2,287 research outputs found

    Gesture Object Interfaces to enable a world of multiple projections

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. [209]-226).Tangible Media as an area has not explored how the tangible handle is more than a marker or place-holder for digital data. Tangible Media can do more. It has the power to materialize and redefine our conception of space and content during the creative process. It can vary from an abstract token that represents a movie to an anthropomorphic plush that reflects the behavior of a sibling during play. My work begins by extending tangible concepts of representation and token-based interactions into movie editing and play scenarios. Through several design iterations and research studies, I establish tangible technologies to drive visual and oral perspectives along with finalized creative works, all during a child's play and exploration. I define the framework, Gesture Object Interfaces, expanding on the fields of Tangible User Interaction and Gesture Recognition. Gesture is a mechanism that can reinforce or create the anthropomorphism of an object. It can give the object life. A Gesture Object is an object in hand while doing anthropomorphized gestures. Gesture Object Interfaces engender new visual and narrative perspectives as part of automatic film assembly during children's play. I generated a suite of automatic film assembly tools accessible to diverse users. The tools that I designed allow for capture, editing and performing to be completely indistinguishable from one another. Gestures integrated with objects become a coherent interface on top of natural play. I built a distributed, modular camera environment and gesture interaction to control that environment. The goal of these new technologies is to motivate children to take new visual and narrative perspectives. In this dissertation I present four tangible platforms that I created as alternatives to the usual fragmented and sequential capturing, editing and performing of narratives available to users of current storytelling tools. I developed Play it by Eye, Frame it by hand, a new generation of narrative tools that shift the frame of reference from the eye to the hand, from the viewpoint (where the eye is) to the standpoint (where the hand is). In Play it by Eye, Frame it by Hand environments, children discover atypical perspectives through the lens of everyday objects. When using Picture This!, children imagine how an object would appear relative to the viewpoint of the toy. They iterate between trying and correcting in a world of multiple perspectives. The results are entirely new genres of child-created films, where children finally capture the cherished visual idioms of action and drama. I report my design process over the course of four tangible research projects that I evaluate during qualitative observations with over one hundred 4- to 14-year-old users. Based on these research findings, I propose a class of moviemaking tools that transform the way users interpret the world visually, and through storytelling.by Catherine Nicole Vaucelle.Ph.D

    Distributed Technology-Sustained Pervasive Applications

    Full text link
    Technology-sustained pervasive games, contrary to technology-supported pervasive games, can be understood as computer games interfacing with the physical world. Pervasive games are known to make use of 'non-standard input devices' and with the rise of the Internet of Things (IoT), pervasive applications can be expected to move beyond games. This dissertation is requirements- and development-focused Design Science research for distributed technology-sustained pervasive applications, incorporating knowledge from the domains of Distributed Computing, Mixed Reality, Context-Aware Computing, Geographical Information Systems and IoT. Computer video games have existed for decades, with a reusable game engine to drive them. If pervasive games can be understood as computer games interfacing with the physical world, can computer game engines be used to stage pervasive games? Considering the use of non-standard input devices in pervasive games and the rise of IoT, how will this affect the architectures supporting the broader set of pervasive applications? The use of a game engine can be found in some existing pervasive game projects, but general research into how the domain of pervasive games overlaps with that of video games is lacking. When an engine is used, a discussion of, what type of engine is most suitable and what properties are being fulfilled by the engine, is often not part of the discourse. This dissertation uses multiple iterations of the method framework for Design Science for the design and development of three software system architectures. In the face of IoT, the problem of extending pervasive games into a fourth software architecture, accommodating a broader set of pervasive applications, is explicated. The requirements, for technology-sustained pervasive games, are verified through the design, development and demonstration of the three software system architectures. The ...Comment: 64 pages, 13 figure

    Tangible auditory interfaces : combining auditory displays and tangible interfaces

