687 research outputs found

    SGD Frequency-Domain Space-Frequency Semiblind Multiuser Receiver with an Adaptive Optimal Mixing Parameter

    Get PDF
    A novel stochastic gradient descent frequency-domain (FD) space-frequency (SF) semiblind multiuser receiver with an adaptive optimal mixing parameter is proposed to improve performance of FD semiblind multiuser receivers with a fixed mixing parameters and reduces computational complexity of suboptimal FD semiblind multiuser receivers in SFBC downlink MIMO MC-CDMA systems where various numbers of users exist. The receiver exploits an adaptive mixing parameter to mix information ratio between the training-based mode and the blind-based mode. Analytical results prove that the optimal mixing parameter value relies on power and number of active loaded users existing in the system. Computer simulation results show that when the mixing parameter is adapted closely to the optimal mixing parameter value, the performance of the receiver outperforms existing FD SF adaptive step-size (AS) LMS semiblind based with a fixed mixing parameter and conventional FD SF AS-LMS training-based multiuser receivers in the MSE, SER and signal to interference plus noise ratio in both static and dynamic environments

    A joint-channel diagonalization for multiuser MIMO antenna systems

    Get PDF
    In this paper, we address the problem of improving the performance of multiuser space-division multiplexing (SDM) systems where multiple independent signal streams can be transmitted in the same frequency and time slot. The problem is important in multiuser multiple-input multiple-output systems where communication from one base station to many mobile stations can occur simultaneously. Our objective is to devise a multiuser linear space-time precoder for simultaneous channel diagonalization of the multiuser channels enabling SDM. Our new approach is based on diagonalizing the multiuser channel matrices and we use a variation of successive Jacobi rotations. In addition to the diagonalization, our approach attempts to optimize the resultant channel gains for performance enhancement. Our method is valid for both frequency-flat and frequency-selective fading channels but we assume that the base station knows all the channels and that they are quasi-stationary

    Waveforms for the Massive MIMO Downlink: Amplifier Efficiency, Distortion and Performance

    Full text link
    In massive MIMO, most precoders result in downlink signals that suffer from high PAR, independently of modulation order and whether single-carrier or OFDM transmission is used. The high PAR lowers the power efficiency of the base station amplifiers. To increase power efficiency, low-PAR precoders have been proposed. In this article, we compare different transmission schemes for massive MIMO in terms of the power consumed by the amplifiers. It is found that (i) OFDM and single-carrier transmission have the same performance over a hardened massive MIMO channel and (ii) when the higher amplifier power efficiency of low-PAR precoding is taken into account, conventional and low-PAR precoders lead to approximately the same power consumption. Since downlink signals with low PAR allow for simpler and cheaper hardware, than signals with high PAR, therefore, the results suggest that low-PAR precoding with either single-carrier or OFDM transmission should be used in a massive MIMO base station

    Multi-user spatial diversity techniques for wireless communication systems

    Get PDF
    Multiple antennas at the transmitter and receiver, formally known as multiple-input multiple-output (MIMO) systems have the potential to either increase the data rates through spatial multiplexing or enhance the quality of services through exploitation of diversity. In this thesis, the problem of downlink spatial multiplexing, where a base station (BS) serves multiple users simultaneously in the same frequency band is addressed. Spatial multiplexing techniques have the potential to make huge saving in the bandwidth utilization. We propose spatial diversity techniques with and without the assumption of perfect channel state information (CSI) at the transmitter. We start with proposing improvement to signal-to-leakage ratio (SLR) maximization based spatial multiplexing techniques for both fiat fading and frequency selective channels. [Continues.

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems
    • …
    corecore