
Evolutionary Multi-Objective Decision Support Systems
for Conceptual Design

by

Dragan CvetkoviC'

A thesis submitted to the University of Plymouth

in partial fulfilment for the degree of

DOCTOR OF PIDILOSOPHY

School of Computing

Faculty of Technology

University of Plymouth

In collaboration with
British Aerospace Systems, Warton

July 2000

This copy of the thesis has been supplied on the condition that anyone who consults it is understood
to recognise that its copyright rests with its author and that no quotation from the thesis and no
information derivedfrom, it may be published without the author's prior consent.

Evolutionary Multi-Objective Decision Support Systems for Conceptual Design

Dragan Cvetkovic

Abstract

In this thesis the problem of conceptual engineering design and the possible use of adaptive search

techniques and other machine based methods therein are explored. For the multi-objective opti-

misation (MOO) within conceptual design problem, genetic algorithms (GA) adapted to MOO are

used and various techniques explored: weighted sums, lexicographic order, Pareto method with and

without ranking, VEGA-like approaches etc. Large number of runs are performed for finding the ZD

optimal configuration and setting of the GA parameters. A novel method, weighted Pareto method is

introduced and applied to a real-world optimisation problem.

Decision support methods within conceptual engineering design framework are discussed and a new

preference method developed. The preference method for translating vague qualitative categories

(such as "more important 91 , 4.9 much less important' 'etc.) into quantitative values (numbers) is based

on fuzzy preferences and graph theory methods. Several applications of preferences are presented

and discussed:

* in weighted sum based optimisation methods;

s in weighted Pareto method;

* for ordering and manipulating constraints and scenarios;

e for a co-evolutionary, distributive GA-based MOO method;

The issue of complexity and sensitivity is addressed as well as potential generalisations of presented

preference methods. Interactive dynamical constraints in the form of design scenarios are introduced.

These are based on a propositional logic and a fairly rich mathematical language. They can be added,

deleted and modified on-line during the design session without need for recompiling the code.

The use of machine-based agents in conceptual design process is investigated. They are classified

into several different categories (e. g. interface agents, search agents, information agents). Several

different categories of agents performing various specialised task are developed (mostly dealing with

preferences, but also some filtering ones). They are integrated with the conceptual engineering design

system to form a closed loop system that includes both computer and designer.

All these different aspects of conceptual engineering design are applied within Plymouth Engineering

Design Centre / British Aerospace conceptual airframe design project.

