11,589 research outputs found

    Introducing Interactions in Multi-Objective Optimization of Software Architectures

    Full text link
    Software architecture optimization aims to enhance non-functional attributes like performance and reliability while meeting functional requirements. Multi-objective optimization employs metaheuristic search techniques, such as genetic algorithms, to explore feasible architectural changes and propose alternatives to designers. However, the resource-intensive process may not always align with practical constraints. This study investigates the impact of designer interactions on multi-objective software architecture optimization. Designers can intervene at intermediate points in the fully automated optimization process, making choices that guide exploration towards more desirable solutions. We compare this interactive approach with the fully automated optimization process, which serves as the baseline. The findings demonstrate that designer interactions lead to a more focused solution space, resulting in improved architectural quality. By directing the search towards regions of interest, the interaction uncovers architectures that remain unexplored in the fully automated process

    Metaheuristic models for decision support in the software construction process

    Get PDF
    En la actualidad, los ingenieros software no solo tienen la responsabilidad de construir sistemas que desempe~nen una determinada funcionalidad, sino que cada vez es más importante que dichos sistemas también cumplan con requisitos no funcionales como alta disponibilidad, efciencia o seguridad, entre otros. Para lograrlo, los ingenieros se enfrentan a un proceso continuo de decisión, pues deben estudiar las necesidades del sistema a desarrollar y las alternativas tecnológicas existentes para implementarlo. Todo este proceso debe estar encaminado a la obtención de sistemas software de gran calidad, reutilizables y que faciliten su mantenimiento y modificación en un escenario tan exigente y competitivo. La ingeniería del software, como método sistemático para la construcción de software, ha aportado una serie de pautas y tareas que, realizadas de forma disciplinada y adaptadas al contexto de desarrollo, posibilitan la obtención de software de calidad. En concreto, el proceso de análisis y diseño del software ha adquirido una gran importancia, pues en ella se concibe la estructura del sistema, en términos de sus bloques funcionales y las interacciones entre ellos. Es en este momento cuando se toman las decisiones acerca de la arquitectura, incluyendo los componentes que la conforman, que mejor se adapta a los requisitos, tanto funcionales como no funcionales, que presenta el sistema y que claramente repercuten en su posterior desarrollo. Por tanto, es necesario que el ingeniero analice rigurosamente las alternativas existentes, sus implicaciones en los criterios de calidad impuestos y la necesidad de establecer compromisos entre ellos. En este contexto, los ingenieros se guían principalmente por sus habilidades y experiencia, por lo que dotarles de métodos de apoyo a la decisión representaría un avance significativo en el área. La aplicación de técnicas de inteligencia artificial en este ámbito ha despertado un gran interés en los últimos años. En particular, la inteligencia artificial ha encontrado en la ingeniería del software un ámbito de aplicación complejo, donde diferentes técnicas pueden ayudar a conseguir la semi-automatización de tareas tradicionalmente realizadas de forma manual. De la unión de ambas áreas surge la denominada ingeniería del software basada en búsqueda, que propone la reformulación de las actividades propias de la ingeniería del software como problemas de optimización. A continuación, estos problemas podrían ser resueltos mediante técnicas de búsqueda como las metaheurísticas. Este tipo de técnicas se caracterizan por explorar el espacio de posibles soluciones de una manera \inteligente", a menudo simulando procesos naturales como es el caso de los algoritmos evolutivos. A pesar de ser un campo de investigación muy reciente, es posible encontrar propuestas para automatizar una gran variedad de tareas dentro del ciclo de vida del software, como son la priorización de requisitos, la planifcación de recursos, la refactorización del código fuente o la generación de casos de prueba. En el ámbito del análisis y diseño de software, cuyas tareas requieren de creatividad y experiencia, conseguir una automatización completa resulta poco realista. Es por ello por lo que la resolución de sus tareas mediante enfoques de búsqueda debe ser tratada desde la perspectiva del ingeniero, promoviendo incluso la interacción con ellos. Además, el alto grado de abstracción de algunas de sus tareas y la dificultad de evaluar cuantitativamente la calidad de un diseño software, suponen grandes retos en la aplicación de técnicas de búsqueda durante las fases tempranas del proceso de construcción de software. Esta tesis doctoral busca realizar aportaciones significativas al campo de la ingeniería del software basada en búsqueda y, más concretamente, al área de la optimización de arquitecturas software. Aunque se están realizando importantes avances en este área, la mayoría de propuestas se centran en la obtención de arquitecturas de bajo nivel o en la selección y despliegue de artefactos software ya desarrollados. Por tanto, no existen propuestas que aborden el modelado arquitectónico a un nivel de