄)‖2

‖Φ(x̄)‖(ρ‖Φ(x̄)‖+ ‖λ̄‖)
,

where, in the last equality, we use the fact that v = ∇Φ(x̄)w with ‖w‖ = 1. Pick %0 > 0

such that the condition

(
‖∇Φ(x̄)‖ · ‖λ̄‖

)2

‖Φ(x̄)‖(ρ‖Φ(x̄)‖+ ‖λ̄‖)
≤ `0

2
for all ρ ≥ %0 (4.20)

is fulfilled. Then (4.19) is satisfied for the case with Φ(x̄) ∈ (bdQ) \ {0} and λ̄ 6= 0,

and therefore, for all possible position of Φ(x̄) ∈ Q and λ̄ ∈ NQ(Φ(x̄)) whenever ρ ≥ %0.

Referring to (4.5) and SOSC (4.9), we get by (4.19) that

d2L
(
(x̄, λ̄; ρ)|0

)
(w) ≥

〈
w,∇2

xxL(x̄, λ̄)w
〉

+ d2δQ
(
Φ(x̄), λ̄

)(
v
)
− `0

2
≥ `0

2
(4.21)

for all w ∈ S with v = ∇Φi(x̄)w ∈ KQ(Φ(x̄), λ̄) and for all ρ ≥ %0, which just completes the
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verification of (4.18) for such w.

Next, we decompose the unit sphere into the two pieces:

S+ :=
{
w ∈ S

∣∣ 〈w,∇2
xxL(x̄, λ̄)w

〉
+Qx̄,λ̄,%0

(v) > 0
}

and

S− :=
{
w ∈ S

∣∣ 〈w,∇2
xxL(x̄, λ̄)w

〉
+Qx̄,λ̄,%0

(v) ≤ 0
}
,

where %0 is taken from (4.20). We see from (4.6) that the function ρ 7→ Qx̄,λ̄,ρ(v) is

nondecreasing on R+, then by (4.5) the estimate (4.18) must be satisfied for any w ∈ S+

and any ρ ≥ %0. Define the function ϑ : S− → R by

ϑ(w) := −
〈
∇2
xxL(x̄, λ̄)w,w

〉
dist2

(
∇Φ(x̄)w;KQ(Φ(x̄), λ̄)

) , w ∈ S−.

Picking an arbitrary vector w ∈ S−, we conclude from the just proved claim that∇Φ(x̄)w /∈

KQ(Φ(x̄), λ̄). This confirms that dist
(
∇Φ(x̄)w;KQ(Φ(x̄), λ̄)

)
> 0. Also we get by (4.6) that

Qx̄,λ̄,%0
(v) is always positive, then w ∈ S− implies that

〈
∇2
xxL(x̄, λ̄)w,w

〉
≤ 0. Thus the

function ϑ is continuous and nonnegative on the compact set S−, and hence its maximum

value over this set, denoted by %1, is finite and nonnegative. This demonstrates that for

any ρ > %1 we have the estimate

〈
∇2
xxL(x̄, λ̄)w,w

〉
+ ρ dist2

(
∇Φ(x̄)w;KQ(Φ(x̄), λ̄)

)
> 0 whenever w ∈ S−.

This together with the above estimate for the case of w ∈ S+ and ρ > %0 verifies (4.12) for
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all w ∈ Rn \ {0} and ρ ≥ ρλ̄ > max{%0, %1} and thus completes the proof of the theorem.

Implication (i) =⇒ (iii) in Theorem 4.5 was established by Rockafellar in [59, Theo-

rem 7.4] for nonlinear programming problems. His proof strongly exploits the geometry of

NLPs and does not appeal to the second subderivative as in our proof. For the second-order

cone programming problem (1.1), the aforementioned implication, not the established

equivalencies in Theorem 4.5, was obtained in [33, Proposition 10], where in addiction

the strict complementarity and nondegeneracy conditions were imposed.

To proceed further, observe that both constants `λ̄ and γλ̄ in (4.13) depend on λ̄. Now

we are going to find additional assumptions that allow us to justify the second-order

growth condition (4.13) for all λ ∈ Λ(x̄) sufficiently close to λ̄, where the aforementioned

constants do not depend on λ. This is crucial for the convergence analysis of the ALM

in the case of nonunique Lagrange multipliers. The rest of this section is mainly focusing

on achieving such a uniform second-order growth condition for the augmented Lagrangian

(1.7).

We begin with the following lemma, which provides a common constant `λ̄ that works

for all λ sufficiently close to λ̄. Then we derive a similar result for γλ̄ in the proof of the

next theorem.

Lemma 4.6 (uniform estimate for second subderivatives of augmented Lagrangians).

Let (x̄, λ̄) be a solution to the KKT system (1.4), and let SOSC (4.9) hold at (x̄, λ̄). Then there

exist positive constants ρλ̄, `1, ε0 such that for all ρ ≥ ρλ̄ and λ ∈ Λ(x̄) ∩ Bε0(λ̄) we have

d2
xL((x̄, λ, ρ), 0)(w) ≥ `1

2
‖w‖2 whenever w ∈ Rn. (4.22)
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Proof. Theorem 4.5 gives us a constant ρλ̄ > 0 for which condition (4.12) holds when

ρ ≥ ρλ̄. Recall that the second subderivative is l.s.c. and positive homogenous of degree 2.

Owing to (4.5), condition (4.12) amounts to the existence of a constant `1 > 0 such that

d2
xL((x̄, λ̄, ρλ̄), 0)(w) =

〈
w,∇2

xxL(x̄, λ̄)w
〉

+Qx̄,λ̄,ρ(v)+ρλ̄ dist2
(
v;KQ(Φ(x̄), λ̄)

)
≥ `1 (4.23)

for all w from the unit sphere S ⊂ Rn and v = ∇Φ(x̄)w, where the quadratic form Qx̄,λ̄,ρλ̄
(·)

is taken from (4.6). Let us now verify the existence of ε0 > 0 so that for any λ ∈ Λ(x̄) ∩

Bε0(λ̄) we have

d2
xL((x̄, λ, ρλ̄), 0)(w) =

〈
w,∇2

xxL(x̄, λ)w
〉
+Qx̄,λ,ρ(v)+ρλ̄ dist2

(
v;KQ(Φ(x̄), λ̄)

)
≥ `1

2
, w ∈ S,

(4.24)

where Qx̄,λ,ρλ̄
(·) is taken from (4.6) with replacing λ̄ by λ. We first observe that〈

w,∇2
xxL(x̄, λ)w

〉
→
〈
w,∇2

xxL(x̄, λ̄)w
〉

as λ→ λ̄ with λ ∈ Λ(x̄) uniformly for all w ∈ S due

to the following estimate

|
〈
w,∇2

xxL(x̄, λ)w
〉
−
〈
w,∇2

xxL(x̄, λ̄)w
〉
| ≤ ‖∇2Φ(x̄)‖ · ‖λ− λ̄‖.

We now prove the uniform convergence of Qx̄,λ,ρλ̄
(v) → Qx̄,λ̄,ρλ̄

(v) as λ→λ̄ with λ ∈ Λ(x̄)

for all v ∈ ∇Φ(x̄)(S). It is obvious for the case with Φ(x̄) ∈ (intQ) ∪ {0}, since quadratic

forms reduce to 0 by (4.6). Assume that Φ(x̄) ∈ (bdQ)\{0}. If λ̄ = 0, λ→ λ̄ with λ ∈ Λ(x̄),
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then it follows from (4.6) that

|Qx̄,λ,ρλ̄
(w)−Qx̄,λ̄,ρλ̄

(w)| =
ρλ̄‖λ‖

ρλ̄‖Φ(x̄)‖+ ‖λ‖

(
‖vr‖2 − 〈λr, vr〉

2

‖λr‖2

)
≤ ‖λ‖
‖Φ(x̄)‖

‖v‖2 ≤ ‖∇Φ(x̄)‖2

‖Φ(x̄)‖
‖λ− λ̄‖,

which justifies the claimed uniform convergence in this case as well. Finally, assume that

λ̄ 6= 0 and λ → λ̄ with λ ∈ Λ(x̄) and suppose without loss of generality that λ 6= 0. Since

λ ∈ Λ(x̄), λ̄ ∈ Λ(x̄), and Φ(x̄) ∈ (bdQ) \ {0}, it follows from (2.3) that there exist positive

constants t and t̄ such that λ = tΦ̃(x̄) and λ̄ = t̄Φ̃(x̄). These relationships result in the

equality

〈λr, vr〉2

‖λr‖2
=
〈λ̄r, vr〉2

‖λ̄r‖2
.