Contents

Contents ii

List of Tables A

List of Figures vii

Acknowledgments ix

Declaration

Introduction 1

1.1 Engineering design -A short introduction 1

1.1.1 Creativity in design 3

1.1.2 Design functions 4

1.1.3 Basic problems in conceptual design 5

1.1.4 Phases of aircraft design 6

1.2 MCDM and conceptual design 7

1.3 Overview of the thesis 8

2 Genetic Algorithms 10

2.1 Genetic algorithms - An introduction 10

2.1.1 Formal definition of GA 12

2.2 Real-valued genetic algorithms 12

2.3 Operators for the real-valued GA 13

2.3.1 Crossover operator 13

2.3.2 Mutation 15

2.3.3 Selection 15

2.4 Other evolutionary methods 16

3 Multi-Objective Optimisation 18

3.1 Difference between single-objective and multi-objectiveoptimisation 19

3.1.1 Partial and total order 19

ii

3.1.2 Concept of optimum in multi-objective optimisation 20

3.2 Multi-obj ective optimisation methods 21

3.2.1 Scalarisation method - Weighted sum 21

3.2.2 Lexicographic ordering 23

3.2.3 Pareto based methods 24

3.2.4 Vector evaluated genetic algorithm (VEGA) 25

3.2.5 Variants of VEGA 26

3.3 BAe function 27

3.3.1 Interaction among variables 28

3.4 Pareto ranking 30

3.4.1 Why ranking? 32

3.4.2 Some general remarks about searching 32

3.5 Pareto optimisation based methods 33

3.5.1 Definition of weighted Pareto method 33

4 Optimal Parameter Setting for the RGA for Multi-Objective Optimisation 37

4.1 Related work 38

4.2 Mutation 39

4.2.1 Mutation type 40

4.2.2 Parameters of EXP mutation 40

4.3 Crossover 42

4.3.1 Crossover type 42

4.3.2 Crossover probability 44

4.4 Selection type 44

4.5 An ideal setting - discussion and conclusions 46

5 Use of Preferences in Multi-Objective Optimisation 47

5.1 Introduction - Accuracy of quantitative qualification 47

5.2 MCDM and MCDA 48

5.2.1 MCDM and its main features 48

5.2.2 From MCDM to MCDA 49

5.2.3 Requisite for preferences 50

5.3 Fuzzy preferences and orders 50

5.3.1 Preference order
51

5.3.2 Our approach 52

5.3.3 Formal definition and properties
53

5.3.4 Some philosophical aspects on transitivity
55

iii

5.3.5 Group preferences 56

5.4 Descri ption of the preference algorithm 58

5.4.1 Initial values of parameters and their influence 62

5.4.2 Scalability and complexity issue 64

5.4.3 Lootsma's work 66

5.4.4 Greenwood's work 68

5.4.5 Conclusion
.............................. 69

6 Applications of Preferences 70

6.1 Weighted sum based optimisation 70

6.2 Pareto optimisation based methods 70

6.2.1 Simple function example 71

6.3 BAe function and GA/Pareto optirnisation 71

6.4 Example involving 8 objectives 73

6.5 Example with 13 objectives 76

6.6 Restricting Pareto front 77

6.7 Combining preferences with cooperative optimisation 77

6.8 Problems, discussion and further research path 81

7 Scenarios in Engineering Design 84

7.1 Scenarios ... 85

7.1.1 Combinations of scenarios 87

7.2 Different scenarios scenario 88

7.3 Applications of scenarios go

7.4 Scenarios in BAe system for conceptual design 92

8 Agents and their Use in Conceptual Design 94

8.1 Introduction and a general framework 94

8.1.1 Agent hierarchy 96

8.1.2 Negotiations 96

8.1.3 Agent communication 97

8.1.4 The use of reinforcement learning 97

8.1.5 Agents, yes or no? 98

8.2 Agents developed for BAe conceptual design process 99

8.3 Interface agents 100

8.4 Search agents 102

8.4.1 Jump-out agent 102

IV

8.4.2 Quality monitoring agent 103

8.4.3 Constraint agent 103

.
8.4.4 Scenario agent 103

8.4.5 Population monitoring agent 104

8.5 Agent cooperation 105

8.5.1 Our idea of compromise 106

8.6 Information agents 108

8.7 Closing loop: Agents in a BAe conceptual design context 108

8.7.1 Incremental agent 109

8.7.2 Agent-scenario example 110

Conclusion 113

References 116

Appendices 130

A Definability of orders 130

BC code for preferences 131

C Scenario examples 138

V

List of Tables

3.1 Influence of weight on BAe function 23

3.2 Optimising different combinations of objectives gives different results 29

3.3 Pareto (PAR), random lexicographic (LEX) and weighted sum (WEI) optimisations, average

over 50 runs. Here 0<F, < 0.005 and a(y) is the standard deviation of y............. 29

3.4 Results on maximising y3, y4 and yq using different optimisation methods 30

3.5 Examples of ranks ...
31

4.1 Results on different mutation types
40

4.2 Results on different mutation factors for EXP mutation
41

4.3 Results on different crossover types
42

4.4 Results on different SBX types without mutation
43

4.5 Results on different crossover probabilities
44

4.6 Results for BAe using uniform crossover and different selection methods 45

5.1 Influence of parameters a andy on valuation in Example 5.2
65

5.2 The number of questions fiq(k) needed fork objectives with random answers
66

6.1 Ordering of objectives
76

vi

List of Figures

1.1 Simplified model of design process 3

1.2 The design loop ... 3

1.3 Process design
... 7

2.1 The Simple Genetic Algorithm 10

2.2 Different crossover operators I................. 14

2.3 Probability distributions for (a) GauO mutation and (b) EXP mutation 16

3.1 Example of partial order. Points A, B, C, D and E are maximal elements of the order 20

3.2 Plot of the function (3.5) 21

3.3 Influence of weights on BAe function 23

3.4 Pareto front examples 25

3.5 Basic VEGA algorithm 26

3.6 Schematic presentation of British Aerospace (BAe) function 27

3.7 Function BAe component vise 28

3.8 Graphical representation of Pareto, rankings r, and r2 31

3.9 Non-dominated percent of the population for tournament selection of size 2, average over 50

runs. Average with standard deviation as error bars 32

3.10 Standard and extended dominance by Branke, KauBler & Schmeck (2000) 35

3.11 Size of (w,, r)-Pareto front of y4 versus yq for the BAe function as a function of w andc. ... 36

4.1 Normalised fitness and number of generations for different mutation factors for EXP mutation. 41

4.2 Normalised fitness and number of generations for different crossover types 43

4.3 Fitness and generations as a function of crossover probability 44

4.4 Fitness and Generations for different selection types 45

5.1 Partial order a>e>d>b ; ý-, c.................................. 52

5.2 Lower andupperboundfor(5.21) fordifferentv and (a) k=6, m=4 and (b) k= 13, m= 10.64

5.3 The number of questions h. (k) needed fork objectives with random answers and the maximal

number n* (k). Average over 100 runs
66 q

vii

6.1 The influence of preference settings on the BAe function 71

6.2 Different parts of Pareto front of function (6.1) for different preferences 72

6.3 Schema of an engineering design system 72

6.4 w-Pareto front Of Y3 versus y4 of the BAe function 73

6.5 w-Pareto front of y4 versus yq of the BAe function for different preferences 74

