3,228 research outputs found

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique

    Wide-Area Surveillance System using a UAV Helicopter Interceptor and Sensor Placement Planning Techniques

    Get PDF
    This project proposes and describes the implementation of a wide-area surveillance system comprised of a sensor/interceptor placement planning and an interceptor unmanned aerial vehicle (UAV) helicopter. Given the 2-D layout of an area, the planning system optimally places perimeter cameras based on maximum coverage and minimal cost. Part of this planning system includes the MATLAB implementation of Erdem and Sclaroff’s Radial Sweep algorithm for visibility polygon generation. Additionally, 2-D camera modeling is proposed for both fixed and PTZ cases. Finally, the interceptor is also placed to minimize shortest-path flight time to any point on the perimeter during a detection event. Secondly, a basic flight control system for the UAV helicopter is designed and implemented. The flight control system’s primary goal is to hover the helicopter in place when a human operator holds an automatic-flight switch. This system represents the first step in a complete waypoint-navigation flight control system. The flight control system is based on an inertial measurement unit (IMU) and a proportional-integral-derivative (PID) controller. This system is implemented using a general-purpose personal computer (GPPC) running Windows XP and other commercial off-the-shelf (COTS) hardware. This setup differs from other helicopter control systems which typically use custom embedded solutions or micro-controllers. Experiments demonstrate the sensor placement planning achieving \u3e90% coverage at optimized-cost for several typical areas given multiple camera types and parameters. Furthermore, the helicopter flight control system experiments achieve hovering success over short flight periods. However, the final conclusion is that the COTS IMU is insufficient for high-speed, high-frequency applications such as a helicopter control system

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique

    MODELLING THE POTENTIAL FOR SPATIALLY DISTRIBUTED, NATURAL FLOOD-RISK MANAGEMENT TECHNIQUES TO MITIGATE FLOOD RISK AT THE CATCHMENT SCALE FOR A UK AGRICULTURAL CATCHMENT

    Get PDF
    impact of flooding throughout the UK is significant and the financial burden felt by individuals, communities and the government. Many flood alleviation schemes are delivered using hard-engineered approaches that can provide high standards of protection, but do not address the root cause of flooding. Delivering civil engineering schemes cannot always be justified using the current cost-benefit criteria or due to difficulties of in working within a settlement. This justifies the need to investigate sustainable, lower-cost initiatives that can be delivered more holistically and remotely from the receptor settlement. Natural Flood-Risk Management (NFM) is an area of great interest that has had several comprehensive reviews and a Defra release of ÂŁ15 million in flood and coastal erosion risk management research and development funding. The aim of NFM is to work with natural hydrological processes and restore the natural water holding capacity of catchments. Currently, there is a lack of evidence on the benefits of this approach and whether or not they can be delivered efficiently to the same standard of protection for the same design life. This research thesis used two complementary approaches to assessing NFM potential: (1) rapid connectivity risk mapping assessment (SCIMAP-Flood); and (2) detailed, physically based, fully spatially distributed simulation of catchment hydrology (CRUM3). These methods have been combined to provide a powerful toolkit to effectively target mitigation of flood risk and to simulate potential impact on flood peak through a variety of NFM interventions. These methods were applied to the study area (Tutta Beck), a 7.06km2 agricultural catchment that flooded twice in 2012. A variety of flood mitigation strategies were investigated in the Tutta Beck catchment, including spatially distributed land cover change to intercept and resist overland flow, woody debris dams to slow the flow of water through the channel network and spatially targeted depressions to attenuate overland flow. It was established for this catchment that the most effective technique for reducing peak discharge was the use of in channel large woody debris spatially targeted using SCIMAP-Flood, particularly when combined with spatially distributed attenuation

    OBSERVER-BASED-CONTROLLER FOR INVERTED PENDULUM MODEL

    Get PDF
    This paper presents a state space control technique for inverted pendulum system. The system is a common classical control problem that has been widely used to test multiple control algorithms because of its nonlinear and unstable behavior. Full state feedback based on pole placement and optimal control is applied to the inverted pendulum system to achieve desired design specification which are 4 seconds settling time and 5% overshoot. The simulation and optimization of the full state feedback controller based on pole placement and optimal control techniques as well as the performance comparison between these techniques is described comprehensively. The comparison is made to choose the most suitable technique for the system that have the best trade-off between settling time and overshoot. Besides that, the observer design is analyzed to see the effect of pole location and noise present in the system

    State-Feedback Controller Based on Pole Placement Technique for Inverted Pendulum System

    Get PDF
    This paper presents a state space control technique for inverted pendulum system using simulation and real experiment via MATLAB/SIMULINK software. The inverted pendulum is difficult system to control in the field of control engineering. It is also one of the most important classical control system problems because of its nonlinear characteristics and unstable system. It has three main problems that always appear in control application which are nonlinear system, unstable and non-minimumbehavior phase system. This project will apply state feedback controller based on pole placement technique which is capable in stabilizing the practical based inverted pendulum at vertical position. Desired design specifications which are 4 seconds settling time and 5 % overshoot is needed to apply in full state feedback controller based on pole placement technique. First of all, the mathematical model of an inverted pendulum system is derived to obtain the state space representation of the system. Then, the design phase of the State-Feedback Controller can be conducted after linearization technique is performed to the nonlinear equation with the aid of mathematical aided software such as Mathcad. After that, the design is simulated using MATLAB/Simulink software. The controller design of the inverted pendulum system is verified using simulation and experiment test. Finally the controller design is compared with PID controller for benchmarking purpose