Using this together with (4.6) brings us to the estimates

|Qx̄,λ,ρλ̄
(v)−Qx̄,λ̄,ρλ̄

(v)| =
∣∣∣ ρλ̄‖λ‖
ρλ̄‖Φ(x̄)‖+ ‖λ‖

− ρλ̄‖λ̄‖
ρλ̄‖Φ(x̄)‖+ ‖λ̄‖

∣∣∣(‖vr‖2 − 〈λ̄r, vr〉
2

‖λ̄r‖2

)
≤ ‖λ− λ̄‖
‖Φ(x̄)‖

‖v‖2 ≤ ‖∇Φ(x̄)‖2

Φ(x̄)
‖λ− λ̄‖,

which again justify the claimed uniform convergence in this last case. Thus we find a

number ε1 > 0 ensuring the uniform condition

〈
w,∇2

xxL(x̄, λ)w
〉

+Qx̄,λ,ρλ̄
(v) ≥

〈
w,∇2

xxL(x̄, λ̄)w +Qx̄,λ̄,ρλ̄
(v)− `1

4
(4.25)

whenever w ∈ S and λ ∈ Λ(x̄) ∩ Bε1(λ̄). Next we intend to verify the existence of ε2 > 0
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such that 
dist2

(
v;KQ(Φ(x̄), λ)

)
≥ dist2

(
v;KQ(Φ(x̄), λ̄)

)
− `1

4ρλ̄

for all v ∈ ∇Φ(x̄)(S) and all λ ∈ Λ(x̄) ∩ Bε2(λ̄).

(4.26)

To proceed, consider the following four possible locations of λ̄ in −Q:

(a) λ̄ = 0. In this case we have

KQ
(
Φ(x̄), λ̄

)
= TQ

(
Φ(x̄)

)
⊃ KQ

(
Φ(x̄), λ

)

for all λ ∈ Λ(x̄), which verifies the fulfillment of (4.26).

(b) λ̄ ∈ int (−Q) with Φ(x̄) = 0. If λ is sufficiently close to λ̄, then λ ∈ int (−Q). This

yields

KQ
(
Φ(x̄), λ

)
= KQ

(
Φ(x̄), λ̄

)
= {0},

which immediately ensures that (4.26) holds.

(c) λ̄ ∈ bd (−Q) \ {0} with Φ(x̄) ∈ bd (Q) \ {0}. If λ→ λ̄ with λ ∈ Λ(x̄), we get λ = tλ̄ for

some t > 0, which confirms that

KQ(Φ(x̄), λ) = KQ
(
Φ(x̄), λ̄

)
.

This clearly justifies the claimed estimate (4.26).
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(d) λ̄ ∈ bd (−Q) \ {0} with Φ(x̄) = 0. In this case, we have for all λ ∈ Λ(x̄) \ {0} that

KQ
(
Φ(x̄), λ

)
=


R+λ̃ if λ ∈ bd (−Q) \ {0},

{0} if λ ∈ int (−Q),

where the tilde-notation for the ice-cream cone is defined at the end of Section 1. Then

(4.26) is obviously satisfied when λ ∈ Λ(x̄) ∩ int (−Q). Assume now that λ ∈ [Λ(x̄) ∩

bd (−Q)] \ {0}. It is not hard to verify that for λ ∈ [Λ(x̄) ∩ bd (−Q)] \ {0} we get

dist2
(
v;KQ(Φ(x̄), λ)

)
= ‖v‖2 − 1

‖λ‖2

(
max

{
0,
〈
λ̃, v
〉})2

.

It is worth mentioning that the function
(

max(0, t)
)2 is C1 on the whole real line. It follows

from the latter formula that λ ∈ [Λ(x̄) ∩ bd (−Q)] \ {0} 7→ dist2
(
v;KQ(Φ(x̄), λ)

)
is a C1

function relative to the set [Λ(x̄)∩ bd (−Q)] \ {0}. Taking this into account and choosing λ

to be sufficiently close to λ̄ ensure the existence of ε2 > 0 for which the uniform estimate

(4.26) is guaranteed. This completes the justification of (4.26) for all the possible cases.

Finally, denote ε0 := min{ε1, ε2} with ε1 and ε2 taken from (4.25) and (4.26), respec-

tively. Combining (4.23), (4.25), and (4.26) tells us that estimate (4.24) is satisfied for

any λ ∈ Λ(x̄) ∩ Bε0(λ̄). Thus for any such a multiplier λ we have

d2
xL
(
(x̄, λ, ρλ̄), 0

)
(w) ≥ `1

2
‖w‖2 whenever w ∈ Rn.

This together with (4.5) and the fact that ρ 7→ Qx̄,λ̄,ρ(v) is nondecreasing on R+ implies for
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any λ ∈ Λ(x̄) ∩ Bε0(λ̄) that

d2
xL
(
(x̄, λ, ρ), 0

)
(w) ≥ 1

2
`1‖w‖2 for all w ∈ Rn and all ρ ≥ ρλ̄,

which therefore completes the proof of the lemma.

Now we are ready to derive a uniform version of the second-order growth condition

for (1.7).

Theorem 4.7 (uniform second-order growth condition for augmented Lagrangians).

Let (x̄, λ̄) be a solution to the KKT system (1.4), and let SOSC (4.9) hold at (x̄, λ̄). Assume

in addition that the Lagrange multiplier set Λ(x̄) in (1.5) is either a polyhedron, or that the

multiplier λ̄ belongs to the interior of −Q. Then there are positive constants ρλ̄, γλ̄, ελ̄, `λ̄ such

that for all λ ∈ Λ(x̄)∩Bελ̄(λ̄) and ρ ≥ ρλ̄ we have the uniform second-order growth condition

L(x, λ, ρ) ≥ f(x̄) + `λ̄‖x− x̄‖2 whenever x ∈ Bγλ̄(x̄). (4.27)

Proof. Take the positive constants `1, ε0, and ρλ̄ from Lemma 4.6 for which (4.22) holds

whenever λ ∈ Λ(x̄)∩Bε0(λ̄) and ρ ≥ ρλ̄. Using [60, Theorem 13.24] and remembering that

L(x̄, λ, ρλ̄) = f(x̄) for all λ ∈ Λ(x̄), we deduce from (4.22) that for any λ ∈ Λ(x̄) ∩ Bε0(λ̄)

there exists γλ > 0 ensuring the estimate

L(x, λ, ρλ̄) ≥ f(x̄) +
`1

4
‖x− x̄‖2 whenever x ∈ Bγλ(x̄), (4.28)

where the constant `1
4

can be chosen the same for all the multipliers λ ∈ Λ(x̄) ∩ Bε0(λ̄).

This comes from (4.22) and the proof of [60, Theorem 13.24]; see also Remark 4.4 for a
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similar discussion. However, the radii of the balls centered at x̄ in (4.28) depend on λ. It

is shown below that we can find a common radius for all the multipliers λ ∈ Λ(x̄) that are

sufficiently close to λ̄. To proceed, define the function ϕ : Rm+1 → R by

ϕ(λ) := sup
x∈Bγλ̄ (x̄)

f(x̄)− L(x, λ, ρλ̄)

‖x− x̄‖2
+ δΛ(x̄)∩Bε0 (λ̄)(λ), λ ∈ Rm+1. (4.29)

Proposition 1.1(ii) tells us that the function λ 7→ L(x, λ, ρλ̄) is concave. This together with

the convexity of the set Λ(x̄) ∩ Bε0(λ̄) ensures that ϕ in (4.29) is a convex function. Let us

now verify that for any λ ∈ Λ(x̄) ∩ Bε0(λ̄) the value ϕ(λ) is finite. To this end, pick such a

multiplier λ and observe that for γλ ≥ γλ̄ we get by (4.28) the estimates

ϕ(λ) ≤ sup
x∈Bγλ (x̄)

f(x̄)− L(x, λ, ρλ̄)

‖x− x̄‖2
≤ −`1

4
.

In particular, this implies that ϕ(λ̄) ≤ − `1
4

. If γλ < γλ̄, then

ϕ(λ) ≤ max

{
sup

x∈Bγλ (x̄)

f(x̄)− L(x, λ, ρλ̄)

‖x− x̄‖2
, max
γλ≤‖x−x̄‖≤γλ̄

f(x̄)− L(x, λ, ρλ̄)

‖x− x̄‖2

}
<∞,

where the first term inside the maximum does not exceed −`1/4 because of (4.28), and

where the second term is finite since it is the maximum of a continuous function over a

compact set. This implies that ϕ(λ) is finite for all λ ∈ Λ(x̄) ∩ Bε0(λ̄), which ensures that

domϕ = Λ(x̄) ∩ Bε0(λ̄).

If λ̄ ∈ int (−Q), we get λ̄ ∈ ri Λ(x̄), which clearly implies that λ̄ ∈ ri (domϕ). Since ϕ is
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convex, it is continuous at λ̄ relative to its domain. Hence we find ελ̄ ∈ (0, ε0] such that

ϕ(λ) ≤ ϕ(λ̄) +
`1

8
≤ −`1

8
for all λ ∈ domϕ ∩ Bελ̄(λ̄) = Λ(x̄) ∩ Bελ̄(λ̄). (4.30)

Next we proceed to achieve a similar result when Λ(x̄) is a polyhedral convex set. In

this case the collection of Lagrange multipliers Λ(x̄) is either a ray on the boundary of −Q,

or a singleton. If the latter holds, we obtain Λ(x̄) = {λ̄}, and hence the uniform growth

condition (4.27) follows directly from (4.13). If Λ(x̄) is a ray on the boundary of −Q, then

Λ(x̄) ∩ Bε0(λ̄) is a segment. If now λ̄ 6= 0, then we get λ̄ ∈ ri [Λ(x̄) ∩ Bε0(λ̄)] = ri (domϕ).