6.6 3D slices of Pareto fronts (y3, y7, yq), (Y5
3 Y7) yq) and (Y3, Y9) Y13) with and without preferences. 75

6.7 Pareto, front size as a function of restricting parameter (xc 78

6.8 Restricting Pareto front for y4 < yq preferences. Influence of ac factor 78

6.9 Converging towards common solution 80

6.10 Co-evolution and different preferences: results for FR. Process So optimises SEP 1 and process

S, optimises FR .. 81

6.11 Co-evolution and different preferences: results for SEP1. Process So optimises SEPI and pro-

cess S, optimises FR .. 82

7.1 The initial phase of computer aided whole system design 84

7.2 Formal Backus-Naur Form (BNF) grammar of scenarios 86

7.3 Formal Backus-Naur Form (BNF) grammar for scenarios 88

7.4 Schema of the computer/human design system 92

7.5 Transformation of fitness function 93

8.1 Agent communication methods 97

8.2 Agent hierarchy 100

8.3 An interface agent sitting between designer and computer 101

8.4 Jump out of domain 103

8.5 Elimination one of constraints 104

8.6 Solving original problem F minus one scenario Si 104

8.7 Changing region of the search space 105

8.8 Agents cooperation and designer interaction in resolving AI- A3 conflict 106

8.9 Calculating penalty of a solution 107

8.10 Agents in a BAe context 108

8.11 GA - Scenarios - Agents closed loop 109

9.1 Schema of IEDS ..
115

viii

Acknowledgments

I would like to thank my supervisor Dr Ian Parmee and Plymouth Engineering Design Centre colleagues for

their support during my research.

I would also like to thank to Dr Kalyanmoy Deb and to Dr Carlos A. Coello Coello for discussion and for

ideas that emerged during those discussion.

'Manks also goes to British Aerospace for their support of the project and especially to Erik Webb and

Richard Dell.

And last, but not least I would like to my wife Jana for her encouragement, support and bearing, with me

during this period.

ix

Declaration

At no time during the registration for the degree Doctor of Philosophy has the author been registered for any

other University award.

This study was financed by the EPSRC and British Aerospace p1c.

Throughout the course of the research, close links were maintained with British Aerospace p1c. The re-

search has been presented at the following international conferences and in the following journals:

Cvetkovi6, D. & Parmee, 1. C. (1998), Evolutionary design and multi-objective optimisation, in '6th European
Congress on Intelligent Techniques and Soft Computing EUFIT'98', Aachen, Gennany, pp. 397-40 1.

Cvetkovi6, D. & Parmee, 1. C. (I 999a), Genetic algorithm-based multi-objective optimisation and conceptual
engineering design, in 'Proceedings of the 1999 Congress on Evolutionary Computation - CEC99% IEEE,
Washington D. C., USA, pp. 29-36.

Cvetkovi6, D. & Parmee, 1. C. (1999b), Genetic algorithms based systems for conceptual engineering design,
in U. Lindemann, H. Birkhofer, H. Meerkamm & S. VaJna, eds, 'Proceedings of the 12th International
Conference on Engineering Design ICED'99', Vol. 2, TU MOnchen, Manchen, Germany, pp. 103 5-103 8.

Cvetkovi6, D. & Parmee, 1. C. (1999c), Use of preferences for GA-based multi-objective optimisation, in
W. Banzhaf & J. D. et al., eds, 'GECCO-99: Proceedings of the Genetic and Evolutionary Computation
Conference', Morgan Kauftnann, Orlando, Florida, USA, pp. 1504-1509.

Cvetkovi6, D. & Parmee, 1. C. (2000a), Agentt-based support within an interactive evolutionary design system,
Technical report, PEDC, University of Plymouth, Plymouth, UK. submitted to 'Research in Engineering
Design'journal.

Cvetkovid, D. & Parmee, 1. C. (2000b), The application of genetic algorithms and preferences in engineering
design, Technical Report PEDC-0 1 -2000, PEDC, University of Plymouth, Plymouth, UK.

Cvetkovid, D. & Parmee, 1. C. (2000c), Designer's preferences and mult"bjective preliminary design pro-
cesses, in 1. C. Parmee, ed., 'Evolutionary Design and Manufacture: Selected Papers from ACDM'00',
Springer, London, pp. 249-260.

Cvetkovi6, D. & Parmee, 1. C. (2000d), Preferences and their application in multi-objective optimisation, Tech-

nical report, PEDC, University of Plymouth, Plymouth, UK. submitted to IEEE Transactions on Evolu-
tionary Computation journal.

Cvetkovi6, D., Parmee, 1. C. & Webb, E. (1998), Multi-objective optimisation and preliminary airframe design,
in 1. C. Parmee, ed., 'Adaptive Computing in Design and Manufacture', Springer-Verlag, pp. 255-267.

