8 research outputs found

    Intercept Probability Analysis of Cooperative Wireless Networks with Best Relay Selection in the Presence of Eavesdropping Attack

    Full text link
    Due to the broadcast nature of wireless medium, wireless communication is extremely vulnerable to eavesdropping attack. Physical-layer security is emerging as a new paradigm to prevent the eavesdropper from interception by exploiting the physical characteristics of wireless channels, which has recently attracted a lot of research attentions. In this paper, we consider the physical-layer security in cooperative wireless networks with multiple decode-and-forward (DF) relays and investigate the best relay selection in the presence of eavesdropping attack. For the comparison purpose, we also examine the conventional direct transmission without relay and traditional max-min relay selection. We derive closed-form intercept probability expressions of the direct transmission, traditional max-min relay selection, and proposed best relay selection schemes in Rayleigh fading channels. Numerical results show that the proposed best relay selection scheme strictly outperforms the traditional direct transmission and max-min relay selection schemes in terms of intercept probability. In addition, as the number of relays increases, the intercept probabilities of both traditional max-min relay selection and proposed best relay selection schemes decrease significantly, showing the advantage of exploiting multiple relays against eavesdropping attack.Comment: 5 pages. arXiv admin note: substantial text overlap with arXiv:1305.081

    Physical-Layer Security with Multiuser Scheduling in Cognitive Radio Networks

    Full text link
    In this paper, we consider a cognitive radio network that consists of one cognitive base station (CBS) and multiple cognitive users (CUs) in the presence of multiple eavesdroppers, where CUs transmit their data packets to CBS under a primary user's quality of service (QoS) constraint while the eavesdroppers attempt to intercept the cognitive transmissions from CUs to CBS. We investigate the physical-layer security against eavesdropping attacks in the cognitive radio network and propose the user scheduling scheme to achieve multiuser diversity for improving the security level of cognitive transmissions with a primary QoS constraint. Specifically, a cognitive user (CU) that satisfies the primary QoS requirement and maximizes the achievable secrecy rate of cognitive transmissions is scheduled to transmit its data packet. For the comparison purpose, we also examine the traditional multiuser scheduling and the artificial noise schemes. We analyze the achievable secrecy rate and intercept probability of the traditional and proposed multiuser scheduling schemes as well as the artificial noise scheme in Rayleigh fading environments. Numerical results show that given a primary QoS constraint, the proposed multiuser scheduling scheme generally outperforms the traditional multiuser scheduling and the artificial noise schemes in terms of the achievable secrecy rate and intercept probability. In addition, we derive the diversity order of the proposed multiuser scheduling scheme through an asymptotic intercept probability analysis and prove that the full diversity is obtained by using the proposed multiuser scheduling.Comment: 12 pages. IEEE Transactions on Communications, 201

    Optimal Relay Selection for Physical-Layer Security in Cooperative Wireless Networks

    Full text link
    In this paper, we explore the physical-layer security in cooperative wireless networks with multiple relays where both amplify-and-forward (AF) and decode-and-forward (DF) protocols are considered. We propose the AF and DF based optimal relay selection (i.e., AFbORS and DFbORS) schemes to improve the wireless security against eavesdropping attack. For the purpose of comparison, we examine the traditional AFbORS and DFbORS schemes, denoted by T-AFbORS and TDFbORS, respectively. We also investigate a so-called multiple relay combining (MRC) framework and present the traditional AF and DF based MRC schemes, called T-AFbMRC and TDFbMRC, where multiple relays participate in forwarding the source signal to destination which then combines its received signals from the multiple relays. We derive closed-form intercept probability expressions of the proposed AFbORS and DFbORS (i.e., P-AFbORS and P-DFbORS) as well as the T-AFbORS, TDFbORS, T-AFbMRC and T-DFbMRC schemes in the presence of eavesdropping attack. We further conduct an asymptotic intercept probability analysis to evaluate the diversity order performance of relay selection schemes and show that no matter which relaying protocol is considered (i.e., AF and DF), the traditional and proposed optimal relay selection approaches both achieve the diversity order M where M represents the number of relays. In addition, numerical results show that for both AF and DF protocols, the intercept probability performance of proposed optimal relay selection is strictly better than that of the traditional relay selection and multiple relay combining methods.Comment: 13 page

    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY (ACCEPTED) 1 An Energy-Efficient Uncoordinated Cooperative Scheme with Uncertain Relay Distribution Intensity

    Get PDF
    Abstract-Due to signal fading and user mobility in wireless networks, quality-of-service (QoS) provisioning for wireless services becomes more challenging. As a promising technique, cooperative communications make use of the broadcasting nature of wireless medium to facilitate data transmission, and thereby reduce energy consumption. However, in many studies on wireless cooperative diversity, it is often assumed that the number of relays or the relay distribution intensity is known a priori. In this paper, we relax such assumption and propose an algorithm to estimate the relay intensity for a backoff-based cooperative scheme, where the relays are distributed as a homogeneous Poisson point process (PPP). It is proved that the algorithm can converge to an optimal solution with the minimum estimation error. Based on the estimated relay intensity, we further investigate a distributed energy saving strategy, which selectively turns off some relays to reduce energy consumption while maintaining the required transmission success probability. The performance of the proposed cooperative scheme is analytically evaluated with respect to the collision probability. The numerical and simulation results demonstrate the high accuracy and efficiency of the intensity estimation algorithm and also validate the theoretical analysis. Moreover, the proposed cooperative scheme exhibits significant energy saving and satisfactory transmission performance, which offers a good match to accommodate green communications in wireless networks. Index Terms-Cooperative wireless networks, distributed relaying, intensity estimation, energy efficiency

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Threshold-Based Relay Selection for Cooperative Wireless Network

    Get PDF
    Cooperative communication plays a vital role in the wireless domain recently due to its numerous benefits such as coverage extension, improvement in spectral efficiency, and throughput by increasing the complexity of the system. Furthermore, security becomes a key issue for implementing a cooperative communication system. In this thesis, the complexity is reduced by employing differential modulation as they do not require complete channel state information (CSI). Different threshold-based relay selection schemes are also proposed to reduce complexity. Furthermore, the security issue in the cooperative wireless network is addressed by enhancing the physical layer security using the proposed double threshold-based optimal relay selection scheme
    corecore