Arguing as above leads us to (4.30) in this case. Otherwise, λ̄ is an endpoint of the afore-

mentioned segment, and thus λ̄ = 0. Let λe be the other endpoint. If ϕ(λe) ≤ ϕ(λ̄) + `1/8,

then (4.30) holds for ελ̄ := ε0, which follows from the convexity of ϕ. Otherwise, we have

that ϕ(λ̂e) > ϕ(λ̄) + `1/8. Denote

t̄ :=
`1

8
(
ϕ(λe)− ϕ(λ̄)

) ∈ (0, 1) and λt̄ := (1− t̄)λ̄+ t̄λe.

Then using the convexity of ϕ tells us that

ϕ(λt̄) ≤ (1− t̄)ϕ(λ̄) + t̄ϕ(λe) = ϕ(λ̄) + t̄
(
ϕ(λe)− ϕ(λ̄)

)
= ϕ(λ̄) +

`1

8
≤ −`1

8
,

which readily yields (4.30) with ελ̄ := ‖λt̄ − λ̄‖ ∈ (0, ε0]. This completes the verification

of (4.30) with some constant ελ̄ ∈ (0, ε0] if either Λ(x̄) is a polyhedral convex set, or
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λ̄ ∈ int (−Q). Consequently, it follows from (4.29) and (4.30) that

L(x, λ, ρλ̄) ≥ f(x̄) +
`1

8
‖x− x̄‖2 for all x ∈ Bγλ̄(x̄) and λ ∈ Λ(x̄) ∩ Bελ̄(λ̄). (4.31)

Employing now Proposition 1.1(i) gives us the inequality

L(x, λ, ρ) ≥ L(x, λ, ρλ̄) for all ρ ≥ ρλ̄.

Combining this with (4.31) and setting `λ̄ := `1
8

verify the uniform growth condition (4.27).

A similar result to Theorem 4.7 was derived in [14, Proposition 3.1] for NLPs. The given

proof therein seems however to be rather sketchy in some details. We are not familiar with

any previous results on the uniform second-order growth condition (4.27) for SOCPs. As

shown in the next section, the second-order growth conditions obtained above are crucial

for developing the augmented Lagrangian method for this class of optimization problems.
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CHAPTER 5 CONVERGENCE ANALYSIS OF AUGMENTED LAGRANGIAN METHOD
FOR SOCPS

5.1 Error Bounds for Perturbed KKT Systems of SOCPs

Here we derive an efficient error bound estimate for the KKT system of problem (1.1)

under the validity of SOSC (4.9). This is highly important for the subsequent results of the

paper.

A crucial role of error bounds in convergence analysis of major numerical algorithms

has been well understood in optimization theory; see, e.g., the books [13, 29]. To the

best of our knowledge, the first error bound estimate for KKT systems of NLPs under the

classical second-order sufficient condition alone was derived in Hager and Gowda [22,

Lemma 2] and then was improved by Izmailov [27] who replaced the conventional SOSC

with the weaker noncriticality of Lagrange multipliers introduced therein. It has been re-

cently observed by Mordukhovich and Sarabi [44] that similar results for nonpolyhedral

conic programs require an additional assumption of the calmness of Lagrange multiplier

mappings associated with canonically perturbed KKT systems. The latter assumption au-

tomatically holds for NLPs.

For any fixed x̄ ∈ Rn the multiplier mapping Mx̄ : Rn × Rm+1 ⇒ Rm+1, associated with

the canonically perturbed KKT system (1.4) of (1.1), is defined by

Mx̄(v, w) :=
{
λ ∈ Rm+1

∣∣ ∇xL(x̄, λ) = v, λ ∈ NQ
(
Φ(x̄) +w

)}
, (v, w) ∈ Rn×Rm+1. (5.1)

It is easy to see that Mx̄(0, 0) reduces to the set of Lagrange multipliers Λ(x̄) of the un-

perturbed system (1.5). Given a solution (x̄, λ̄) to the KKT system (1.4), the calmness

condition (3.3) for Mx̄ at ((0, 0), λ̄) reads as the existence of positive constants τ and γ
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such that

Mx̄(v, w) ∩ Bγ(λ̄) ⊂ Λ(x̄) + τ
(
‖w‖+ ‖v‖

)
B whenever (v, w) ∈ Bγ(0, 0).

This can be equivalently rewritten as the existence of τ, γ > 0 such that the estimate

dist
(
λ; Λ(x̄)

)
≤ τ

(
‖∇xL(x̄, λ)‖+ dist

(
Φ(x̄);N−1

Q (λ)
))

(5.2)

holds for all λ ∈ Bγ(λ̄). We can easily check that for (polyhedral) NLPs the calmness of

the multiplier mapping follows automatically from the classical Hoffman lemma. Efficient

conditions for the calmness of (5.1) in the SOCP framework (1.1) are presented at the end

of this section.

Now we are ready to derive the main result of this section ensuring the aforementioned

error bound estimate. Define the residual function σ : Rn × Rm+1 → R of the KKT system

(1.4) by

σ(x, λ) := ‖∇xL(x, λ)‖+ ‖Φ(x)− ΠQ
(
Φ(x) + λ

)
‖, (x, λ) ∈ Rn × Rm+1. (5.3)

It is easy to see that if (x̄, λ̄) is a solution to the KKT system (1.4), then it follows from

property (P4) of the projection mapping that σ(x̄, λ̄) = 0. Using this and the Lipschitz

continuity of σ with respect to both x and λ around (x̄, λ̄), we can find constants γ2 > 0

and κ2 ≥ 0 such that

σ(x, λ) ≤ κ2

(
‖x− x̄‖+ dist(λ; Λ(x̄))

)
for all (x, λ) ∈ Bγ2(x̄, λ̄). (5.4)
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Below we show that the opposite inequality in (5.4), which is crucial for our subsequent

developments of the ALM, can be achieved if in addition both SOSC (4.9) and the calmness

of the multiplier mapping are satisfied. The provided proof, being strongly based on the

geometry of the second-order cone (1.2), is much simpler than the one given recently in

[44, Theorem 5.9] for C2-cone reducible cone programs that is based on a highly involved

reduction technique.

Theorem 5.1 (error bound for SOCPs under calmness and SOSC). Let (x̄, λ̄) be a solu-

tion to the KKT system (1.4), and let SOSC (4.9) hold at (x̄, λ̄). If the multiplier mapping Mx̄

in (5.1) is calm at ((0, 0), λ̄), then there exist constants γ1 > 0 and κ1 ≥ 0 such that

‖x− x̄‖+ dist
(
λ; Λ(x̄)

)
≤ κ1 σ(x, λ) for all (x, λ) ∈ Bγ1(x̄, λ̄), (5.5)

where the residual function σ is taken from (5.3).

Proof. Observe that if x = x̄ and λ ∈ Λ(x̄), then (5.5) holds since both sides are equal to 0.

Let us now verify (5.5) while assuming that either x 6= x̄ or λ /∈ Λ(x̄). We first show that

‖x− x̄‖ = O
(
σ(x, λ)

)
as (x, λ)→ (x̄, λ̄). (5.6)

Arguing by contradiction, suppose that there exists a sequence (xk, λk)→ (x̄, λ̄) with either

xk 6= x̄ or λk /∈ Λ(x̄) satisfying the strict inequalities

‖xk − x̄‖ > k σ(xk, λk) > 0 for all k ∈ IN,
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which imply that σ(xk, λk) = o(‖xk − x̄‖). By the definition of σ the latter means that

∇xL(xk, λk) = o(‖xk − x̄‖) and αk := Φ
(
xk)− ΠQ(Φ(xk) + λk

)
= o(‖xk − x̄‖). (5.7)

Using the second equality in (5.7) combined with property (P1), we get the relationships

Φ(xk)− αk ∈ Q, λk + αk ∈ −Q, and
〈
Φ(xk)− αk, λk + αk

〉
= 0, (5.8)

which in turn bring us to the inclusion

λk + αk ∈ NQ
(
Φ(xk)− αk

)
. (5.9)

It follows from the calmness estimate (5.2) that

dist
(
λk + αk; Λ(x̄)

)
≤ τ

(
‖∇xL(x̄, λk + αk)‖+ dist(Φ(x̄);N−1

Q (λk + αk))
)

for all k ∈ IN sufficiently large. Since the gradient ∇f and Jacobian ∇Φ mappings are

Lipschitz continuous around x̄, we always have the estimate

‖∇xL(x̄, λk + αk)‖ ≤ ‖∇f(xk)−∇f(x̄)‖+ ‖∇xL(xk, λk)‖+ ‖(∇Φ(xk)−∇Φ(x̄))∗λk‖

+‖∇Φ(x̄)∗αk‖ = O(‖xk − x̄‖).
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On the other hand, it follows from (5.9) that Φ(xk)− αk ∈ N−1
Q (λk + αk), and hence

dist
(
Φ(x̄);N−1

Q (λk + αk)
)
≤ ‖Φ(xk)− αk − Φ(x̄)‖ = O(‖xk − x̄‖),

where the last equality comes from the Lipschitz continuity of Φ around x̄ and the condition

αk = o(‖xk − x̄‖). This ensures in turn that λk − λ̂k = O(‖xk − x̄‖), where λ̂k := ΠΛ(x̄)(λ
k).

