8,650 research outputs found

    A fuzzy multiobjective algorithm for multiproduct batch plant: Application to protein production

    Get PDF
    This paper addresses the problem of the optimal design of batch plants with imprecise demands and proposes an alternative treatment of the imprecision by using fuzzy concepts. For this purpose, we extended a multiobjective genetic algorithm (MOGA) developed in previousworks, taking into account simultaneously maximization of the net present value (NPV) and two other performance criteria, i.e. the production delay/advance and a flexibility criterion. The former is computed by comparing the fuzzy computed production time to a given fuzzy production time horizon and the latter is based on the additional fuzzy demand that the plant is able to produce. The methodology provides a set of scenarios that are helpful to the decision’s maker and constitutes a very promising framework for taken imprecision into account in new product development stage

    An interactive layout exploration and optimisation method for early stage ship design

    Get PDF
    This paper presents a novel, highly interactive genetic algorithm-based layout exploration and optimisation method for generating spatial configurations of ships in the early stages of the design process. The method draws upon the principles of design-driven architecturally centred ship design processes by enabling the naval architects to make important decisions in a hybrid design process. The method utilises a genetic algorithm-based optimisation tool to rapidly generate and evaluate a diverse set of general arrangement options. It is approached in stages where each stage comprises two steps (manual and automatic). The new genetic algorithm-based layout optimisation tool is demonstrated by being applied to an Offshore Patrol Vessel test case. The advantages and disadvantages of the proposed tool are discussed, as well as the current limitations of the overall approach and future work

    Evolutionary multi-objective decision support systems for conceptual design

    Get PDF
    Merged with duplicate record 10026.1/2328 on 07.20.2017 by CS (TIS)In this thesis the problem of conceptual engineering design and the possible use of adaptive search techniques and other machine based methods therein are explored. For the multi-objective optimisation (MOO) within conceptual design problem, genetic algorithms (GA) adapted to MOO are used and various techniques explored: weighted sums, lexicographic order, Pareto method with and without ranking, VEGA-like approaches etc. Large number of runs are performed for findingZ Dth e optimal configuration and setting of the GA parameters. A novel method, weighted Pareto method is introduced and applied to a real-world optimisation problem. Decision support methods within conceptual engineering design framework are discussed and a new preference method developed. The preference method for translating vague qualitative categories (such as "more important 91 , 4m.9u ch less important' 'etc. ) into quantitative values (numbers) is based on fuzzy preferences and graph theory methods. Several applications of preferences are presented and discussed: * in weighted sum based optimisation methods; s in weighted Pareto method; * for ordering and manipulating constraints and scenarios; e for a co-evolutionary, distributive GA-based MOO method; The issue of complexity and sensitivity is addressed as well as potential generalisations of presented preference methods. Interactive dynamical constraints in the form of design scenarios are introduced. These are based on a propositional logic and a fairly rich mathematical language. They can be added, deleted and modified on-line during the design session without need for recompiling the code. The use of machine-based agents in conceptual design process is investigated. They are classified into several different categories (e. g. interface agents, search agents, information agents). Several different categories of agents performing various specialised task are developed (mostly dealing with preferences, but also some filtering ones). They are integrated with the conceptual engineering design system to form a closed loop system that includes both computer and designer. All thesed ifferent aspectso f conceptuale ngineeringd esigna re applied within Plymouth Engineering Design Centre / British Aerospace conceptual airframe design project.British Aerospace Systems, Warto

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Understanding requirements dependency in requirements prioritization: a systematic literature review

    Get PDF
    Requirement prioritization (RP) is a crucial task in managing requirements as it determines the order of implementation and, thus, the delivery of a software system. Improper RP may cause software project failures due to over budget and schedule as well as a low-quality product. Several factors influence RP. One of which is requirements dependency. Handling inappropriate handling of requirements dependencies can lead to software development failures. If a requirement that serves as a prerequisite for other requirements is given low priority, it affects the overall project completion time. Despite its importance, little is known about requirements dependency in RP, particularly its impacts, types, and techniques. This study, therefore, aims to understand the phenomenon by analyzing the existing literature. It addresses three objectives, namely, to investigate the impacts of requirements dependency on RP, to identify different types of requirements dependency, and to discover the techniques used for requirements dependency problems in RP. To fulfill the objectives, this study adopts the Systematic Literature Review (SLR) method. Applying the SLR protocol, this study selected forty primary articles, which comprise 58% journal papers, 32% conference proceedings, and 10% book sections. The results of data synthesis indicate that requirements dependency has significant impacts on RP, and there are a number of requirements dependency types as well as techniques for addressing requirements dependency problems in RP. This research discovered various techniques employed, including the use of Graphs for RD visualization, Machine Learning for handling large-scale RP, decision making for multi-criteria handling, and optimization techniques utilizing evolutionary algorithms. The study also reveals that the existing techniques have encountered serious limitations in terms of scalability, time consumption, interdependencies of requirements, and limited types of requirement dependencies

    Design synthesis of complex ship structures

    Get PDF
    • 

    corecore