2,200 research outputs found

    Identifying Design Requirements for Wireless Routing Link Metrics

    Full text link
    In this paper, we identify and analyze the requirements to design a new routing link metric for wireless multihop networks. Considering these requirements, when a link metric is proposed, then both the design and implementation of the link metric with a routing protocol become easy. Secondly, the underlying network issues can easily be tackled. Thirdly, an appreciable performance of the network is guaranteed. Along with the existing implementation of three link metrics Expected Transmission Count (ETX), Minimum Delay (MD), and Minimum Loss (ML), we implement inverse ETX; invETX with Optimized Link State Routing (OLSR) using NS-2.34. The simulation results show that how the computational burden of a metric degrades the performance of the respective protocol and how a metric has to trade-off between different performance parameters

    Load Balancing Dynamic Source Routing Protocol Based on Multi-Path Routing

    Get PDF
    A HWMP improved routing protocol (HWMMRP) is proposed in this paper. The protocol adopts the integrated link state routing criterion algorithm LCCM providing small overhead, with factors such as bandwidth, queue length and noise interference fully considered. In order to solve the problem of the tree routing mechanism being easily congested at the root node, a multi-path multi-gateway shunting mechanism is applied. A multipath routing mechanism is also incorporated in the reactive routing mode. Both the new criteria and the protocol are simulated in the NS-2 environment, and are compared with comparable protocols. The experimental results show that our protocol can effectively avoid node congestion, and provides a better dynamic load balancing capability as well as a better performance than the standard HWMP and AODV protocols

    Reliable data delivery in low energy ad hoc sensor networks

    Get PDF
    Reliable delivery of data is a classical design goal for reliability-oriented collection routing protocols for ad hoc wireless sensor networks (WSNs). Guaranteed packet delivery performance can be ensured by careful selection of error free links, quick recovery from packet losses, and avoidance of overloaded relay sensor nodes. Due to limited resources of individual senor nodes, there is usually a trade-off between energy spending for packets transmissions and the appropriate level of reliability. Since link failures and packet losses are unavoidable, sensor networks may tolerate a certain level of reliability without significantly affecting packets delivery performance and data aggregation accuracy in favor of efficient energy consumption. However a certain degree of reliability is needed, especially when hop count increases between source sensor nodes and the base station as a single lost packet may result in loss of a large amount of aggregated data along longer hops. An effective solution is to jointly make a trade-off between energy, reliability, cost, and agility while improving packet delivery, maintaining low packet error ratio, minimizing unnecessary packets transmissions, and adaptively reducing control traffic in favor of high success reception ratios of representative data packets. Based on this approach, the proposed routing protocol can achieve moderate energy consumption and high packet delivery ratio even with high link failure rates. The proposed routing protocol was experimentally investigated on a testbed of Crossbow's TelosB motes and proven to be more robust and energy efficient than the current implementation of TinyOS2.x MultihopLQI

    NEIGHBOURHOOD LOAD ROUTING AND MULTI-CHANNELS IN WIRELESS MESH NETWORKS

    Get PDF
    As an emerging technology, wireless mesh networks are making significant progress in the area of wireless networks in recent years. Routing in Wireless Mesh Network (WMN) is challenging because of the unpredictable variations of the wireless environment. Traditional mechanisms have been proved that the routing performance would get deteriorated and ideal metrics must be explored. Most wireless routing protocols that are currently available are designed to use a single channel. The available network capacity can be increased by using multiple channels, but this requires the development of new protocols specifically designed for multi-channel operation. In this paper, we propose Neighbourhood load routing metric in single channel mesh networks and also present the technique to utilize multiple channels and multiple interfaces between routers for communication. The traditional routing metrics Hop Count and Weighted Cumulative Expected Transmission Time (WCETT) are used in routing. We compare performance of AODV-HOP, WCETT and NLR routing metrics in singlechannel and multichannel environment by considering throughput and end to end delay performance metrics. Our results show that NLR performs better in singlechannel environment

    Towards an Optimized Traffic-Aware Routing in Wireless Mesh Networks

    Get PDF
    International audienceIn this paper we study through simulations the impact of PHY/MAC protocols on higher layers. In a comparative way, we investigate the effectiveness of some protocols when they coexist on a wireless mesh network environment. Results show that PHY/MAC parameters have an important impact on routing performances. Based on these results, we propose two tra c-aware routing metrics based on link availability. The information about the link availability/occupancy is picked up from lower layers using a cross-layer approach. The rst metric is load-sensitive and aims to balance the tra c load according to the availability of a link to support additional ows. The second metric reproduces better the capacity of a link since it is based on its residual bandwidth. Using several real experiments, we have shown that our proposals can accurately determine better paths in terms of throughput and delay. Our experiments are carried out into an heterogeneous IEEE 802.11n based network running with OLSR routing protocol
    • …
    corecore