Passing to subsequences if necessary gives us

xk − x̄
‖xk − x̄‖

→ ξ 6= 0 and
λk − λ̂k

‖xk − x̄‖
→ η as k →∞. (5.10)

Appealing now to the first estimate in (5.7), we arrive at the equalities

o(‖xk − x̄‖) = ∇xL(xk, λk) = ∇xL(xk, λ̄) +∇Φ(xk)∗(λk − λ̄)

= ∇xL(x̄, λ̄) +∇2
xxL(x̄, λ̄)(xk − x̄) + o(‖xk − x̄‖)

+∇Φ(xk)∗(λk − λ̂k) +
(
∇Φ(xk)−∇Φ(x̄)

)∗
(λ̂k − λ̄)

= ∇2
xxL(x̄, λ̄)(xk − x̄) +∇Φ(xk)∗(λk − λ̂k)

+
(
∇2Φ(x̄)(xk − x̄) + o(‖xk − x̄‖)

)∗
(λ̂k − λ̄) + o(‖xk − x̄‖).

Dividing both sides by ‖xk − x̄‖ and then passing to the limit as k →∞ show that

0 = ∇2
xxL(x̄, λ̄)ξ +∇Φ(x̄)∗η. (5.11)

Let us now verify the inclusion ∇Φ(x̄)ξ ∈ KQ(Φ(x̄), λ̄) = TQ(Φ(x̄)) ∩ {λ̄}⊥. Indeed,
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using the first relation in (5.8) yields

Q 3 Φ(xk)− αk = Φ(x̄) + ‖xk − x̄‖
[
∇Φ(x̄)

( xk − x̄
‖xk − x̄‖

)
+
o(‖xk − x̄‖)
‖xk − x̄‖

]
,

which tells us that ∇Φ(x̄)ξ ∈ TQ(Φ(x̄)). Combining this with λ̄ ∈ NQ(Φ(x̄)), we obtain

〈λ̄,∇Φ(x̄)ξ〉 ≤ 0. To prove the equality therein, deduce from (5.9) that

0 ≥
〈
λk+αk,Φ(x̄)−Φ(xk)+αk

〉
= −

〈
λk+αk, ‖xk−x̄‖

[
∇Φ(x̄)

( xk − x̄
‖xk − x̄‖

)
+
o(‖xk − x̄‖)
‖xk − x̄‖

]〉
.

Dividing both sides by ‖xk − x̄‖ and then passing to the limit as k → ∞ verify that

〈λ̄,∇Φ(x̄)ξ〉 ≥ 0. Thus we get 〈λ̄,∇Φ(x̄)ξ〉 = 0 and hence arrive at ∇Φ(x̄)ξ ∈ KQ(Φ(x̄), λ̄).

Our next step is to prove the following inequality involving the second subderivative

(2.11): 〈
∇Φ
(
x̄)ξ, η

〉
≥ d2δQ

(
Φ(x̄), λ̄

)(
∇Φ(x̄)ξ

)
. (5.12)

To proceed, remember that λ̂k ∈ NQ(Φ(x̄)). Using (5.9) and the monotonicity of the

normal cone mapping to a convex set, we get

0 ≤
〈
Φ(xk)− Φ(x̄)− αk, λk − λ̂k + αk

〉
=

〈
∇Φ(x̄)(xk − x̄) + o(‖xk − x̄‖), λk − λ̂k + o(‖xk − x̄‖

〉
.

Dividing both sides by ‖xk − x̄‖2 and passing to the limit as k →∞ give us

〈
∇Φ(x̄)ξ, η

〉
≥ 0.
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This combined with (2.13) verifies (5.12) if either Φ(x̄) = 0, Φ(x) ∈ intQ, or λ̄ = 0.

It remains to validate (5.12) in the case where Φ(x̄) ∈ (bdQ) \ {0} and λ̄ 6= 0. Then

(5.9) and the normal cone representation (2.3) allow us to find tk ∈ R+ and t̂k ∈ R+

such that λk + αk = tk(Φ̃(xk) − α̃k) and λ̂k = t̂kΦ̃(x̄) for large k ∈ IN. We clearly have

limk→∞ tk = limk→∞ t̂k = ‖λ̄‖/‖Φ(x̄)‖. Passing to a subsequence if necessary, assume

without loss of generality that either tk ≥ t̂k or tk ≤ t̂k for all k ∈ IN. If the former holds,

then

〈
Φ(xk)− Φ(x̄)− αk, λk − λ̂k + αk

〉
=
〈
Φ(xk)− Φ(x̄)− αk, tkΦ̃(xk)− t̂kΦ̃(x̄)− tkα̃k

〉
= t̂k

〈
Φ(xk)− Φ(x̄)− αk, Φ̃(xk)− α̃k − Φ̃(x̄)

〉
+ (tk − t̂k)

〈
Φ(xk)− Φ(x̄)− αk, Φ̃(xk)− α̃k

〉
= t̂k

〈
∇Φ(x̄)(xk − x̄) + o(‖xk − x̄‖),∇Φ̃(x̄)(xk − x̄) + o(‖xk − x̄‖)

〉
− (tk − t̂k)

〈
Φ(x̄), Φ̃(xk)− α̃k

〉
≥ t̂k

〈
∇Φ(x̄)(xk − x̄) + o(‖xk − x̄‖),∇Φ̃(x̄)(xk − x̄) + o(‖xk − x̄‖)

〉
,

where the second equality comes from Φ(xk)− αk ∈ bdQ and the last inequality is due to

Φ(x̄) ∈ Q while Φ̃(xk)− α̃k ∈ −Q. If the latter holds, a similar argument brings us to

〈
Φ(xk)− Φ(x̄)− αk, λk − λ̂k + αk

〉
=
〈
Φ(xk)− Φ(x̄)− αk, tkΦ̃(xk)− t̂kΦ̃(x̄)− tkα̃k

〉
= tk

〈
Φ(xk)− Φ(x̄)− αk, Φ̃(xk)− α̃k − Φ̃(x̄)

〉
+ (tk − t̂k)

〈
Φ(xk)− Φ(x̄)− αk, Φ̃(x̄)

〉
= tk

〈
∇Φ(x̄)(xk − x̄) + o(‖xk − x̄‖),∇Φ̃(x̄)(xk − x̄) + o(‖xk − x̄‖)

〉
+ (tk − t̂k)

〈
Φ(xk)− αk, Φ̃(x̄)

〉
≥ tk

〈
∇Φ(x̄)(xk − x̄) + o(‖xk − x̄‖),∇Φ̃(x̄)(xk − x̄) + o(‖xk − x̄‖)

〉
.
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Dividing these estimates by ‖xk − x̄‖2 and passing to the limit as k →∞ result in

〈
∇Φ(x̄)ξ, η

〉
≥ ‖λ̄‖
‖Φ(x̄)‖

〈
∇Φ(x̄)ξ,∇Φ̃(x̄)ξ

〉
= d2δQ(Φ(x̄), λ̄)(∇Φ(x̄)ξ),

where the last equality is taken from (2.13). This fully justifies (5.12).

Combining now (5.12) with (5.11) implies that

〈
ξ,∇2

xxL(x̄, λ̄)ξ
〉

+ d2δQ
(
Φ(x̄), λ̄

)(
∇Φ(x̄)ξ

)
≤
〈
ξ,∇2

xxL(x̄, λ̄)ξ
〉

+
〈
∇Φ(x̄)ξ, η

〉
= 0,

which contradicts the second-order sufficient condition (4.9) since Φ(x̄)ξ ∈ TQ(Φ(x̄)) and

ξ 6= 0, and thus verifies estimate (5.6).

To finish the proof of the claimed error bound (5.5), it remains to show that

dist
(
λ; Λ(x̄)

)
= O

(
σ(x, λ)

)
as (x, λ)→ (x̄, λ̄). (5.13)

To proceed, pick (x, λ) satisfying (5.6) and denote y := ΠQ(Φ(x) + λ)−Φ(x). Thus we get

λ− y ∈ NQ(Φ(x) + y). Moreover, since (x, λ)→ (x̄, λ̄), we get y → 0. Combining the latter

with (5.2) readily yields the relationships

dist
(
λ− y; Λ(x̄)

)
= O

(
‖∇xL(x̄, λ− y)‖+ dist(Φ(x̄);N−1

Q (λ− y))
)

= O
(
‖∇xL(x, λ)‖+ ‖y‖+ ‖x− x̄‖

)
= O

(
σ(x, λ)

)
,
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where the last equality comes from (5.6). Since

dist
(
λ; Λ(x̄)

)
− dist

(
λ− y; Λ(x̄)

)
= O(‖y‖) = O

(
σ(x, λ)

)
,

we arrive at (5.13). The error bound (5.5) follows from the combination of (5.6) and

(5.13), and hence completes the proof of the theorem.

