413,163 research outputs found

    A new paradigm for BCI research

    Get PDF
    A new control paradigm for Brain Computer Interfaces (BCIs) is proposed. BCIs provide a means of communication direct from the brain to a computer that allows individuals with motor disabilities an additional channel of communication and control of their external environment. Traditional BCI control paradigms use motor imagery, frequency rhythm modification or the Event Related Potential (ERP) as a means of extracting a control signal. A new control paradigm for BCIs based on speech imagery is initially proposed. Further to this a unique system for identifying correlations between components of the EEG and target events is proposed and introduced

    The 34-meter antenna drive control system

    Get PDF
    Detailed definitions of the baseline antenna drive and control/instrumentation equipment for 34 meter antennas included in Network Consolidation Program of the Deep Space Network are presented. The overall antenna control and monitor system and its interfaces with other higher level control and monitor equipment is described. Explicit descriptions of the antenna axis drive motors and motor controllers, the axis angle encoding systems, and miscellaneous antenna located components are presented, and related to system functional and performance requirements. Some potential alternates to the baseline system configuration are described and discussed

    Standardized Classification and Interfaces of Complex Behaviour Models in Virtual Commissioning

    Get PDF
    AbstractToday's increasing use of Virtual Commissioning during the development process of automated manufacturing plants paired with the increasing request towards better control quality leads to the need of improved virtual plants with more effortless set ups. The common techniques of simulating the plant within Virtual Commissioning do no longer fulfil these needs, new approaches have to be developed. This paper examines ways to standardize Functional Mock-Up Unit based behaviour models of mechatronic components of such automated manufacturing plants. It is argued how such components can be classified to reach a distinction between different types to be able to develop standardized interfaces for every type. Therefore a standardized framework of how these interfaces can look like is proposed. Based on this framework as well as the classification of the components two examples, a pneumatic valve cylinder combination and an industrial robot are exemplarily implemented. Besides the standard interfaces to the control program and the visualisation of the simulation a special effort to implement energetically considerations were made. Therefore the presented work shows a way of how to standardize the interfaces of behaviour models of different classes of mechatronic components while increasing the quality of these behaviour models for more complex and accurate behaviour simulation of production plants for Virtual Commissioning as well as related applications

    Emergent properties hidden in plane view: Strong electronic correlations at oxide interfaces

    Full text link
    Finding new collective electronic states in materials is one of the fundamental goals of condensed matter physics. Atomic-scale superlattices formed from transition metal oxides are a particularly appealing hunting ground for new physics. In bulk form, transition metal oxides exhibit a remarkable range of magnetic, superconducting, and multiferroic phases that are of great scientific interest and are potentially capable of providing innovative energy, security, electronics and medical technology platforms. In superlattices new states may emerge at the interfaces where dissimilar materials meet. Here we illustrate the essential features that make transition metal oxide-based heterostructures an appealing discovery platform for emergent properties with a few selected examples, showing how charge redistributes, magnetism and orbital polarization arises and ferroelectric order emerges from heterostructures comprised of oxide components with nominally contradictory behavior with the aim providing insight into the creation and control of novel behavior at oxide interfaces by suitable mechanical, electrical or optical boundary conditions and excitations.Comment: 16 pages, 5 figure

    Hierarchical interface-based supervisory control using the conflict preorder

    Get PDF
    Hierarchical Interface-Based Supervisory Control decomposes a large discrete event system into subsystems linked to each other by interfaces, facilitating the design of complex systems and the re-use of components. By ensuring that each subsystem satisfies its interface consistency conditions locally, it can be ensured that the complete system is controllable and nonblocking. The interface consistency conditions proposed in this paper are based on the conflict preorder, providing increased flexibility over previous approaches. The framework requires only a small number of interface consistency conditions, and allows for the design of multi-level hierarchies that are provably controllable and nonblocking

    Distributed Control Architecture

    Get PDF
    This document describes the development and testing of a novel Distributed Control Architecture (DCA). The DCA developed during the study is an attempt to turn the components used to construct unmanned vehicles into a network of intelligent devices, connected using standard networking protocols. The architecture exists at both a hardware and software level and provides a communication channel between control modules, actuators and sensors. A single unified mechanism for connecting sensors and actuators to the control software will reduce the technical knowledge required by platform integrators and allow control systems to be rapidly constructed in a Plug and Play manner. DCA uses standard networking hardware to connect components, removing the need for custom communication channels between individual sensors and actuators. The use of a common architecture for the communication between components should make it easier for software to dynamically determine the vehicle s current capabilities and increase the range of processing platforms that can be utilised. Implementations of the architecture currently exist for Microsoft Windows, Windows Mobile 5, Linux and Microchip dsPIC30 microcontrollers. Conceptually, DCA exposes the functionality of each networked device as objects with interfaces and associated methods. Allowing each object to expose multiple interfaces allows for future upgrades without breaking existing code. In addition, the use of common interfaces should help facilitate component reuse, unit testing and make it easier to write generic reusable software
    • …
    corecore