3,229 research outputs found

    Recent changes in the surface salinity of the North Atlantic subpolar gyre

    Get PDF
    Sea surface salinity (SSS) was measured since 1896 along 60°N between Greenland and the North Sea and since 1993 between Iceland and Newfoundland. Along 60°N away from the shelves, and north of 53°N, the amplitude of the seasonal cycle is comparable to or less than interannual variability. In these parts of the North Atlantic subpolar gyre, large-scale deviations from the seasonal cycle correlate from one season to the next. This suggests that in these regions, summer and autumn surface data are useful for monitoring changes in upper ocean salinity best diagnosed from less common winter surface data. Further south near the subarctic front, the Labrador Current or near shelves where seasonal variability is strong, this is not the case. Along 60°N, the multiannual low-frequency variability is well correlated across the basin and exhibits fresher surface water since the mid 1970s than in the late 1920s to 1960s. SSS in the Irminger Sea along 60°N lags by 1-year SSS farther east in the Iceland Basin. Variability between Iceland and Newfoundland within the Irminger Sea north of 54°N presents similar characteristics to what is observed along 60°N. Variability near the northwest corner of the North Atlantic Current (52°N/45°W) is larger and is not correlated to what is found further north. Maps of SSS were constructed for a few recent seasons between July 1996 and June 2000, which illustrate the fresh conditions found usually during that period across the whole North Atlantic subpolar gyre, although this includes an episode of higher salinity. The SSS anomaly maps have large uncertainties but suggest that the highest SSS occurred before the spring of 1998 in the Iceland Basin, and after that, in the Irminger Sea. This is followed by fresher conditions, first in the Labrador and Iceland Basin, reaching recently the Irminger Sea

    Does Pacific variability influence the Northwest Atlantic shelf temperature?

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 4110–4131, doi:10.1029/2017JC013414.The relationship between North Pacific variability and sea surface temperature (SST) of the Northwest Atlantic continental shelf is examined over interannual time scale in 1982–2014. Statistically significant negative correlations exist between Pacific Decadal Oscillation (PDO) index and SST in the Gulf of Maine (GoM) in spring and summer. Cross‐correlation analysis further suggests significant negative lead‐lag correlations, with the spring PDO leading the GoM SST by 0–3 months while the summer PDO lags by 1–3 months. These correlations are dominated by the interannual component of the PDO. Statistical relationships are placed in context by further investigating the physical processes controlling the upper ocean mixed layer temperature budget in the GoM. The results reveal contrasting roles between the atmosphere and the ocean in spring and summer, respectively. Local atmospheric forcings, in particular the radiative air‐sea fluxes, are the dominant driver for the interannual variability of springtime SST over the Northwest Atlantic shelf. In contrast, oceanic terms are important in controlling the interannual variability of summertime SST. As a result, reconstructed SST using atmospheric forcings successfully reproduces the statistical relationship with PDO in spring, but not in summer. Furthermore, it is shown that the SST anomalies in the central and eastern North Pacific play a key role in these relationships.National Science Foundation Ocean Science Division Grant Numbers: OCE‐1435602 , OCE‐1558960 , OCE‐1634094; National Oceanic and Atmospheric Administration Climate Program Office MAPP program Grant Number: NA170AR43101112018-12-2

    Weakening and Shifting of the Saharan Shallow Meridional Circulation During Wet Years of the West African Monsoon

    Full text link
    The correlation between increased Sahel rainfall and reduced Saharan surface pressure is well established in observations and global climate models, and has been used to imply that increased Sahel rainfall is caused by a stronger shallow meridional circulation (SMC) over the Sahara. This study uses two atmospheric reanalyses to examine interannual variability of Sahel rainfall and the Saharan SMC, which consists of northward near-surface flow across the Sahel into the Sahara and southward flow near 700 hPa out of the Sahara. During wet Sahel years, the Saharan SMC shifts poleward, producing a drop in low-level geopotential and surface pressure over the Sahara. Statistically removing the effect of the poleward shift from the low-level geopotential eliminates significant correlations between this geopotential and Sahel precipitation. As the Saharan SMC shifts poleward, its mid-tropospheric divergent outflow decreases, indicating a weakening of its overturning mass flux. The poleward shift and weakening of the Saharan SMC during wet Sahel years is reproduced in an idealized model of West Africa; a wide range of imposed sea surface temperature and land surface albedo perturbations in this model produce a much larger range of SMC variations that nevertheless have similar quantitative associations with Sahel rainfall as in the reanalyses. These results disprove the idea that enhanced Sahel rainfall is caused by strengthening of the Saharan SMC. Instead, these results are consistent with the hypothesis that the a stronger SMC inhibits Sahel rainfall, perhaps by advecting mid-tropospheric warm and dry air into the precipitation maximum.Comment: Submitted to Journal of Climat

    Remote climate forcing of decadal-scale regime shifts in Northwest Atlantic shelf ecosystems

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2013. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Association for the Sciences of Limnology and Oceanography, doi:10.4319/lo.2013.58.3.0803.Decadal-scale regime shifts in Northwest Atlantic shelf ecosystems can be remotely forced by climate-associated atmosphere–ocean interactions in the North Atlantic and Arctic Ocean Basins. This remote climate forcing is mediated primarily by basin- and hemispheric-scale changes in ocean circulation. We review and synthesize results from process-oriented field studies and retrospective analyses of time-series data to document the linkages between climate, ocean circulation, and ecosystem dynamics. Bottom-up forcing associated with climate plays a prominent role in the dynamics of these ecosystems, comparable in importance to that of top-down forcing associated with commercial fishing. A broad perspective, one encompassing the effects of basin- and hemispheric-scale climate processes on marine ecosystems, will be critical to the sustainable management of marine living resources in the Northwest Atlantic.Funding for this research was provided by the National Science Foundation as part of the Regional and Pan-Regional Synthesis Phases of the U.S. Global Ocean Ecosystem (GLOBEC) Program