Parmee, 1. C., Cvetkovi6, D., Bonham, C. R. & Mitchell, D. (2000), Towards interactive evolutionary design

systems for the satisfaction of multiple and changing objectives, in 'European Congress on Computational
Methods in Applied Sciences and Engineering (ECCOMAS 2000)', Barcelona, Spain.

Parmee, 1. C., Cvetkovi6, D., Bonham, C. R. & Packharn, 1. S. (2000), Introducing prototype interactive evolu-
tionary systems for il"efined multi-objective design environments, Technical report, PEDC, University

of Plymouth, Plymouth, UK. Submitted to 'Advances in Engineering Software'.

Pan-nee, 1. C., Cvetkovi6, D., Bonham, C. R. & Watson, A. H. (2000), Interactive evolutionary conceptual
design systems, in J. S. Gero, ed., 'Artificial Intelligence in Design'00', Kluwer Academic Publishers,
Dordrecht, pp. 249-268.

Parmee, I. C., Cvetkovi6, D., Watson, A. H. & Bonham, C. R. (2000), 'Multi-objective satisfaction within an
interactive evolutionary design environment', Evolutionary Computation 8(2), pp. 197-222.

Signed:

I

Date:
_ýý

kk[1ý0 0

CHAPTER1

Introduction

In this thesis different adaptive and preference methods are explored and developed and applied to the concep-

tual engineering design process.

This chapter explains the basic problems in conceptual engineering design and the next chapter will explain

the basic optimisation methods that are being used in this thesis.

This following quote (from 1, Robof 'by Isaac Asimov, first published in 1950, (Asimov 1982, p. 697))

very much describes the problem of conceptual design and the fuzziness of that process:

"My dear Byerley, I see that you instinctivelyfollow that great error - that the Machine knows
all. Let me cite you a case from my personal exp erience. The cotton industry engages experienced
buyers who purchase cotton. Their procedure is to pull a tuft of cotton out of a random bale of a
lot. They will look at that tuft andfeel it, tease it out, listen to the crackling perhaps as they do,
touch it with their tongue, - and through this procedure they will determine the class of cotton the
bales represent. There are about a dozen such classes. As a result of their decisions, purchases are
made at certain prices, blends are made in certain proportions. -Now these buyers cannot yet be
replaced by the Machine"

"Why not? Surely the data involved is not too complicatedfor it? "
"Probably not. But what data is this you refer to? No textile chemist knows exactly what it is

that the buyers tests when he feels the tuft of cotton. Presumably there's the average length of the
threads, theirfeel, the extent and nature of their slickness, the way they hang together and so on.

- Several dozen items, subconsciously weighted, out of years of experience. But the quantitative
nature of these tests is not known. So we have nothing to feed the Machine. Nor can the buyers

explain their own judgement. They can only say, 'Well, look at it. Can't you tell it's class-such-
and-such ?

"I see. "
"There are innumerable cases like that. The Machine is only a tool after all, which can help

humanity progress faster by taking some of the burden of calculations and interpretations off his
back. The task of the human brain remains what it has always been; that of discovering new data

to be analysed, and of devising new concepts to be tested. "

1.1 Engineering design -A short introduction

Phadke (1989, p. 1) gives the following short definition of engineering design and its objective:

The objective of engineering design, a major part of research and development (R&D) is to pro-
duce drawings, specifications, and other relevant information needed to manufacture products that

meet customer requirements.

According to Pahl & Beitz (1996), "... the main task of engineers is to apply their scientific and engineering

knowledge to the solution of the technical problems, and then to optimise those solutions within the require-

ments and constraints set by material, technological, economical, legal, environmental and human-related

considerations. Problems become concrete tasks after the clarification and definition of the problems which

engineers have to solve to create new technical products (artifacts). The mental creation of a new product is the

task of design or development engineers, whereas its physical realisation is the responsibility of manufacturing

engineers. [...] Designers contribute to finding solutions and developing products in a very specific way. They

carry a heavy responsibility since their ideas, knowledge and skills determine in a decisive way the technical,

economic and ecological properties of the product. "

The activities of designers can be roughly classified into the following (Pahl & Beitz 1996):

1. Conceptualising i. e. searching for solution principles;

2. Embodying i. e. engineering a solution principle by determining the general arrangement and prelim-

inary shapes and materials of all components;

3. DetaWng i. e. finalising production and operational details;

4. Computing drawing and information collecting. These occur during all phases of the design process.

Accordingly, there are four stages of design process (Sen & Yang 1998, Pahl & Beitz 1996):

1. Conceptual design is that part of the design process in which, by the identification of the essential

problems through abstraction, by the establishment of function structures and by the search for ap-

propriate working principles and their combination, the basic solution path is laid down through the

elaboration of a solution principle. Conceptual design detennines the principle of a solution (Pahl

& Beitz 1996, p. 139).

