74 research outputs found

    Maximizing the Sum Rate in Cellular Networks Using Multi-Convex Optimization

    Full text link
    In this paper, we propose a novel algorithm to maximize the sum rate in interference-limited scenarios where each user decodes its own message with the presence of unknown interferences and noise considering the signal-to-interference-plus-noise-ratio. It is known that the problem of adapting the transmit and receive filters of the users to maximize the sum rate with a sum transmit power constraint is non-convex. Our novel approach is to formulate the sum rate maximization problem as an equivalent multi-convex optimization problem by adding two sets of auxiliary variables. An iterative algorithm which alternatingly adjusts the system variables and the auxiliary variables is proposed to solve the multi-convex optimization problem. The proposed algorithm is applied to a downlink cellular scenario consisting of several cells each of which contains a base station serving several mobile stations. We examine the two cases, with or without several half-duplex amplify-and-forward relays assisting the transmission. A sum power constraint at the base stations and a sum power constraint at the relays are assumed. Finally, we show that the proposed multi-convex formulation of the sum rate maximization problem is applicable to many other wireless systems in which the estimated data symbols are multi-affine functions of the system variables.Comment: 24 pages, 5 figure

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Precoding Method Interference Management for Quasi-EVD Channel

    Get PDF
    The Cholesky decomposition-block diagonalization (CD-BD) interference alignment (IA) for a multiuser multiple input multiple output (MU-MIMO) relay system is proposed, which designs precoders for the multiple access channel (MAC) by employing the singular value decomposition (SVD) as well as the mean square error (MSE) detector for the broadcast Hermitian channel (BHC) taken advantage of in our design. Also, in our proposed CD-BD IA algorithm, the relaying function is made use to restructure the quasieigenvalue decomposition (quasi-EVD) equivalent channel. This approach used for the design of BD precoding matrix can significantly reduce the computational complexity and proposed algorithm can address several optimization criteria, which is achieved by designing the precoding matrices in two steps. In the first step, we use Cholesky decomposition to maximize the sum-of-rate (SR) with the minimum mean square error (MMSE) detection. In the next step, we optimize the system BER performance with the overlap of the row spaces spanned by the effective channel matrices of different users. By iterating the closed form of the solution, we are able not only to maximize the achievable sum-of-rate (ASR), but also to minimize the BER performance at a high signal-to-noise ratio (SNR) region

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure

    Feasibility and performance of relay-aided interference alignment

    Get PDF
    In current wireless radio communications systems, the multiuser interference is a major performance-limiting factor due to the scarceness of spectrum. Recently, it has been discovered that every user is able to get “half the cake” using a novel interference management approach known as IA. IA is able to achieve the DoFs of many multiuser interference networks, leading to outstanding performances in the high-SNR regime. This thesis focuses on the topic of relay-aided IA.In gegenwärtigen Funkkommunikationssystemen ist jedoch aufgrund der Begrenztheit des Spektrums die Mehrnutzer-Interferenz ein vornehmlicher performanzbegrenzender Faktor. Vor kurzem wurde entdeckt, dass jeder Benutzer mit einem neuartigen, als Interference Alignment bezeichneten, Interferenzreduktionsverfahren „den halben Kuchen“ gewissermaßen bekommen kann. IA ist in der Lage, die DoFs von vielen Mehrnutzer-Interferenznetzwerken zu erreichen, was zu herausragenden Leistungen im Bereich hoher SNRs führt. Die vorliegende Arbeit konzentriert sich auf dem Gebiet des relaisunterstützten IA

    Constructive Interference Beamforming for Cooperative Dual-Hop MIMO Relay Systems - Invited Paper

    Get PDF
    In this paper, we consider the downlink transmission for a dual-hop amplify-and-forward (AF) multiple-antenna relay systems, where we propose beamforming techniques for interference exploitation on a symbol level. Based on the constructive interference (CI), we firstly propose a joint source/relay precoding, where the precoding matrices at the source and the output signals at the relay are jointly optimized. To alleviate the high computational costs and circumvent the difficulty of practical implementation of the joint design, we further propose a low-complexity decoupled approach, where a closed-form linear precoding method is first employed at the source, and we then optimize the beamforming matrix at the relay for interference exploitation. It is revealed by numerical results that the proposed approaches that exploit the instantaneous interference can achieve an improved performance over the conventional case with a linear approach
    • …
    corecore