Next we present an example showing that the assumed calmness of the multiplier map-

ping in Theorem 5.1 is essential for the validity of the error bound (5.5). In fact, the

following example demonstrates more: not only does the primal-dual error bound (5.5)

fail without the calmness assumption on (5.1), but even the primal estimate (5.6) is vio-

lated in the absence of calmness. This illustrates a striking difference between NLPs and

nonpolyhedral SOCPs.

Example 5.2 (failure of error bound in the absence of calmness of multiplier map-

pings). Consider SOCP (1.1) with the data f : R2 → R and Φ: R2 → R3 defined by

f(x :) = x2
2 and Φ(x) := (−x2

1 + x2, x2, 0) with x = (x1, x2) ∈ R2.

Take x̄ := (0, 0) and observe that Φ(x̄) = 0 and that

∇f(x̄) =

0

0

 , ∇Φ(x̄)∗ =

0 0 0

1 1 0

 , Λ(x̄) = −Q ∩ {(1, 1, 0)}⊥ = R+(−1, 1, 0).

Letting λ̄ := (−1, 1, 0) ∈ Λ(x̄), we conclude that the pair (x̄, λ̄) satisfies the KKT system (1.4).
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It follows from the equality

∇2
xxL(x̄, λ̄) = ∇2f(x̄) +∇2〈λ̄,Φ〉(x̄) = 2I2,

with I2 standing for the 2 × 2 identity matrix, that SOSC (4.9) holds at (x̄, λ̄). To show

now that the multiplier mapping Mx̄ from (5.1) is not calm at ((0, 0), λ̄), select λk :=
(
−

1, tk,
√

1− t2k
)

with tk ↑ 1 as k → ∞, which yields λk → λ̄ as k → ∞ and λk ∈ −Q for all

k ∈ IN. Direct calculations give us the expressions

dist2
(
λk; Λ(x̄)

)
=
∥∥∥λk − 〈λk, λ̄〉‖λ̄‖2

λ̄
∥∥∥2

=
3− 2tk − t2k

2
and

‖∇f(x̄) +∇Φ(x̄)∗λk‖2 = (tk − 1)2,

which lead us to the limit calculations

lim
k→∞

dist2
(
λk; Λ(x̄)

)
‖∇f(x̄) +∇Φ(x̄)∗λk‖2

=
1

2
lim
k→∞

3− 2tk − t2k
(tk − 1)2

=∞.

This tells us that the multiplier mapping Mx̄ is not calm at ((0, 0), λ̄).

Next we check that the primal estimate (5.6) fails in this example. To proceed, take

xk := (0, αk) with αk := −(tk−1)/2 and observe that (xk, λk)→ (x̄, λ̄) as k →∞. This yields

∇f(xk) +∇Φ(xk)∗λk =

 0

2αk

+

 0

tk − 1

 =

0

0

 = o(‖xk − x̄‖). (5.14)

On the other hand, since Φ(xk) is a nonzero point on the boundary of Q and λk is a nonzero
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point on the boundary of −Q, it follows that

Φ(xk) + λk = αk(1, 1, 0) +
(
− 1, tk,

√
1− t2k

)
/∈ Q ∪−Q.

Letting yk := Φ(xk) + λk, we calculate that

ΠQ(yk) =
1

2

(
yk0 + ‖ykr‖

)(
1,

ykr
‖ykr‖

)

and then easily check as k →∞ that

(
1,

ykr
‖ykr‖

)
→ (1, 1, 0) and lim

k→∞

yk0 + ‖ykr‖
‖xk − x̄‖

= lim
k→∞

αk − 1 +
√
α2
k + 2αktk + 1

αk
= 2.

This allows us to compute the limits

lim
k→∞

‖Φ(xk)− ΠQ(Φ(xk) + λk)‖
‖xk − x̄‖

= lim
k→∞

∥∥∥Φ(xk)

αk
− yk0 + ‖ykr‖

2‖xk − x̄‖

(
1,

ykr
‖ykr‖

)∥∥∥
= ‖(1, 1, 0)− (1, 1, 0)‖ = 0.

Combining the latter with (5.14) demonstrates that the primal estimate (5.6) and hence the

error bound (5.5) both fail in this simple example.

Let us now turn our attention to efficient conditions that ensure the fulfillment of the

imposed calmness of the multiplier mapping (5.1). First we provide an improvement of a

result established recently in [44, Theorem 4.1], which gives a complete characterization

of the calmness property of (5.1) together with the uniqueness of Lagrange multipliers in

terms of the dual qualification condition that involves the graphical derivative (2.5) of the
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normal cone mapping for (1.2). To proceed, consider the fully perturbed set of Lagrange

multipliers M : Rn × Rn × Rm+1 ⇒ Rm+1, where—in contrast to Mx̄(v, w) in (5.1)—the

decision variable x is also included in the perturbation procedure. We define this mapping

by

M(x, v, w) :=
{
λ ∈ Rm+1

∣∣ ∇xL(x, λ) = v, λ ∈ NQ
(
Φ(x) + w

)}
(5.15)

for (x, v, w) ∈ Rn × Rn × Rm+1 and observe that M(x̄, 0, 0) = Mx̄(0, 0) = Λ(x̄). The next

proposition provides a full characterization of the upper Lipschitzian property of the fully

perturbed multiplier mapping M via the dual qualification condition, which plays a key

role in the convergent analysis of the ALM method for SOCP (1.1).

Proposition 5.3 (calmness and uniqueness of Lagrange multipliers). Let (x̄, λ̄) be a

solution to the KKT system (1.4). Then the following assertions are equivalent:

(i) The multiplier mapping Mx̄ is calm at ((0, 0), λ̄), and Λ(x̄) = {λ̄}, i.e., the mapping Mx̄

has the isolated calmness property at (x̄, λ̄).

(ii) We have the dual qualification condition

DNQ
(
Φ(x̄), λ̄

)
(0) ∩ ker∇Φ(x̄)∗ = {0}. (5.16)

(iii) There exist positive numbers γ3 and κ3 such that the upper Lipschitzian estimate

M(x, v, w) ⊂ {λ̄}+ κ3(‖x− x̄‖+ ‖v‖+ ‖w‖)B for all (x, v, w) ∈ Bγ3(x̄, 0, 0) (5.17)

holds for the fully perturbed multiplier mapping (5.15).

Proof. The equivalence between (i) and (ii) was established in [44, Theorem 4.1]. Also it
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is not hard to see that (iii) implies (i) since M(x̄, 0, 0) = Λ(x̄). Thus it remains to verify the

last implication (ii) =⇒ (iii). Observe to this end due to Corollary 2.4 that

DNQ
(
Φ(x̄), λ̄

)
(0) = NKQ(Φ(x̄),λ̄)(0) = KQ

(
Φ(x̄), λ̄

)∗
=
(
TQ
(
Φ(x̄)

)
∩ {λ̄}⊥

)∗
,

which in turn yields the inclusion

NQ
(
Φ(x̄)

)
= TQ

(
Φ(x̄)

)∗ ⊂ DNQ
(
Φ(x̄), λ̄

)
(0).

Then the dual qualification (5.3) ensures the fulfillment of the basic constraint qualification

NQ
(
Φ(x̄)

)
∩ ker∇Φ(x̄)∗ = {0},

which implies that the Lagrange multiplier sets M(x, v, w) are uniformly bounded for all

(x, v, w) in some neighborhood U of the nominal triple (x̄, 0, 0).

Having this in hand and arguing by contraposition, suppose on the contrary that the

upper Lipschitzian property (5.17) fails. The equivalence between (i) and (ii) readily

implies that M(x̄, 0, 0) = Λ(x̄) = {λ̄}. Thus it follows from the contraposition assumption

that there exist sequences of (xk, vk, wk) → (x̄, 0, 0) as k → ∞ and of the corresponding

multipliers λk ∈M(xk, vk, wk) satisfying the inequality

‖λk − λ̄‖ > k(‖xk − x̄‖+ ‖vk‖+ ‖wk‖) whenever k ∈ IN. (5.18)

Suppose without loss of generality that (xk, vk, wk) ∈ U for all k ∈ N. Hence the sequence



112

{λk} is bounded, and so it has a limiting point λ̂. Taking into account the robustness

(closed graph property) of the normal cone mapping NQ with respect to perturbations of

the initial point, the continuity of the mappings Φ,∇f , and ∇Φ as well as the convergence

(xk, vk, wk)→ (x̄, 0, 0), we arrive at λ̂ ∈ Λ(x̄) = {λ̄}, which tells us that λk → λ̄ as k →∞.