    Wind-induced interannual variability of sea level slope, along-shelf flow, and surface salinity on the Northwest Atlantic shelf

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 2462–2479, doi:10.1002/2013JC009385.In this study, we examine the importance of regional wind forcing in modulating advective processes and hydrographic properties along the Northwest Atlantic shelf, with a focus on the Nova Scotian Shelf (NSS)-Gulf of Maine (GoM) region. Long-term observational data of alongshore wind stress, sea level slope, and along-shelf flow are analyzed to quantify the relationship between wind forcing and hydrodynamic responses on interannual time scales. Additionally, a simplified momentum balance model is used to examine the underlying mechanisms. Our results show significant correlation among the observed interannual variability of sea level slope, along-shelf flow, and alongshore wind stress in the NSS-GoM region. A mechanism is suggested to elucidate the role of wind in modulating the sea level slope and along-shelf flow: stronger southwesterly (northeastward) winds tend to weaken the prevailing southwestward flow over the shelf, building sea level in the upstream Newfoundland Shelf region, whereas weaker southwesterly winds allow stronger southwestward flow to develop, raising sea level in the GoM region. The wind-induced flow variability can influence the transport of low-salinity water from the Gulf of St. Lawrence to the GoM, explaining interannual variations in surface salinity distributions within the region. Hence, our results offer a viable mechanism, besides the freshening of remote upstream sources, to explain interannual patterns of freshening in the GoM.This work was supported by NOAA’s Fisheries and the Environment Program, Grant #12-03 and through NOAA Cooperative Agreement NA09OAR4320129.2014-10-1

    Decline and partial rebound of the Labrador Current 1993-2004: Monitoring ocean currents from altimetric and CTD data

    Get PDF
    Monitoring and understanding of Labrador Current ariability is important because it is intimately linked to the meridional overturning circulation and the marine ecosystem off northeast North America. Nevertheless, knowledge of its decadal variability is inadequate because of scarcity of current meter data. By using a novel synthesis of satellite altimetry with conductivity-temperaturedepth (CTD) data we assess the Labrador Current variability north of the Hamilton Bank (56oN) over 1993-2004. Our analysis shows a decline of the surface-to-bottom transport of current by 6.3 ± 1.5 Sv (1 Sv =106 m3 s-1) in the 1990s (significant at the 99% confidence level) and a likely partial rebound of 3.2 ± 1.7 Sv in the early 2000s (significant at the 89% confidence level only). The inferred multiyear changes in the Labrador Current transport seem to be primarily barotropic and positively correlated (at the 99% level) with the North Atlantic Oscillation at zero lag implying a fast response of the regional circulation to the atmospheric forcing variability. The results compare favorably with direct current measurements and recent model-based findings on the multi-year variability of the subpolar gyre and its underlying mechanisms. The study demonstrates the feasibility of combining altimetry and CTD data for assessing the climatic variability of the boundary currents

    Impacts of basin-scale climate modes on coastal sea level: a review

    Get PDF
    Global sea level rise (SLR) associated with a warming climate exerts significant stress on coastal societies and low-lying island regions. The rates of coastal SLR observed in the past few decades, however, have large spatial and temporal differences from the global mean, which to a large part have been attributed to basin-scale climate modes. In this paper, we review our current state of knowledge about climate modes’ impacts on coastal sea level variability from interannual-to-multidecadal timescales. Relevant climate modes, their impacts and associated driving mechanisms through both remote and local processes are elaborated separately for the Pacific, Indian and Atlantic Oceans. This paper also identifies major issues and challenges for future research on climate modes’ impacts on coastal sea level. Understanding the effects of climate modes is essential for skillful near-term predictions and reliable uncertainty quantifications for future projections of coastal SLR

    A numerical model study of the effects of interannual timescale wave propagation on the predictability of the Atlantic meridional overturning circulation

    Get PDF
    We investigate processes leading to uncertainty in forecasts of the Atlantic meridional overturning circulation (AMOC). A climate model is used to supply initial conditions for ensemble simulations in which members initially have identical ocean states but perturbed atmosphere states. Baroclinic transports diverge on interannual timescales even though the ocean is not eddy-permitting. Interannual fluctuations of the model AMOC in the subtropical gyre are caused by westward propagating Rossby waves. Divergence of the predicted AMOC with time occurs because the waves develop different phases in different ensemble members predominantly due to differences in eastern boundary windstress curl. These windstress fluctuations communicate with interior ocean transports via modifications to the vertical velocity and the vortex stretching term dw/dz. Consequently, errors propagate westwards resulting in longer predictability times in the interior ocean compared with the eastern boundary. Another source of divergence is transport anomalies propagating along the Gulf Stream (and other boundary currents). The propagation mechanism seems to be predominantly advection by mean currents, and we show that the arrival of westward propagating waves can trigger development of these anomalies. The mean state of the AMOC has a small effect on interannual predictability in the subtropical gyre, most likely because eastern boundary windstress curl predictability is not strongly dependent on the state of the AMOC in the subtropics. Eastern boundary windstress curl was more predictable at 45{degree sign}N when the AMOC was in a strongly decreasing state, but, unlike at 30{degree sign}N, no mechanism was found linking windstress curl fluctuations with deep transports
    corecore