abstracción elevado, donde aún no existe un conocimiento profundo sobre cómo será el sistema y, por tanto, es más difícil asistir al ingeniero. Como problema de estudio, se ha abordado principalmente la tarea del descubrimiento de arquitecturas software basadas en componentes. El objetivo de este problema consiste en abstraer los bloques arquitectónicos que mejor definen la estructura actual del software, así como sus interacciones, con el fin de facilitar al ingeniero su posterior análisis y mejora. Durante el desarrollo de esta tesis doctoral se ha explorado el uso de una gran variedad de técnicas de búsqueda, estudiando su idoneidad y realizando las adaptaciones necesarias para hacer frente a los retos mencionados anteriormente. La primera propuesta se ha centrado en la formulación del descubrimiento de arquitecturas como problema de optimización, abordando la representación computacional de los artefactos software que deben ser modelados y definiendo medidas software para evaluar su calidad durante el proceso de búsqueda. Además, se ha desarrollado un primer modelo basado en algoritmos evolutivos mono-objetivo para su resolución, el cual ha sido validado experimentalmente con sistemas software reales. Dicho modelo se caracteriza por ser comprensible y exible, pues sus componentes han sido diseñados considerando estándares y herramientas del ámbito de la ingeniería del software, siendo además configurable en función de las necesidades del ingeniero. A continuación, el descubrimiento de arquitecturas ha sido tratado desde una perspectiva multiobjetivo, donde varias medidas software, a menudo en con icto, deben ser simultáneamente optimizadas. En este caso, la resolución del problema se ha llevado a cabo mediante ocho algoritmos del estado del arte, incluyendo propuestas recientes del ámbito de la optimización de muchos objetivos. Tras ser adaptados al problema, estos algoritmos han sido comparados mediante un extenso estudio experimental con el objetivo de analizar la ifnuencia que tiene el número y la elección de las métricas a la hora de guiar el proceso de búsqueda. Además de realizar una validación del rendimiento de estos algoritmos siguiendo las prácticas habituales del área, este estudio aporta un análisis detallado de las implicaciones que supone la optimización de múltiples objetivos en la obtención de modelos de soporte a la decisión. La última propuesta en el contexto del descubrimiento de arquitecturas software se centra en la incorporación de la opinión del ingeniero al proceso de búsqueda. Para ello se ha diseñado un mecanismo de interacción que permite al ingeniero indicar tanto las características deseables en las soluciones arquitectónicas (preferencias positivas) como aquellos aspectos que deben evitarse (preferencias negativas). Esta información es combinada con las medidas software utilizadas hasta el momento, permitiendo al algoritmo evolutivo adaptar la búsqueda conforme el ingeniero interactúe. Dadas las características del modelo, su validación se ha realizado con la participación de ingenieros con distinta experiencia en desarrollo software, a fin de demostrar la idoneidad y utilidad de la propuesta. En el transcurso de la tesis doctoral, los conocimientos adquiridos y las técnicas desarrolladas también han sido extrapolados a otros ámbitos de la ingeniería del software basada en búsqueda mediante colaboraciones con investigadores del área. Cabe destacar especialmente la formalización de una nueva disciplina transversal, denominada ingeniería del software basada en búsqueda interactiva, cuyo fin es promover la participación activa del ingeniero durante el proceso de búsqueda. Además, se ha explorado la aplicación de algoritmos de muchos objetivos a un problema clásico de la computación orientada a servicios, como es la composición de servicios web.Nowadays, software engineers have not only the responsibility of building systems that provide a particular functionality, but they also have to guarantee that these systems ful l demanding non-functional requirements like high availability, e ciency or security. To achieve this, software engineers face a continuous decision process, as they have to evaluate system needs and existing technological alternatives to implement it. All this process should be oriented towards obtaining high-quality and reusable systems, also making future modi cations and maintenance easier in such a competitive scenario. Software engineering, as a systematic method to build software, has provided a number of guidelines and tasks that, when done in a disciplinarily manner and properly adapted to the development context, allow the creation of high-quality software. More speci cally, software analysis and design has acquired great relevance, being the phase in which the software structure is conceived in terms of its functional blocks and their interactions. In this phase, engineers have to make decisions about the most suitable architecture, including its constituent components. Such decisions are made according to the system requirements, either functional or non-functional, and will have a great impact on its future development. Therefore, the engineer has to rigorously analyse existing alternatives, their implications on the imposed quality criteria and the need of establishing trade-o s among them. In this context, engineers are mostly guided by their own capabilities and experience, so providing them with decision support methods would represent a signi