Letting now tk := ‖λk − λ̄‖ ensures that tk ↓ 0 and allows us to conclude by (5.18) that

xk − x̄ = o(tk), v
k = o(tk) and wk = o(tk) as k →∞. (5.19)

Furthermore, the passage to a subsequence if necessary gives us a vector η ∈ Rm+1 \ {0}

such that
λk − λ̄
tk

→ η. Recalling that λk ∈M(xk, vk, wk), we get

o(tk) = vk = ∇f(xk) +∇Φ(xk)∗λk

= ∇f(xk)−∇f(x̄) +∇Φ(xk)∗λk −∇Φ(x̄)∗λ̄

= ∇f(xk)−∇f(x̄) +
(
∇Φ(xk)−∇Φ(x̄)

)∗
λk +∇Φ(x̄)(λk − λ̄)

= o(tk) +∇Φ(x̄)(λk − λ̄),

where the verification of the last equality uses the Lipschitz continuity of ∇f and ∇Φ

around x̄, the boundedness of {λk}, and the first estimate in (5.19). Dividing both sides of

the latter by tk and passing to the limit as k → ∞ result in η ∈ ker∇Φ(x̄)∗. On the other

hand, we have

(
Φ(xk) + wk − Φ(x̄)

tk
,
λk − λ̄
tk

)
=

(
Φ(xk) + wk, λk

)
−
(
Φ(x̄), λ̄

)
tk

∈
gphNQ −

(
Φ(x̄), λ̄

)
tk

,
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which yields (0, η) ∈ TgphNQ(Φ(x̄), λ̄) and hence verifies the condition

η ∈ DNQ
(
Φ(x̄, λ̄)

)
(0) ∩ ker∇Φ(x̄)∗.

Since η 6= 0, the latter contradicts (5.16) and thus justifies the claimed estimate (5.17).

A different sufficient condition for the upper Lipschitzian property (5.17) was obtained

in [6, Proposition 4.47] by using a condition called the “strict constraint qualification." This

condition is strictly more restrictive than the dual qualification (5.16), which—as shown

in Proposition 5.3—is indeed equivalent to the upper Lipschitzian estimate in (5.17).

Our next goal is to provide a more detailed analysis of the calmness of the multiplier

mapping for (1.1) entirely via the given SOCP data at the fixed solution (x̄, λ̄) to the

KKT system (1.4). Consider all the possible cases. If Φ(x̄) ∈ intQ, then it follows from

the normal cone representation (2.3) that Λ(x̄) = {0} for the set of Lagrange multipliers

in (1.5). Since Mx̄(0, 0) = Λ(x̄) and since Mx̄(u, v) = {0} whenever the pair (u, v) is

sufficiently close to (0, 0), we surely get the calmness of the multiplier mapping at ((0, 0), λ̄)

with λ̄ = 0 in this case. If further Φ(x̄) ∈ (bdQ) \ {0}, then it follows from (2.3) that Λ(x̄)

is the intersection of two polyhedral convex sets. Employing the classical Hoffman lemma

ensures that

dist
(
λ; Λ(x̄)

)
= O

(
‖∇xL(x̄, λ)‖+ dist(λ;NQ(Φ(x̄))

)
= O

(
‖∇xL(x̄, λ)‖+ dist(Φ(x̄);N−1

Q (λ)
)

for all λ close enough to λ̄ ∈ NQ(Φ(x̄)), where the last equality comes from the fact that
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the mapping NQ is clearly calm at (Φ(x̄), λ̄) in this case. This again verifies the calmness

property of the multiplier mapping (5.1) at ((0, 0), λ̄).

Considering further the remaining case where Φ(x̄) = 0, we deduce from Proposi-

tion 3.1 that the set of Lagrange multipliers Λ(x̄) admits one of the following representa-

tions:

(a) The strict complementarity holds for Λ(x̄), i.e., Λ(x̄) contains an interior point of −Q.

(b) Λ(x̄) = {0}.

(c) Λ(x̄) = {λ̄} and λ̄ ∈ bd (−Q) \ {0}.

(d) Λ(x̄) = R+λ̄ and λ̄ ∈ bd (−Q) \ {0}.

The next proposition describes the calmness of multiplier mapping for (1.1) when

Φ(x̄) = 0.

Proposition 5.4 (calmness of SOCP multipliers at vertex). Let (x̄, λ̄) be a solution for the

generalized KKT system (1.4), and let Φ(x̄) = 0. The following hold:

(i) In cases (a) and (b) for Λ(x̄) the multiplier mapping Mx̄ is calm at ((0, 0), λ̄).

(ii) In case (c) for Λ(x̄) the calmness of Mx̄ at ((0, 0), λ̄) is equivalent to the full rank of

∇Φ(x̄).

Proof. In case (a) we get from Proposition 3.1 that estimate (5.2) is satisfied, which verifies

the claimed calmness property of the multiplier mapping. In case (b) it follows from (1.5)

that ∇f(x̄) = 0, which yields the equalities

−Q ∩ ker∇Φ(x̄)∗ = NQ
(
Φ(x̄)

)
∩ ker∇Φ(x̄)∗ = Λ(x̄) = {0}, (5.20)
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and so λ̄ = 0 and KQ(Φ(x̄), λ̄) = TQ(0) = Q. By Corollary 2.4 we have

DNQ
(
Φ(x̄), λ̄

)
(0) = NKQ(Φ(x̄),λ̄)(0) = −Q.

This together with (5.20) tells us the dual qualification condition (5.16) holds in this

case. Employing Proposition 5.3 confirms the calmness of the multiplier mapping Mx̄ at

((0, 0), λ̄).

Finally, consider case (c). If ∇Φ(x̄) has full rank, then the dual qualification condition

(5.16) is satisfied. Hence Proposition 5.3 ensures that the multiplier mappingMx̄ is calm at

((0, 0), λ̄). Conversely, the validity of the calmness property for Mx̄ in the framework of (c)

implies by Proposition 5.3 that the dual qualification condition (5.16) holds. Combining

this with the fact that λ̄ ∈ bd (−Q) \ {0} in (c) confirms that the matrix ∇Φ(x̄) has full

rank; see Theorem 3.5 for the verification of this claim. This completes the proof of the

proposition.

The above discussions paint a clear picture for the calmness of the multiplier mapping

in all the possible cases but (d). It has not been clarified at this stage how to provide

verifiable conditions ensuring the calmness property of Mx̄ in case (d).

5.2 Well-Posedness and Convergence Analysis of ALM for SOCPs

In this concluding section of the dissertation we apply the suggested approach and re-

sults of second-order variational analysis (which are undoubtedly of their independent in-

terest) to the convergence analysis of the augmented Lagrangian method for solving SOCPs

(1.1).

The principal idea of the ALM for (1.1) is to solve a sequence of unconstrained mini-
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mization problems for which the objective functions, at each iteration, are approximations

of the augmented Lagrangian (1.7). Namely, given the current iteration (xk, λk, ρk), the

ALM solves the following unconstrained problem (called a subproblem):

minimize L(x, λk, ρk) for x ∈ Rn (5.21)

for next primal iterate xk+1 and then use it to construct the next dual iterate λk+1. More

specifically, we aim at solving the stationary equation

∇xL(x, λk, ρk) = 0 (5.22)

for xk+1 and then to update the corresponding multiplier by λk+1 := Π−Q(ρkΦ(xk+1) + λk).

Since solving (5.22) is not easy in practice, it is more convenient to choose an approxi-

mate solution xk+1 satisfying the approximate stationary condition

‖∇xL(xk+1, λk, ρk)‖ ≤ εk (5.23)

with a given accuracy/tolerance εk ≥ 0. Following the conventional terminology of nonlin-

ear programming, we say that the ALM is exact of εk = 0, i.e., the exact stationary equation

(5.22) is used, and inexact if (5.23) with εk > 0 is under consideration. In this paper we

deal with both exact and inexact versions of the ALM by choosing an arbitrary accuracy

εk ≥ 0 sufficiently small. The ALM algorithm for (1.1) is described as follows.

Algorithm 5.5 (augmented Lagrangian method for SOCPs). Choose (x0, λ0) ∈ Rn×Rm+1

and ρ̄ > 0. Pick εk → 0 as k →∞ and ρk with ρk ≥ ρ̄ for all k and set k := 0. Then:
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(1) If (xk, λk) satisfies a suitable termination criterion, stop.

(2) Otherwise, find xk+1 satisfying (5.23) and update the Lagrange multiplier by

λk+1 := Π−Q
(
ρkΦ(xk+1) + λk

)
. (5.24)

(3) Set k ← k + 1 and go to Step 1.

To perform the well-posedness and convergence analysis of Algorithm 5.5, we need

to make sure first of all that the ALM is well-defined, i.e., its subproblems constructed in

(5.21) are solvable. The following theorem reveals that the optimal solution mappings to

subproblems (5.21) enjoy the robust isolated calmness property uniformly in ρ. This con-

firms, in particular, that subproblems (5.21) always admit a local optimal solution. Note

that the developed proof of the theorem requires only the second-order growth condition

(4.13), which is based on SOSC (4.9), without any additional assumptions.

Theorem 5.6 (solvability and robust stability of subproblems in ALM). Let ρλ̄, γλ̄, and

`λ̄ be positive constants for which the second-order growth condition (4.13) holds whenever

ρ ≥ ρλ̄. Then there exist constants ` > 0, γ̂ ∈ (0, γλ̄], and ε > 0 such that the local optimal

solution mapping Sρ : Rm+1 → Rn defined by

Sρ(λ) := argmin
{
L(x, λ, ρ)

∣∣ x ∈ Bγ̂(x̄)
}
, λ ∈ Rm+1, (5.25)

satisfies, for all λ ∈ Bε(λ̄) and all ρ ∈ [ρλ̄,∞), the inclusions

Sρ(λ) ⊂ {x̄}+ `‖λ− λ̄‖B and ∅ 6= Sρ(λ) ⊂ intBγ̂(x̄), (5.26)
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which, in particular, implies that the mapping Sρ enjoys the isolated calmness property at

(x̄, λ̄) uniformly in ρ on the interval [ρλ̄,∞).