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Simulation of the effects of climate change on forage and cattle production in Saskatchewan

    Get PDF
    Multiple global climate models suggest that the Canadian Prairies will experience temperature increases due to climate warming. This could influence pasture and grazing production. Three climate scenarios CGCM2 A21, CSIROMk2 B11 and HadCM3 A21 were used to predict daily weather data to 2099 and incorporated into the GrassGro decision support tool to project pastoral production during 30-year increments, 2010 to 2099. Simulations were compared with the World Meterological Organization baseline years, 1961-1990 at two sites (Saskatoon and Melfort) and two soil textures (loam topsoil / loam subsoil and sandy-loam / sandy-clay-loam). Two tame grasses [crested wheatgrass (CWG; Agropyron cristatum) and hybrid bromegrass (HBG; Bromus inermis x Bromus riparius) and a mixed native pasture (Festuca hallii; Elymus lanceolatus; Pascopyrum smithii; Nassella viridula) were studied at each location. Soil moisture was greater for loam/loam than sandy-loam/sandy-clay-loam resulting in more plant available moisture in all climate scenarios at both locations. However, plant available moisture alone was unable to explain changes in pasture dry matter (DM) production. The results projected from CGCM2 A21 were more favorable to plant and livestock production than those of CSIROMk2 B11 and HadCM3 A21. CGCM2 A21 simulated increases in mean DM production of HBG at both locations during spring each 30-yr period (

    Optimal trajectory design for interception and deflection of Near Earth Objects

    Get PDF
    Many asteroids and comets orbit the inner solar system; among them Near Earth Objects (NEOs) are those celestial bodies for which the orbit lies close, and sometimes crosses, the Earth's orbit. Over the last decades the impact hazard they pose to the Earth has generated heated discussions on the required measures to react to such a scenario. The aim of the research presented in this dissertation is to develop methodologies for the trajectory design of interception and deflection missions to Near Earth Objects. The displacement, following a deflection manoeuvre, of the asteroid at the minimum orbit intersection distance with the Earth is expressed by means of a simple and general formulation, which exploits the relative motion equations and Gauss' equations. The variation of the orbital elements achieved by any impulsive or low-thrust action on the threatening body is derived through a semi-analytical approach, whose accuracy is extensively shown. This formulation allows the analysis of the optimal direction of the deflection manoeuvre to maximise the achievable deviation. The search for optimal opportunities for mitigation missions is done through a global optimisation approach. The transfer trajectory, modelled through preliminary design techniques, is integrated with the deflection model. In this way, the mission planning can be performed by optimising different contrasting criteria, such as the mass at launch, the warning time, and the total deflection. A set of Pareto fronts is computed for different deflection strategies and considering various asteroid mitigation scenarios. Each Pareto set represents a number of mission opportunities, over a wide domain of launch windows and design parameters. A first set of results focuses on impulsive deflection missions, to a selected group of potentially hazardous asteroids; the analysis shows that the ideal optimal direction of the deflection manoeuvre cannot always be achieved when the transfer trajectory is integrated with the deflection phase. A second set of results includes solutions for the deviation of some selected NEOs by means of a solar collector strategy. The semi-analytical formulation derived allows the reduction of the computational time, hence the generation of a large number of solutions. Moreover, sets of Pareto fronts for asteroid mitigation are computed through the more feasible deflection schemes proposed in literature: kinetic impactor, nuclear interceptor, mass driver device, low-thrust attached propulsion, solar collector, and gravity tug. A dominance criterion is used to perform a comparative assessment of these mitigation strategies, while also considering the required technological development through a technology readiness factor. The global search of solutions through a multi-criteria optimisation approach represents the first stage of the mission planning, in which preliminary design techniques are used for the trajectory model. At a second stage, a selected number of trajectories can be optimised, using a refined model of the dynamics. For this purpose, the use of Differential Dynamic Programming (DDP) is investigated for the solution of the optimal control problem associated to the design of low-thrust trajectories. The stage-wise approach of DDP is exploited to integrate an adaptive step discretisation scheme within the optimisation process. The discretisation mesh is adjusted at each iteration, to assure high accuracy of the solution trajectory and hence fully exploit the dynamics of the problem within the optimisation process. The feedback nature of the control law is preserved, through a particular interpolation technique that improves the robustness against some approximation errors. The modified DDP-method is presented and applied to the design of transfer trajectories to the fly-by or rendezvous of NEOs, including the escape phase at the Earth. The DDP approach allows the optimisation of the trajectory as a whole, without recurring to the patched conic approach. The results show how the proposed method is capable of fully exploiting the multi-body dynamics of the problem; in fact, in one of the study cases, a fly-by of the Earth is scheduled, which was not included in the first guess solution
    • 

    corecore