2. Preliminary design. Some authors do not consider preliminary design as a separate stage and con-

sider it a part of conceptual design. According to Dym (1994, p. 33), the preliminary layout is

obtained by refining the conceptual designs and ranking them against the design specifications, and

choosing the best as the preliminary design.

3. Embodiment design is that part of design process in which, starting from the working structure or

concept of a technical product, the design is developed, in accordance with technical and economic

criteria and in the light of further information, to the point where subsequent detail design can lead

directly to production (Pahl & Beitz 1996, p. 199).

4. Detail design is that part of the design process which completes the embodiment of technical products

with final instructions about the layout, forms, dimensions and surface properties of all individual

components, the definitive selection of materials and a final scrutiny of the production methods,

operating procedures and costs (Pahl & Beitz 1996, p. 400).

2

Design process in its most general framework is presented in Figure 1.1. However, it is seldom so straight-

forward, in most cases it corresponds more to a design spiral (Sen & Yang 1998, p. 4) where the requirements

of design are met incrementally until some compromising design criteria have been met.

Conceptual
Design

Preliminary
Design

Embodiment
Design

Detail
Design

Figure 1.1. Simplified model of design process

The following classification of engineering design in 4 phases in not the unique one: some authors make

distinction between embodiment and detailed design (Pahl & Beitz 1996), some others make difference between

conceptual and prelitninary design, but it all very much depends on the product developed.

On the more general level, design consists of a loop: product design ++ manufacturing ý-+ marketing i-+

improvement ++ product design (Suh 1990) as presented in Figure 1.2.

Reformulate

Shortcomings:
discrepancies,

failure to improve

Recognise
Societal Need & formalise ompare

(code)

Functional
requireiments &

constraints Product
attributes

--------------------------- Marketplace <ýý ---------------

Figure 1.2. The design loop.

Creativity in esign

Product.
prototype,

process

Creativity is a very important component of some design phases. According to the level of creativity involved,

design can be classified into the following 4 categories (B ahrarni & Dagh 1994):

3

Creative Design: A priori plan for the solution of the problem does not exist. Design is an abstract

decomposition of the problem into a set of levels that represents choices for the components of

the problem. Ile key element in this design type is the transformation from the subconscious to

conscious.

Innovative Design: The decomposition of the problem is known, but the alternatives for each of its

subparts do not exist and must be synthesised. Design might be an original or unique combination

of existing components. It can be argued that a certain amount of creativity comes into play in the

innovative design process.

Redesign: An existing design is modified to meet required changes in the original functional require-

ments;

Routine Design: A priori plan of the solution exists. The subparts and alternatives are known in ad-

vance, perhaps as a result of either a creative or innovative design process. Routine design involves

finding the appropriate alternatives for each subpart that satisfy the given constraints.

At the creative end of the spectrum, design is very fuzzy. As it moves to routine design, it gets precise,

crisp and predetermined.

Gero, (1990) gives the following classification of creativity in design:

* if the design variables and the ranges of values they can take remain fixed during design processing,

then the process is routine design;

* if the design variables remain fixed but the ranges of value change, then it is innovative design;

* if design variables change too, then it is creative design

According to (Goel 1997):

... problem formulation and reformulation are integral parts of creative design. Designers' un-
derstanding of a problem typically evolves during creative design processing. This evolution of
problem understanding may lead to (possible radical) changes in the problem and solution rep-
resentations. [... I in creative design, knowledge needed to address a problem typically is not
available in aform directly applicable to the problem. Instead, at least some of the needed knowl-

edge has to be acquired from other knowledge sources, by analogical transfer from a different

problemfor example. [... I creativity in design lies on a continuum. That is, creativity in design

may occur in degrees, where the degree of creativity may depend on the extent ofproblem and so-
lution reformulation and the transfer of knowledgefrom different knowledge sources to the desian

problem.

1.1.2 Design functions

The design function in engineering design is best described with a following quote:

Problem solving is common to all engineering work. The problem may involve quantitative

or qualitative factors; it may be physical or economic; it may require abstract mathematics or

common sense. Of great importance is the process of creative synthesis or design, putting ideas

together to create a new and optimum solution.

4

Although engineering problems vary in scope and complexity, the same general approach is
applicable. First comes an analysis of the situation and a preliminary decision on a plan of attack-
In line with this plan, the problem is reduced to a more categorical question that can be clearly
stated. The stated question is then answered by deductive reasoning from known principles or by
creative synthesis, as in a new design. The answer or design is always checked for accuracy and
adequacy. Finally, the results for the simplified problem are interpreted in terms of the original
problem and reported in an appropriateform.

In order o decreasing emphasis on science, the majorfunctions of all engineering branches f
are thefollowing:

Research Using mathematical and scientific concepts, experimental techniques, and inductive
reasoning, the research engineer seeks new principles andprocesses.