Proof. Since Φ is twice differentiable at x̄, there are constants γ̂ ∈ (0, γλ̄] and κ > 0 with

‖Φ(x)− Φ(x̄)‖ ≤ κ‖x− x̄‖ for all x ∈ Bγ̂(x̄). (5.27)

Employing the second-order growth condition (4.13) tells us that Sρ(λ̄)∩Bγλ̄(x̄) = {x̄} for

all ρ ≥ ρλ̄. Define now the the positive constant

` :=
κ

`λ̄
+

√
κ2

`2
λ̄

+
1

`λ̄ρλ̄
, (5.28)

select a positive number ε < `−1γ̂, and then pick any λ ∈ Bε(λ̄) and ρ ≥ ρλ̄. Observe further

that for all such λ and ρ we have Sρ(λ) 6= ∅, since the optimization problem in (5.25)

admits an optimal solution by the classical Weierstrass theorem. Fix any u ∈ Sρ(λ) and

recall from Proposition 1.1(ii) that the function λ 7→ L(u, λ, ρ) is concave. This together

with (1.9) yields

L(u, λ, ρ) ≥ L(u, λ̄, ρ)− 〈∇λL(u, λ, ρ), λ̄− λ〉

= L(u, λ̄, ρ)− ρ−1
〈
Π−Q

(
ρΦ(u) + λ

)
− λ, λ̄− λ

〉
≥ f(x̄) + `λ̄‖u− x̄‖2 − ρ−1

〈
Π−Q

(
ρΦ(u) + λ

)
− λ, λ̄− λ

〉
, (5.29)

where we use (4.13) for the last inequality. It follows from the optimality of u that

L(u, λ, ρ) ≤ L(x̄, λ, ρ) = f(x̄) +
ρ

2
dist2

(
Φ(x̄) + ρ−1λ;Q

)
− 1

2
ρ−1‖λ‖2 ≤ f(x̄),
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which together with (5.29) brings us to the estimate

‖u− x̄‖2 ≤ 1

ρ`λ̄

〈
Π−Q

(
ρΦ(u) + λ

)
− λ, λ̄− λ

〉
. (5.30)

Employing the projection properties (P2) and (P4) from Sect. 1.3, we get

∥∥Π−Q
(
ρΦ(u) + λ

)
− λ
∥∥ =

∥∥ρΦ(u) + λ− ΠQ
(
ρΦ(u) + λ

)
− λ
∥∥

= ‖ρΦ(u)− ΠQ
(
ρΦ(u) + λ

)
‖

= ‖ρ (Φ(u)− Φ(x̄)) + ΠQ
(
ρΦ(x̄) + λ̄

)
− ΠQ

(
ρΦ(u) + λ

)
‖

≤ ρ‖Φ(u)− Φ(x̄)‖+ ρ‖Φ(u)− Φ(x̄)‖+ ‖λ̄− λ‖

≤ 2ρκ‖u− x̄‖+ ‖λ̄− λ‖,

where the last inequality comes from (5.27). Using this and (5.30) tells us that

‖u− x̄‖2 ≤ 1

ρ`λ̄

(
2ρκ‖u− x̄‖+ ‖λ− λ̄‖

)
‖λ− λ̄‖,

which can be written in the equivalent form as

`λ̄‖u− x̄‖2 − 2κ‖λ− λ̄‖ · ‖u− x̄‖ − ‖λ− λ̄‖
2

ρ
≤ 0.

This in turn gives us the estimate

‖u− x̄‖ ≤

(
κ

`λ̄
+

√
κ2

`2
λ̄

+
1

`λ̄ρ

)
‖λ− λ̄‖ ≤ `‖λ− λ̄‖ ≤ `ε < γ̂,
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which simultaneously verifies both inclusions in (5.26) and thus completes the proof.

It follows from Theorem 5.6 that, at each iteration k, the condition λk ∈ Bε(λ̄) on

the current multiplier in Algorithm 5.5 allows us to find an exact local solution to the

optimization problem (5.21) such that ‖uk− x̄‖ ≤ `‖λk− λ̄‖. Then the Lipschitz continuity

of ∇xL(·, λk, ρk) around uk ensures that for any εk ≥ 0 we can get an εk-solution xk+1

satisfying both the approximate stationary condition (5.23) and the same estimate

‖xk+1 − x̄‖ ≤ `‖λk − λ̄‖ (5.31)

as the exact solution uk to the optimization problem (5.21) under consideration.

Now we are ready to proceed with local convergence analysis of Algorithm 5.5, which

mainly exploits the two major ingredients and the corresponding results developed above:

(1) SOSC (4.9) at (x̄, λ̄) and the associated second-order growth of the augmented La-

grangian, and (2) the calmness of the multiplier mapping. In addition, we assume that

the set of Lagrange multipliers is a singleton in the most interesting case where Φ(x̄) = 0.

The main reason for imposing this restriction is that the convergent analysis of the general

case is conducted by using an iterative framework proposed by Fisher in [15, Theorem 1].

However, the latter result demands an error bound estimate the for consecutive terms of

the ALM method. Deriving such an estimate for SOCPs with Φ(x̄) = 0 is our ongoing re-

search project. When Φ(x̄) 6= 0, the desired estimate for the consecutive terms in the ALM

algorithm can be established by using the uniform growth condition from Theorem 4.7

without the uniqueness requirement for Lagrange multipliers, while we omit this consid-

eration in what follows by taking into account the size of the paper. Note that for NLPs
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such an analysis has been conducted by Fernández and Solodov [14].

The following theorem establishes the linear convergence of Algorithm 5.5 in both

exact and inexact frameworks of the ALM with an arbitrarily chosen tolerance in (5.23) in

the form εk = o
(
σ(xk, λk)

)
, where σ(x, λ) is the error bound from (5.3).

Theorem 5.7 (primal-dual convergence of ALM). Let (x̄, λ̄) be a solution to the KKT

system (1.4), let SOSC (4.9) hold at (x̄, λ̄), and let the multiplier mapping Mx̄ from (5.1) be

calm at ((0, 0), λ̄) and Λ(x̄) = {λ̄}. Then there exist positive numbers γ̄ and ρ̄ ensuring the

following: for any starting point (x0, λ0) ∈ Bγ̄(x̄, λ̄) and any ρk ≥ ρ̄, Algorithm 5.5 generates

a sequence of iterates (xk, λk) with a tolerance in (5.23) arbitrary chosen as εk = o(σ(xk, λk))

such that (xk, λk) converges to (x̄, λ̄) as k →∞, and the rate of this convergence is linear.
Proof. Let ρλ̄, γλ̄, `λ̄ be the positive constants taken from Theorem 4.5(iii), and let κi and

γi for i = 1, 2, 3 be positive constants taken from the Lipschitzian estimates (5.5), (5.4),

and (5.17), respectively. Picking the positive constants κ and γ̂ from (5.27), ` from (5.28),

and ε from Theorem 5.6, define the positive numbers

γ̂1 := min
{
γ1, γ̂

}
, γ1,2 := max

{
γ1, γ2

}
, γ := min

{
γ3,

γ̂1

2κ3

}
, (5.32)

ρ̄ := max
{
ρλ̄, 2κ1, 8κ

2
1κ2

}
, and γ̄ := min

{
γ̂1, γ2, ε,

ρ̄γ

2
√

10
,
γ̂1

2`
,

γ

2`(κ+ 1)

}
. (5.33)

Assume also without loss of generality that

o
(
σ(x, λ)

)
≤ min

{ 1

κ2ρ̄
,

1

8κ1κ2

}
σ(x, λ) whenever (x, λ) ∈ Bγ1,2(x̄, λ̄) (5.34)

and then show that for any starting point (x0, λ0) ∈ Bγ̄(x̄, λ̄) there exists a sequence
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{(xk, λk)} generated by Algorithm 5.5 with any ρk ≥ ρ̄ such that

(xk, λk) ∈ Bγ̄(x̄, λ̄) for all k ∈ IN ∪ {0}. (5.35)

Arguing by induction, observe that (5.35) obviously holds for k = 0 and suppose that

(5.35) is satisfied for some k ∈ IN with ρk ≥ ρ̄. We are going to verify that (5.35) fulfills

for k+1. To furnish this, deduce first from (5.33) that ‖λk− λ̄‖ ≤ ε. This together with the

remark after the proof of Theorem 5.6 ensures the existence of an approximate solution

xk+1 with

‖∇xL(xk+1, λk, ρk)‖ ≤ εk = o
(
σ(xk, λk)

)
,

where εk ≥ 0 can be chosen arbitrary in this form. It follows from (5.31) that the obtained

εk-solution satisfies the estimates

‖xk+1 − x̄‖ ≤ `‖λk − λ̄‖ ≤ `γ̄ ≤ γ̂1

2
, (5.36)

where the last inequality comes from (5.33). We proceed now to establish a similar esti-

mate for the dual iterate λk+1. Using (5.24) and the projection property (P4) yields λk+1 ∈