cant contribution. The application of arti cial intelligent techniques in this area has experienced a growing interest in the last years. Particularly, software engineering represents a complex application domain to arti cial intelligence, whose diverse techniques can help in the semi-automation of tasks traditionally performed manually. The union of both elds has led to the appearance of search-based software engineering, which proposes reformulating software engineering activities as optimisation problems. For their resolution, search techniques like metaheuristics can be then applied. This type of technique performs an \intelligent" exploration of the space of candidate solutions, often inspired by natural processes as happens with evolutionary algorithms. Despite the novelty of this research eld, there are proposals to automate a great variety of tasks within the software lifecycle, such as requirement prioritisation, resource planning, code refactoring or test case generation. Focusing on analysis and design, whose tasks require creativity and experience, trying to achieve full automation is not realistic. Therefore, solving design tasks by means of search approaches should be oriented towards the engineer's perspective, even promoting their interaction. Furthermore, design tasks are also characterised by a high level of abstraction and the di culty of quantitatively evaluating design quality. All these aspects represent key challenges for the application of search techniques in early phases of the software construction process. The aim of this Ph.D. Thesis is to make signi cant contributions in search-based software engineering and, specially, in the area of software architecture optimisation. Although it is an area in which signi cant progress is being done, most of the current proposals are focused on generating low-level architectures or selecting and deploying already developed artefacts. Therefore, there is a lack of proposals dealing with architectural modelling at a high level of abstraction. At this level, engineers do not have a deep understanding of the system yet, meaning that assisting them is even more di cult. As case study, the discovery of component-based software architectures has been primary addressed. The objective for this problem consists in the abstraction of the architectural blocks, and their interactions, that best de ne the current structure of a software system. This can be viewed as the rst step an engineer would perform in order to further analyse and improve the system architecture. In this Ph.D. Thesis, the use of a great variety of search techniques has been explored. The suitability of these techniques has been studied, also making the necessary adaptations to cope with the aforementioned challenges. A rst proposal has been focused on the formulation of software architecture discovery as an optimisation problem, which consists in the computational representation of its software artefacts and the de nition of software metrics to evaluate their quality during the search process. Moreover, a single-objective evolutionary algorithm has been designed for its resolution, which has been validated using real software systems. The resulting model is comprehensible and exible, since its components have been designed under software engineering standards and tools and are also con gurable according to engineer's needs. Next, the discovery of software architectures has been tackled from a multi-objective perspective, in which several software metrics, often in con ict, have to be simultaneously optimised. In this case, the problem is solved by applying eight state-of-theart algorithms, including some recent many-objective approaches. These algorithms have been adapted to the problem and compared in an extensive experimental study, whose purpose is to analyse the in uence of the number and combination of metrics when guiding the search process. Apart from the performance validation following usual practices within the eld, this study provides a detailed analysis of the practical implications behind the optimisation of multiple objectives in the context of decision support. The last proposal is focused on interactively including the engineer's opinion in the search-based architecture discovery process. To do this, an interaction mechanism has been designed, which allows the engineer to express desired characteristics for the solutions (positive preferences), as well as those aspects that should be avoided (negative preferences). The gathered information is combined with the software metrics used until the moment, thus making possible to adapt the search as the engineer interacts. Due to the characteristics of the proposed model, engineers of di erent expertise in software development have participated in its validation with the aim of showing the suitability and utility of the approach. The knowledge acquired along the development of the Thesis, as well as the proposed approaches, have also been transferred to other search-based software engineering areas as a result of research collaborations. In this sense, it is worth noting the formalisation of interactive search-based software engineering as a cross-cutting discipline, which aims at promoting the active participation of the engineer during the search process. Furthermore, the use of many-objective algorithms has been explored in the context of service-oriented computing to address the so-called web service composition problem

