12,069 research outputs found

    Circulant temporal encoding for video retrieval and temporal alignment

    Get PDF
    We address the problem of specific video event retrieval. Given a query video of a specific event, e.g., a concert of Madonna, the goal is to retrieve other videos of the same event that temporally overlap with the query. Our approach encodes the frame descriptors of a video to jointly represent their appearance and temporal order. It exploits the properties of circulant matrices to efficiently compare the videos in the frequency domain. This offers a significant gain in complexity and accurately localizes the matching parts of videos. The descriptors can be compressed in the frequency domain with a product quantizer adapted to complex numbers. In this case, video retrieval is performed without decompressing the descriptors. We also consider the temporal alignment of a set of videos. We exploit the matching confidence and an estimate of the temporal offset computed for all pairs of videos by our retrieval approach. Our robust algorithm aligns the videos on a global timeline by maximizing the set of temporally consistent matches. The global temporal alignment enables synchronous playback of the videos of a given scene

    LiveSketch: Query Perturbations for Guided Sketch-based Visual Search

    Get PDF
    LiveSketch is a novel algorithm for searching large image collections using hand-sketched queries. LiveSketch tackles the inherent ambiguity of sketch search by creating visual suggestions that augment the query as it is drawn, making query specification an iterative rather than one-shot process that helps disambiguate users' search intent. Our technical contributions are: a triplet convnet architecture that incorporates an RNN based variational autoencoder to search for images using vector (stroke-based) queries; real-time clustering to identify likely search intents (and so, targets within the search embedding); and the use of backpropagation from those targets to perturb the input stroke sequence, so suggesting alterations to the query in order to guide the search. We show improvements in accuracy and time-to-task over contemporary baselines using a 67M image corpus.Comment: Accepted to CVPR 201

    Using video objects and relevance feedback in video retrieval

    Get PDF
    Video retrieval is mostly based on using text from dialogue and this remains the most signi¯cant component, despite progress in other aspects. One problem with this is when a searcher wants to locate video based on what is appearing in the video rather than what is being spoken about. Alternatives such as automatically-detected features and image-based keyframe matching can be used, though these still need further improvement in quality. One other modality for video retrieval is based on segmenting objects from video and allowing end users to use these as part of querying. This uses similarity between query objects and objects from video, and in theory allows retrieval based on what is actually appearing on-screen. The main hurdles to greater use of this are the overhead of object segmentation on large amounts of video and the issue of whether we can actually achieve effective object-based retrieval. We describe a system to support object-based video retrieval where a user selects example video objects as part of the query. During a search a user builds up a set of these which are matched against objects previously segmented from a video library. This match is based on MPEG-7 Dominant Colour, Shape Compaction and Texture Browsing descriptors. We use a user-driven semi-automated segmentation process to segment the video archive which is very accurate and is faster than conventional video annotation

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Non-Parametric Probabilistic Image Segmentation

    Get PDF
    We propose a simple probabilistic generative model for image segmentation. Like other probabilistic algorithms (such as EM on a Mixture of Gaussians) the proposed model is principled, provides both hard and probabilistic cluster assignments, as well as the ability to naturally incorporate prior knowledge. While previous probabilistic approaches are restricted to parametric models of clusters (e.g., Gaussians) we eliminate this limitation. The suggested approach does not make heavy assumptions on the shape of the clusters and can thus handle complex structures. Our experiments show that the suggested approach outperforms previous work on a variety of image segmentation tasks

    Word matching using single closed contours for indexing handwritten historical documents

    Get PDF
    Effective indexing is crucial for providing convenient access to scanned versions of large collections of historically valuable handwritten manuscripts. Since traditional handwriting recognizers based on optical character recognition (OCR) do not perform well on historical documents, recently a holistic word recognition approach has gained in popularity as an attractive and more straightforward solution (Lavrenko et al. in proc. document Image Analysis for Libraries (DIAL’04), pp. 278–287, 2004). Such techniques attempt to recognize words based on scalar and profile-based features extracted from whole word images. In this paper, we propose a new approach to holistic word recognition for historical handwritten manuscripts based on matching word contours instead of whole images or word profiles. The new method consists of robust extraction of closed word contours and the application of an elastic contour matching technique proposed originally for general shapes (Adamek and O’Connor in IEEE Trans Circuits Syst Video Technol 5:2004). We demonstrate that multiscale contour-based descriptors can effectively capture intrinsic word features avoiding any segmentation of words into smaller subunits. Our experiments show a recognition accuracy of 83%, which considerably exceeds the performance of other systems reported in the literature

    Hierarchical structure-and-motion recovery from uncalibrated images

    Full text link
    This paper addresses the structure-and-motion problem, that requires to find camera motion and 3D struc- ture from point matches. A new pipeline, dubbed Samantha, is presented, that departs from the prevailing sequential paradigm and embraces instead a hierarchical approach. This method has several advantages, like a provably lower computational complexity, which is necessary to achieve true scalability, and better error containment, leading to more stability and less drift. Moreover, a practical autocalibration procedure allows to process images without ancillary information. Experiments with real data assess the accuracy and the computational efficiency of the method.Comment: Accepted for publication in CVI
    corecore