NQ(Φ(xk+1)+ρ−1
k (λk−λk+1)) and hence λk+1 ∈M(xk+1, vk+1, wk+1) with wk+1 :=

λk − λk+1

ρk

and

vk+1 := ∇xL(xk+1, λk+1) = ∇xL(xk+1, λk, ρk) = o
(
σ(xk, λk)

)
. (5.37)
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The inclusion (xk, λk) ∈ Bγ2(x̄, λ̄) allows us to deduce from (5.4), (5.34), and (5.37) that

‖vk+1‖ ≤ σ(xk, λk)

κ2ρ̄
≤ ‖x

k − x̄‖+ ‖λk − λ̄‖
ρ̄

. (5.38)

Employing again the updating scheme (5.24), we arrive at the relationships

‖wk+1‖ = ‖ρ−1
k λk − Π−Q

(
Φ(xk+1) + ρ−1

k λk
)
‖

≤ ρ−1
k ‖λ

k − λ̄‖+
∥∥Π−Q

(
Φ(xk+1) + ρ−1

k λk
)
− Π−Q

(
Φ(x̄) + ρ−1

k λ̄
)∥∥

≤ 2ρ−1
k ‖λ

k − λ̄‖+ ‖Φ(xk+1)− Φ(x̄)‖

≤ 2ρ̄−1‖λk − λ̄‖+ κ‖xk+1 − x̄‖

with the last estimate coming from (5.27) and xk+1 ∈ Bγ̂(x̄). Thus (5.36) and (5.38) bring

us to

‖xk+1 − x̄‖+ ‖vk+1‖+ ‖wk+1‖ ≤ (κ+ 1)‖xk+1 − x̄‖+ ρ−1
λ̄
‖xk − x̄‖+ 3ρ−1

λ̄
‖λk − λ̄‖

≤ `(κ+ 1)‖λk − λ̄‖+
√

10ρ̄−1‖(xk, λk)− (x̄, λ̄)‖ ≤ γ,

where the last inequality employs the induction assumption (5.35) together with (5.33).

This along with γ ≤ γ3 due to (5.32) ensures that (xk+1, vk+1, wk+1) ∈ Bγ3(x̄, 0, 0). Hence

we deduce from the upper Lipschitzian property in (5.17) and the definition of γ in (5.32)

that

‖λk+1 − λ̄‖ ≤ κ3

(
‖xk+1 − x̄‖+ ‖vk+1‖+ ‖wk+1‖

)
≤ κ3γ ≤

γ̂1

2

verifying therefore the promised estimate for the dual iterate λk+1. This together with
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(5.36) shows that (xk+1, λk+1) ∈ Bγ̂1(x̄, λ̄). Using the latter, the imposed SOSC (4.9), and

the calmness of the multiplier mappings Mx̄ from (5.1), we conclude from Theorem 5.1

that

‖xk+1 − x̄‖+ ‖λk+1 − λ̄‖ ≤ κ1σk+1 with

σk+1 = ‖∇xL(xk+1, λk+1)‖+ ‖Φ(xk+1)− ΠQ
(
Φ(xk+1) + λk+1

)
‖. (5.39)

Define further the projection vector

pk+1 := ΠQ(Φ(xk+1) + ρ−1
k λk)

and deduce from the updating scheme (5.24) that

Φ(xk+1)− pk+1 =
λk+1 − λk

ρk
. (5.40)

Employing the projection properties (P1) and (P2) results in 〈pk+1, λk+1〉 = 0 due to

ρ−1
k λk+1 = Π−Q

(
Φ(xk+1) + ρ−1

k λk
)

= Φ(xk+1) + ρ−1
k λk − pk+1,

which together with pk+1 ∈ Q yields λk+1 ∈ NQ(pk+1). Hence pk+1 = ΠQ(pk+1 + λk+1) by

property (P4). Since the mapping y 7→ y −ΠQ(y + λk+1) = Π−Q(y + λk+1)− λk+1 is clearly
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nonexpansive, we arrive at the relationships

∥∥Φ(xk+1)− ΠQ
(
Φ(xk+1) + λk+1

)∥∥
=

∥∥Φ(xk+1)− ΠQ
(
Φ(xk+1) + λk+1

)∥∥− ∥∥pk+1 − ΠQ(pk+1 + λk+1)
∥∥

≤
∥∥Φ(xk+1)− ΠQ

(
Φ(xk+1) + λk+1

)
−
(
pk+1 − ΠQ(pk+1 + λk+1)

)∥∥
≤ ‖Φ(xk+1)− pk+1‖

≤ ρ−1
k ‖λ

k+1 − λk‖ (by (5.40))

≤ ρ−1
k

(
‖λk+1 − λ̄‖+ ‖λk − λ̄‖

)
≤ κ1ρ

−1
k (σk+1 + σk).

Using this together with (5.37) and (5.39) leads us to the estimates

σk+1 ≤ εk +
∥∥Φ(xk+1)− ΠQ

(
Φ(xk+1) + λk+1

)∥∥ ≤ εk +
κ1

ρk

(
σk+1 + σk

)
,

which can be equivalently rewritten as

(
1− κ

ρk

)
σk+1 ≤ εk +

κ1

ρk
σk.

Since ρk ≥ ρ̄, by (5.33), we get 1− κ1

ρk
>

1

2
, which ensures that

σk+1 ≤ 2σk

(
εk
σk

+
κ1

ρk

)
.

Applying finally the error bounds (5.5) and (5.4) and then appealing to (5.33) and (5.34)
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yields

‖xk+1 − x̄‖+ ‖λk+1 − λ̄‖ ≤ κ1σk+1 ≤ 2κ1

(
εk
σk

+
κ1

ρk

)
σk

≤ 2κ1κ2

(
εk
σk

+
κ1

ρk

)(
‖xk − x̄‖+ ‖λk − λ̄‖

)
≤ 1

2

(
‖xk − x̄‖+ ‖λk − λ̄‖

)
, (5.41)

which together with the induction assumption (5.35) brings us to

(xk+1, λk+1) ∈ Bγ̄(x̄, λ̄).

This finishes our induction argument to justify (5.35) for all k ∈ IN. Observe that the

latter inclusion along with (5.33) implies that ‖λk+1 − λ̄‖ ≤ ε while allowing us to use

Theorem 5.6 to construct the next primal iterate xk+2. Since (5.41) holds for all k ∈ IN,

we clearly get that (xk, λk)→ (x̄, λ̄) as k →∞. Furthermore, the obtained estimate tells us

that rate of convergence of (xk, λk) to (x̄, λ̄) is linear, which therefore completes the proof

of the theorem.

To conclude the chapter, let us compare the convergence analysis of Algorithm 5.5 given

in Theorem 5.7 with the one provided recently by Kanzow and Steck [30, 31] for the class

of C2-cone reducible conic programs that includes SOCPs. There are significant differences

between Algorithm 5.5 and the ALM method developed in [30, 31]. First and foremost, the

latter publications use instead of λk a certain vector wk from a bounded set in the formation

of subproblems (5.21). This is different from the classical ALM method for constrained

optimization, including NLPs. It seems to us that the main reason for such a change is



127

that the usage of λk from the updating scheme (5.24) is essentially more challenging to

conduct an adequate convergence analysis of the ALM method, since it requires to prove

the uniform boundedness of the sequence of multipliers. While the algorithm in [30, 31]

uses a particular updating scheme for the penalty parameter ρk, our approach reveals that

there is no need to confine the convergence analysis to a particular updating scheme for

ρk as long as we keep it sufficiently large. Also, as mentioned in Sect. 1.3, the solvability

of subproblems (5.21) was not addressed in [30, 31]. Let us finally emphasize that the

progress achieved in this paper is largely based on the application and development of

powerful tools of second-order variational analysis and generalized differentiation.
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This dissertation conducts a second-order variational analysis for an important class on

nonpolyhedral conic programs generated by the so-called second-order/Lorentz/ice-cream

cone Q. These second-order cone programs (SOCPs) are mathematically challenging due to

the nonpolyhedrality of the underlying second-order cone while being important for vari-

ous applications. The two main devices in our study are second epi-derivative and graphical

derivative of the normal cone mapping which are proved to accumulate vital second-order

information of functions/constraint systems under investigation. Our main contribution is

threefold:

• proving the twice epi-differentiability of the indicator function of Q and of the aug-

mented Lagrangian associated with SOCPs, and deriving explicit formulae for the

calculation of the second epi-derivatives of both functions;

• establishing a precise formula–entirely via the initial data– for calculating the graph-

ical derivative of the normal cone mapping generated by the constraint set of SOCPs

without imposing any nondegeneracy condition;
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• conducting a complete convergence analysis of the Augmented Lagrangian Method

(ALM) for SOCPs with solvability, stability and local convergence analysis of both exact

and inexact versions of the ALM under fairly mild assumptions.

These results have strong potentials for applications to SOCPs and related problems. Among

those presented in this dissertation we mention characterizations of the uniqueness of La-

grange multipliers together with an error bound estimate for second-order cone constraints;

of the isolated calmness property for solutions maps of perturbed variational systems asso-

ciated with SOCPs; and also of (uniform) second-order growth condition for the augmented

Lagrangian associated with SOCPs.
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