Development Development engineers apply the results of research to useful purposes. Creative
application of new knowledge may result in a working model of a new electrical circuit, a
chemical process, or an industrial machine.

Design In designing a structure or a product, the engineer selects methods, specifies materials,
and determines shapes to satisfy technical requirements and to meet performance specifica-
tions.

Construction The construction engineer is responsible for preparing the site, determining proce-
dures that will economically and safely yield the desired quality, directing the placement of
materials, and organizing the personnel and equipment.

Production Plant layout and equipment selection are the responsibility of the production engi-
neer, who chooses processes and tools, integrates theflow of materials and components, and
providesfor testing and inspection.

Operation The operating engineer controls machines, plants, and organizations providing power,
transportation, and communication; determines procedures; and supervises personnel to
obtain reliable and economic operation of complex equipment.

Management and other functions In some countries and industries, engineers analyze customers'
requirements, recommend units to satisfy needs economically, and resolve related problems.

Copyright 1994-1998 Encyclopaedia Britannica

With the integration of computers in everyday life, computers also play a major role in engineering design.

Since the mid-1960s, computer technology has been continually developed to the point at which
aircraft and engine designs can be simulated and tested in myriad variations under afull spectrum
of environmental conditions prior to construction. As a result, practical consideration may be
given to a series of aircraft configurations, which, while occasionally and usually unsuccessfully
attempted in the past, can now be used in production aircraft. These includeforward swept wings,
canard surfaces, blended body and wings, and the refinement of specialized airfoils (wing, pro-
peller, and turbine blade). With this goes afar more comprehensive understanding of structural
requirements, so that adequate strength can be maintained even as reductions are made in weight.

Copyright 1994-1998 Encyclopaedia Britannica

1.1.3 Basic problems in conceptual design

Some of the basic problems of conceptual design are briefly explained below. Those are the requirements

arising in discussion with industrial partners (Parmee & Purchase 1997, Parmee 1998a, Parmee & Bonham

1998, Cvetkovid, Parmee & Webb 1998):

* There are objectives and there are constraints. The difference between them is very fuzzy and some of

them will move from objectives to constraints or vice versa. Some constraints are hard, some not; some

will change or disappear whilst others may be introduced as the problem knowledge base expands.

5

In many cases the variable ranges are also fuzzy and flexible and there is a requirement for exploration

outside of the default regions. The reason is that the real bounds and limits are not always known from

the very beginning and could be rather artificial limitations.

* The output should contain both optimal solutions and suggestions of extending ranges and/or inclu-

sion/removals of constraints.

*A set of results is required which the engineer can analyse off-line. That means that the engineer should

be able to input those results to some other programs or to consult some database or persons for different

aspects of given solutions.

* The end-user (designer) should not be confused with the number of parameters and possibilities the

(optimisation) program offers, cognitive overload must be avoided.

* The engineer wishes to interact with the search process by sampling results after N functions evaluations,

and adapting parameters and/or constraints.

The problems of conceptual design relate to the fuzzy nature of initial design concepts and the many differ-

ent variants that engineers wish to try. Computers should be able to help them in exploration of those variants

whilst suggesting some others as well. This problem has been investigated in the Plymouth Engineering Design

Centre (PEDC) before (Parmee & Denham 1994, Parmee 1997).

1.1.4 Phases of aircraft design

The collaborative industrial project with British Aerospace (BAe) relates to airframe design and development.

The electronic version of Encyclopxdia Britannica quotes the following regarding the design of aircrafts (em-

phasis are mine). However, the similar principles and phases apply to almost any complex product design.

... The design of a flight vehicle is a complex and time-consuming procedure requiring the
integration of many engineering technologies. Supporting teams are formed to provide expertise
in these technologies, resulting in a completed design that is the best compromise of all the en-
gineering disciplines. Usually the support teams are supervised by a project engineer or chief
designerfor technical guidance and by a program manager responsible for program budg, ets and
schedules. Because of the ever-increasing requirementfor advanced technology and the high cost
and high risk associated with complexflight vehicles, many research and development programs
are cancelled before completion. (see also Index: industrial design)

The design process can be dissected intofive phases and is the samefor most aerospace prod-
ucts. Phase one is a marketing analysis to determine customer specifications or requirements.
Aerospace engineers are employed to examine technical, operational, orfinancial problems. The
customer's requirements are established and then passed on to the conceptual design leamfor the
secondphase.

The conceptual design team generally consists of aerospace engineers, who make the first
sketch attempt to determine the vehicle's size and configuration. Prelimina77 estimates of the
vehicle's performance, weight, andpropulsion systems are made. Performance parameters include
range, speed, drag, power required, payload, and takeoff and landing distances. Parametric trade
studies are conducted to optimize the design, but configuration details usually change. This phase
may takefrom afew months to years for major projects.