    Get PDF
    Bovermann T. Tangible auditory interfaces : combining auditory displays and tangible interfaces. Bielefeld (Germany): Bielefeld University; 2009.Tangible Auditory Interfaces (TAIs) investigates into the capabilities of the interconnection of Tangible User Interfaces and Auditory Displays. TAIs utilise artificial physical objects as well as soundscapes to represent digital information. The interconnection of the two fields establishes a tight coupling between information and operation that is based on the human's familiarity with the incorporated interrelations. This work gives a formal introduction to TAIs and shows their key features at hand of seven proof of concept applications

    Emerging technologies for learning (volume 2)

    Get PDF

    Requirement analysis and sensor specifications – First version

    Get PDF
    In this first version of the deliverable, we make the following contributions: to design the WEKIT capturing platform and the associated experience capturing API, we use a methodology for system engineering that is relevant for different domains such as: aviation, space, and medical and different professions such as: technicians, astronauts, and medical staff. Furthermore, in the methodology, we explore the system engineering process and how it can be used in the project to support the different work packages and more importantly the different deliverables that will follow the current. Next, we provide a mapping of high level functions or tasks (associated with experience transfer from expert to trainee) to low level functions such as: gaze, voice, video, body posture, hand gestures, bio-signals, fatigue levels, and location of the user in the environment. In addition, we link the low level functions to their associated sensors. Moreover, we provide a brief overview of the state-of-the-art sensors in terms of their technical specifications, possible limitations, standards, and platforms. We outline a set of recommendations pertaining to the sensors that are most relevant for the WEKIT project taking into consideration the environmental, technical and human factors described in other deliverables. We recommend Microsoft Hololens (for Augmented reality glasses), MyndBand and Neurosky chipset (for EEG), Microsoft Kinect and Lumo Lift (for body posture tracking), and Leapmotion, Intel RealSense and Myo armband (for hand gesture tracking). For eye tracking, an existing eye-tracking system can be customised to complement the augmented reality glasses, and built-in microphone of the augmented reality glasses can capture the expert’s voice. We propose a modular approach for the design of the WEKIT experience capturing system, and recommend that the capturing system should have sufficient storage or transmission capabilities. Finally, we highlight common issues associated with the use of different sensors. We consider that the set of recommendations can be useful for the design and integration of the WEKIT capturing platform and the WEKIT experience capturing API to expedite the time required to select the combination of sensors which will be used in the first prototype.WEKI

    Computer-Assisted Interactive Documentary and Performance Arts in Illimitable Space

    Get PDF
    This major component of the research described in this thesis is 3D computer graphics, specifically the realistic physics-based softbody simulation and haptic responsive environments. Minor components include advanced human-computer interaction environments, non-linear documentary storytelling, and theatre performance. The journey of this research has been unusual because it requires a researcher with solid knowledge and background in multiple disciplines; who also has to be creative and sensitive in order to combine the possible areas into a new research direction. [...] It focuses on the advanced computer graphics and emerges from experimental cinematic works and theatrical artistic practices. Some development content and installations are completed to prove and evaluate the described concepts and to be convincing. [...] To summarize, the resulting work involves not only artistic creativity, but solving or combining technological hurdles in motion tracking, pattern recognition, force feedback control, etc., with the available documentary footage on film, video, or images, and text via a variety of devices [....] and programming, and installing all the needed interfaces such that it all works in real-time. Thus, the contribution to the knowledge advancement is in solving these interfacing problems and the real-time aspects of the interaction that have uses in film industry, fashion industry, new age interactive theatre, computer games, and web-based technologies and services for entertainment and education. It also includes building up on this experience to integrate Kinect- and haptic-based interaction, artistic scenery rendering, and other forms of control. This research work connects all the research disciplines, seemingly disjoint fields of research, such as computer graphics, documentary film, interactive media, and theatre performance together.Comment: PhD thesis copy; 272 pages, 83 figures, 6 algorithm
    • …
    corecore