769 research outputs found

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Vibration suppression of the horizontal flexible plate using proportional– integral–derivative controller tuned by particle swarm optimization

    Get PDF
    This paper presents the development of an active vibration control for vibration suppression of the horizontal flexible plate structure using proportional–integral–derivative controller tuned by a conventional method via Ziegler–Nichols and an intelligent method known as particle swarm optimization algorithm. Initially, the experimental rig was designed and fabricated with all edges clamped at the horizontal position of the flexible plate. Data acquisition and instrumentation systems were designed and integrated into the experimental rig to collect input–output vibration data of the flexible plate. The vibration data obtained through experimental study was used to model the system using system identification technique based on auto-regressive with exogenous input structure. The plate system was modeled using particle swarm optimization algorithm and validated using mean squared error, one-step ahead prediction, and correlation tests. The stability of the model was assessed using pole zero diagram stability. The fitness function of particle swarm optimization algorithm is defined as the mean squared error between the measured and estimated output of the horizontal flexible plate system. Next, the developed model was used in the development of an active vibration control for vibration suppression on the horizontal flexible plate system using a proportional–integral–derivative controller. The proportional–integral–derivative gains are optimally determined using two different ways, the conventional method tuned by Ziegler–Nichols tuning rules and the intelligent method tuned by particle swarm optimization algorithm. The performances of developed controllers were assessed and validated. Proportional–integral–derivative-particle swarm optimization controller achieved the highest attenuation value for first mode of vibration by achieving 47.28 dB attenuation as compared to proportional–integral–derivative-Ziegler–Nichols controller which only achieved 34.21 dB attenuation

    Optimization and Applications of Modern Wireless Networks and Symmetry

    Get PDF
    Due to the future demands of wireless communications, this book focuses on channel coding, multi-access, network protocol, and the related techniques for IoT/5G. Channel coding is widely used to enhance reliability and spectral efficiency. In particular, low-density parity check (LDPC) codes and polar codes are optimized for next wireless standard. Moreover, advanced network protocol is developed to improve wireless throughput. This invokes a great deal of attention on modern communications

    New Approaches in Cognitive Radios using Evolutionary Algorithms

    Get PDF
    Cognitive radio has claimed a promising technology to exploit the spectrum in an ad hoc network. Due many techniques have become a topic of discussion on cognitive radios, the aim of this paper was developed a contemporary survey of evolutionary algorithms in Cognitive Radio. According to the art state, this work had been collected the essential contributions of cognitive radios with the particularity of base they research in evolutionary algorithms. The main idea was classified the evolutionary algorithms and showed their fundamental approaches. Moreover, this research will be exposed some of the current issues in cognitive radios and how the evolutionary algorithms will have been contributed. Therefore, current technologies have matters presented in optimization, learning, and classification over cognitive radios where evolutionary algorithms can be presented big approaches. With a more comprehensive and systematic understanding of evolutionary algorithms in cognitive radios, more research in this direction may be motivated and refined

    Multipath channel identification by using global optimization in ambiguity function domain

    Get PDF
    Cataloged from PDF version of article.A new transform domain array signal processing technique is proposed for identification of multipath communication channels. The received array element outputs are transformed to delay-Doppler domain by using the cross-ambiguity function (CAF) for efficient exploitation of the delay-Doppler diversity of the multipath components. Clusters of multipath components can be identified by using a simple amplitude thresholding in the delay-Doppler domain. Particle swarm optimization (PSO) can be used to identify parameters of the multipath components in each cluster. The performance of the proposed PSO-CAF technique is compared with the space alternating generalized expectation maximization (SAGE) technique and with a recently proposed PSO based technique at various SNR levels. Simulation results clearly quantify the superior performance of the PSO-CAF technique over the alternative techniques at all practically significant SNR levels. (C) 2011 Elsevier B.V. All rights reserved

    Differential Evolution Optimal Parameters Tuning with Artificial Neural Network

    Get PDF
    Differential evolution (DE) is a simple and efficient population-based stochastic algorithm for solving global numerical optimization problems. DE largely depends on algorithm parameter values and search strategy. Knowledge on how to tune the best values of these parameters is scarce. This paper aims to present a consistent methodology for tuning optimal parameters. At the heart of the methodology is the use of an artificial neural network (ANN) that learns to draw links between the algorithm performance and parameter values. To do so, first, a data-set is generated and normalized, then the ANN approach is performed, and finally, the best parameter values are extracted. The proposed method is evaluated on a set of 24 test problems from the Black-Box Optimization Benchmarking (BBOB) benchmark. Experimental results show that three distinct cases may arise with the application of this method. For each case, specifications about the procedure to follow are given. Finally, a comparison with four tuning rules is performed in order to verify and validate the proposed method’s performance. This study provides a thorough insight into optimal parameter tuning, which may be of great use for users.The authors appreciate the support to the government of the Basque Country through research programs Grants N. ELKARTEK 20/71 and ELKARTEK: KK-2019/00099

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization
    • …
    corecore