Phase three is the preliminary design phase. The optimized vehicle design from phase two is
used as the starting point. Aerospace engineers perform computer analyses on the configuration;

6

then wind-tunnel models are built and tested. Flight control engineers study dynamic stability and
control problems. Propulsion groups supply data necessary for engine selection. Interactions be-
tween the engine inlet and vehicle frame are studied. Civil, mechanical, and aerospace engineers
analyze the bending loads, stresses, and deflections on the wing, airframe, and other components.
Material science engineers aid in selecting low-weight, high-strength materials and may conduct
aeroelastic andfatigue tests. Weight engineers make detailed estimates of individual component
weights. As certain parameters drive the vehicle design, the preliminary designers are often in
close contact with both the conceptual designers and the marketing analysts. The time involved in
the preliminary design phase depends on the complexity of the problem but usually takes from six
to 24 months.

Phasefour, the detailed design phase, involves construction of a prototype. Mechanical engi-
neers, technicians, and draftsmen help lay out the drawings necessary to construct each compo-
nent. Full-scale mock-ups are built of cardboard, wood, or other inexpensive materials to aid in the
subsystem layout. Subsystem components are built and bench-tested, and additional wind-tunnel
testing is performed. This phase takesfirom one to three years.

Thefinal phase concerns flight-testing the prototype. Engineers and test pilots work together
to assure that the vehicle is safe and performs as expected. If the prototype is a commercial
transport aircraft, the vehicle must meet the requirements specified by government organizations
such as the Federal Aviation Administration in the United States and the Civil Aviation Authority in
the United Kingdom. Prototype testing is usually completed in one year but can take much longer
because of unforeseen contingencies. The time requiredfirom the perception of a customer's needs
to delivery of the product can be as long as 10 to 15 years depending on the complexity of the
design, the political climate, and the availability offunding.

High-speed computers have now enabled complex aerospace engineering problems to be ana-
lyzed rapidly. More extensive computer programs, many written by aerospace engineers, are being
formulated to aid the engineer in designing new configurations.

Copyright 1994-1998 Encyclopeedia Britannica

Discussion with British Aerospace engineers reveals that the project design in their company is roughly as

presented in Figure 1.3.

Requirements

High level Parametric Studies

A
Functionality

Concept Design Constraints

A

Sub-system Details

Technology

Figure 13. Process design

1.2 Multiple criteria decision making and conceptual design

Some more problems of conceptual design are described by Carlsson (1996,1998) in his talk about "Soft Com-

puting and Decision Support System". He urges the step from Multiple Criteria Decision Makina (MCDM) to

Multiple Criteria Decision Aid (MCDA).

7

* Managers are often not satisfied with the optimal solution obtained using MCDM.

-* Preferences are formed in a learning process;

* We have a set of designers with different opinions and preferences;

* Optimal solution is created, not found;

* Imprecision, interaction, flexibility ... are needed;

* Support for ambiguity handling and uncertainty;

* There is a need to move from a rational to pro-active approach;

Conceptual design process could be very well described using the Stream metaphor (Jantsch 1980): there

is a rational approach (this describes the strearn in every detail) and pro-active approach (we are an integral part

of the stream). There is a third approach which lies somewhere in between.

Multiple Criteria Decision Making (MCDM) and Multiple Criteria Decision Aid (MCDA) are described in

more details in section 5.2, page 48.

1.3 Overview of the thesis

This thesis is organised in the following way:

Chapter 2 gives the general description of the genetic algorithms and some of the main operators and

techniques used in GA field. It also describes genetic operators (i. e. crossover and mutation) suitable for real-

valued chromosomes.

Chapter 3 gives the description of the British Aerospace (BAe) problem and the methods in dealing with

multi-objective optimisation. This includes weighted sums, lexicographic order, Pareto with and without rank-

ing etc. One new ranking method and a weighted Pareto method are introduced. They both are original work.

Chapter 4 describes the specific operators and techniques for the GA that was used for the BAe problem

optin-ýsation as well as an optimal parameter setting for the GA in the BAe function.

Chapter 5 describes one new method of preferences, its properties and complexity and sensitivity of the

preference procedure. The preference method developed is original work and together with the applications

represent a main contribution of this thesis to conceptual design and genetic algorithm fields.

Chapter 6 describes the applications of preferences to multi-objective optimisation. Applications include

weighted sum multi-objective optirnisation, weighted Pareto method and weighted co-evolutionary optirrý-

sation. Some of the applications are quite straightforward, but weighted Pareto method and weighted co-

evolutionary optimisation present original integration of preferences with some well established optin-ýisation

methods.

8

Chapter 7 introduces the two different concepts of scenarios, their use and some applications. Although

scenarios are routinely -used in engineering, scenarios developed here are not built on any previous work and

therefore represent original work.

