263 research outputs found

    Interception and Rendezvous Between Autonomous Vehicles

    Get PDF

    A Fuzzy Guidance System for Rendezvous and Pursuit of Moving Targets

    Get PDF
    This article presents the development of a fuzzy guidance system (FGS) for unmanned aerial vehicles capable of pursuing and performing rendezvous with static and mobile targets. The system is designed to allow the vehicle to approach a maneuvering target from a desired direction of arrival and to terminate the rendezvous at a constant distance from the target. In order to perform a rendezvous with a maneuvering target, the desired direction of arrival is adjusted over time to always approach the target from behind, so that the aircraft and target velocity vectors become aligned. The proposed guidance system assumes the presence of an autopilot and uses a set of Takagi–Sugeno fuzzy controllers to generate the orientation and speed references for the velocity and heading control loops, given the relative position and velocity between the aircraft and the target. The FGS treats the target as a mobile waypoint in a 4-D space (position in 2-dimensions, desired crossing heading and speed) and guides the aircraft on suitable trajectories towards the target. Only when the vehicle is close enough to the rendezvous point, the guidance law is complemented with an additional linear controller to manage the terminal formation keeping phase. The capabilities of the proposed rendezvous-FGS are verified in simulation on both maneuvering and non-maneuvering targets. Finally, experimental results using a multi-rotor aerial system are presented for both fixed and accelerating targets

    NASA Automated Rendezvous and Capture Review. Executive summary

    Get PDF
    In support of the Cargo Transfer Vehicle (CTV) Definition Studies in FY-92, the Advanced Program Development division of the Office of Space Flight at NASA Headquarters conducted an evaluation and review of the United States capabilities and state-of-the-art in Automated Rendezvous and Capture (AR&C). This review was held in Williamsburg, Virginia on 19-21 Nov. 1991 and included over 120 attendees from U.S. government organizations, industries, and universities. One hundred abstracts were submitted to the organizing committee for consideration. Forty-two were selected for presentation. The review was structured to include five technical sessions. Forty-two papers addressed topics in the five categories below: (1) hardware systems and components; (2) software systems; (3) integrated systems; (4) operations; and (5) supporting infrastructure

    Modelling Cooperative Control Problems in the Cyber Environment: Introduction to Quasi Consensus Networks

    Get PDF
    The paper introduces the novel idea of the application of quasi consensus networks to modelling networked distributed systems. Quasi consensus networks operate alike standard consensus seeking ones without requesting the information state of the contributing systems to converge to a predetermined value. The quasi consensus- modelling paradigm can be used in modelling cooperative control problems in the cyber environment when the achievement of a common value of the information state is not the ultimate goal of the systems operation

    Advanced spacecraft: What will they look like and why

    Get PDF
    The next century of spaceflight will witness an expansion in the physical scale of spacecraft, from the extreme of the microspacecraft to the very large megaspacecraft. This will respectively spawn advances in highly integrated and miniaturized components, and also advances in lightweight structures, space fabrication, and exotic control systems. Challenges are also presented by the advent of advanced propulsion systems, many of which require controlling and directing hot plasma, dissipating large amounts of waste heat, and handling very high radiation sources. Vehicle configuration studies for a number of theses types of advanced spacecraft were performed, and some of them are presented along with the rationale for their physical layouts

    Moving path following for unmanned aerial vehicles with applications to single and multiple target tracking problems

    Get PDF
    This paper introduces the moving path following (MPF) problem, in which a vehicle is required to converge to and follow a desired geometric moving path, without a specific temporal specification, thus generalizing the classical path following that only applies to stationary paths. Possible tasks that can be formulated as an MPF problem include tracking terrain/air vehicles and gas clouds monitoring, where the velocity of the target vehicle or cloud specifies the motion of the desired path. We derive an error space for MPF for the general case of time-varying paths in a two-dimensional space and subsequently an application is described for the problem of tracking single and multiple targets on the ground using an unmanned aerial vehicle (UAV) flying at constant altitude. To this end, a Lyapunov-based MPF control law and a path-generation algorithm are proposed together with convergence and performance metric results. Real-world flight tests results that took place in Ota Air Base, Portugal, with the ANTEX-X02 UAV demonstrate the effectiveness of the proposed method.info:eu-repo/semantics/acceptedVersio

    Capturing an Evader Using Multiple Pursuers with Sensing Limitations in Convex Environment

    Get PDF
    A modified continuous-time pursuit-evasion game with multiple pursuers and a single evader is studied. The game has been played in an obstacle-free convex environment which consists an exit gate through which the evader may escape. The geometry of the convex is unknown to all players except pursuers know the location of the exit gate and they can communicate with each other. All players have equal maximum velocities and identical sensing range. An evader is navigating inside the environment and seeking the exit gate to win the game. A novel sweep-pursuit-capture strategy for the pursuers to search and capture the evader under some necessary and sufficient conditions is presented. We also show that three pursuers are sufficient to finish the operation successfully. Non-holonomic wheeled mobile robots of the same configurations have been used as the pursuers and the evader. Simulation studies demonstrate the performance of the proposed strategy in terms of interception time and the distance traveled by the players.

    Autonomous systems for operations in critical environments

    Get PDF
    This paper proposes an environment devoted to simulate the use of autonomous systems in the context of space exploratory missions and operations; this research focuses on supporting engineering of autonomous systems and of their innovative artificial intelligences through interoperable simulation. The proposed approach enables also development of training and educational solutions for use of robots and autonomous systems in space critical environments. The paper addresses different application areas including robotic inventory and warehouse solutions, intelligent space guard systems, drones for supporting extravehicular activities and for managing accidents and health emergencies. The paper investigates the potential of autonomous systems as well as their capability to interoperate with other systems and with humans, especially in critical environments. Finally, the paper presents the existing researches for interoperable simulators devoted to address these challenging topics within Simulation Exploratory Experience initiative

    Design of a Space Borne Autonomous Infrared Tracking System

    Get PDF
    Complete characterization of the space environment in support of the United States goal of space Situational Awareness is not currently achievable. When confronted with recent increases in the deployment and miniaturization of microsatellites by numerous nations, the questions of foreign space capabilities are magnified. This study sought to determine the feasibility of and experimentally demonstrate a microsatellite capability to autonomously loiter about and track a target satellite. Various methods of passive remote sensing were investigated to determine the best means of detecting and tracking a target in space. Microbolometer-based infrared sensors were identified as the best alternative. A representative system was constructed for demonstration in AFIT s SIMSAT laboratory. Software modeling results identified open-loop instability, and therefore the requirement for closed-loop control. A simple PD control algorithm served as the basis for control, and a pseudo-feed-forward term was added to improve results. The feed-forward term was derived from orbital dynamics as the rate at which the chase satellite traverses around an ellipse formed in the target s frame of reference. Reduction in pointing errors of up to 67% were found in simulations. Successful non-optimal tracking results were obtained in the laboratory with a hardware-in-the-loop model for both step and moving inputs
    corecore