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    Metaheuristic Design Patterns: New Perspectives for Larger-Scale Search Architectures

    Get PDF
    Design patterns capture the essentials of recurring best practice in an abstract form. Their merits are well established in domains as diverse as architecture and software development. They offer significant benefits, not least a common conceptual vocabulary for designers, enabling greater communication of high-level concerns and increased software reuse. Inspired by the success of software design patterns, this chapter seeks to promote the merits of a pattern-based method to the development of metaheuristic search software components. To achieve this, a catalog of patterns is presented, organized into the families of structural, behavioral, methodological and component-based patterns. As an alternative to the increasing specialization associated with individual metaheuristic search components, the authors encourage computer scientists to embrace the ‘cross cutting' benefits of a pattern-based perspective to optimization algorithms. Some ways in which the patterns might form the basis of further larger-scale metaheuristic component design automation are also discussed

    System Architecture Design Using Multi-Criteria Optimization

    Get PDF
    System architecture is defined as the description of a complex system in terms of its functional requirements, physical elements and their interrelationships. Designing a complex system architecture can be a difficult task involving multi-faceted trade-off decisions. The system architecture designs often have many project-specific goals involving mix of quantitative and qualitative criteria and a large design trade space. Several tools and methods have been developed to support the system architecture design process in the last few decades. However, many conventional problem solving techniques face difficulties in dealing with complex system design problems having many goals. In this research work, an interactive multi-criteria design optimization framework is proposed for solving many-objective system architecture design problems and generating a well distributed set of Pareto optimal solutions for these problems. System architecture design using multi-criteria optimization is demonstrated using a real-world application of an aero engine health management (EHM) system. A design process is presented for the optimal deployment of the EHM system functional operations over physical architecture subsystems. The EHM system architecture design problem is formulated as a multi-criteria optimization problem. The proposed methodology successfully generates a well distributed family of Pareto optimal architecture solutions for the EHM system, which provides valuable insights into the design trade-offs. Uncertainty analysis is implemented using an efficient polynomial chaos approach and robust architecture solutions are obtained for the EHM system architecture design. Performance assessment through evaluation of benchmark test metrics demonstrates the superior performance of the proposed methodology

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Deep learning for video game playing

    Get PDF
    In this article, we review recent Deep Learning advances in the context of how they have been applied to play different types of video games such as first-person shooters, arcade games, and real-time strategy games. We analyze the unique requirements that different game genres pose to a deep learning system and highlight important open challenges in the context of applying these machine learning methods to video games, such as general game playing, dealing with extremely large decision spaces and sparse rewards
    corecore