Due to the broadcast nature of wireless medium, wireless communication is
extremely vulnerable to eavesdropping attack. Physical-layer security is
emerging as a new paradigm to prevent the eavesdropper from interception by
exploiting the physical characteristics of wireless channels, which has
recently attracted a lot of research attentions. In this paper, we consider the
physical-layer security in cooperative wireless networks with multiple
decode-and-forward (DF) relays and investigate the best relay selection in the
presence of eavesdropping attack. For the comparison purpose, we also examine
the conventional direct transmission without relay and traditional max-min
relay selection. We derive closed-form intercept probability expressions of the
direct transmission, traditional max-min relay selection, and proposed best
relay selection schemes in Rayleigh fading channels. Numerical results show
that the proposed best relay selection scheme strictly outperforms the
traditional direct transmission and max-min relay selection schemes in terms of
intercept probability. In addition, as the number of relays increases, the
intercept probabilities of both traditional max-min relay selection and
proposed best relay selection schemes decrease significantly, showing the
advantage of exploiting multiple relays against eavesdropping attack.Comment: 5 pages. arXiv admin note: substantial text overlap with
arXiv:1305.081