Chapter 8 describes some aspects of agent theory, their use in general and in conceptual design in particular.

All developed agents, regardless of their complexity, present original work.

Chapter 9 gives the conclusion of the Thesis, discussion and some further research pointers.

At the end of the thesis, there are 3 appendices for the sake of completeness of the thesis including a listing I. ID

of preference algorithm and list of all scenarios used.

9

CHAPTER 2

Genetic Algorithms

This chapter describes the basics of genetic algorithms (GA). The first section describes simple GA (SGA) and

the later sections introduce the real-valued GA (RGA) and genetic operators suitable for RGA.

2.1 Genetic algorithms - An introduction

Genetic algorithms (GAs) are an optimisation technique that imitates nature: they contain selection, crossover

and mutation. The basics of GAs (i. e. Simple Genetic Algorithm (SGA)) are described in (Cvetkovi6 1993) or,

widely available in (Goldberg 1989). More advanced literature is given in (Holland 1975).

Almost every genetic algorithm has the structure as presented in Figure 2.1.

procedure GA;
begin

initialise population P(O);
evaluate P(O);
t: = 1;
repeat

select P(t) from P(t - 1);

recombine P(t);
evaluate P(t);
t :=t+1;

until (termination condition);
end.

Figure 2.1. The Simple Genetic Algorithm

A genetic algorithm must have 5 components to solve a problem:

*a chromosomal representation,

-P a way to create an initial population,

* an evaluation function,

* recombination operators,

10

* values of the parameters.

A short description of these components is given below. It mostly addresses Simple Genetic Algorithms

(SGA).

Chromosomal representation of the problem: Usually, chromosomes are bit strings - strings of O's

and 1's. Of course, other representations (real-valued, lists, trees etc.) are possible if they are more

suitable for a specific problem.

InitiaUsing population: The initial population is mostly chosen at random, but it can also be chosen
heuristically. This should be done carefully since GAs may quickly converge to a local optimum
if the initial population contains a few structures that are far superior to the rest of the population.
The techniques used include perturbations of the output of a greedy algorithm, weighted random
initialisations, and initialisation by perturbing the results of a human solution to the given problem.
The population can also be initialsed by choosing elements with maximal Hamming distance from

each other using e. g. Halton sequences (Kocis & Whiten 1997).

Evaluation function: The evaluation function plays the role of the environment, rating solutions in

terms of their "fitness" and incorporate rule "survival of the fittest". It evaluates members of the

given population, and should have the maximum values at the optimal solutions. Sometimes, fine-

tuning evaluation function is very important for GA to obtain best results, so techniques such as

scaling, normalisation etc. are used.

Selecting next popudation: The next population is chosen from the previous one in a process rn which

individual strings (chromosomes) are copied according to their fitness function. This means that that

strings with a higher fitness value have a higher probability of contributing one or more offspring

in the next generation.

Recombination operations: After choosing the next population from the previous one, recombination

operations are performed on them. 'Tbe main operations are: crossover, mutation and Inversion,

but for many problems it is possible to define recombination operators that take problem specific

knowledge into account. Description of some of the other (less-often used) operators (such as

dominance, diploidy, duplication, deletion etc.) can be found in (Goldberg 1989).

Crossover: Simple crossover is done in two steps. First, members of current population are mated at

random. Second, each pair of strings undergoes crossover as follows: a position along the string

is selected at random and one or two new strings are created by swapping all alleles between that

position and end of string. Besides this one-point crossover, there are its general i sati ons: n-point

crossover and uniform crossover (Syswerda 1989).

Mutation: Mutation is random (with small probability) alternation of the value of a string position.

When used sparingly with other operations, it is an insurance policy against premature loss of

11

important notions. If used with too high probability (close to 1), a random search process might as

well be used - the effect is the same and the proms is much easier.

Inversion: Inversion inverts the sequence between two randomly assigned points in a single string.
Inversion alone has no immediate effect on string fitness, but if the current population contains
bad ordering, there is a high probability that crossover will destroy this schema. Inversion lowers

the probability of destroying it. Some theoretic analysis of inversion is given in (Goldberg 1989).

Inversion is not used very much nowadays.

2.1.1 Formal definition of GA

Let us now define a genetic algorithm more formaly in the following way:

Definition 2.1 Suppose that the task is to find an optimal (maximal or minimal) solution to a certain problem
P. Let T be the domain of our problem and let T' CT be its subset so that function X: T' ý-+ L, is 1-1

and ontofor somefixed integer 1 and afinite language L. Thefunction X maps (approximately) our original

problem to the problem P' on L'. Genetic algorithm is defined as an iterative schema:

Xi+ 1= I> A), X6 random

with Xi C Ll and

4)= EoRoS

(2.1)

where E, R and S are evaluation, recombination and selection operator respectively. Optimal solutions of

problem P' can be mapped back into solutions ofproblem P using X-1.

A more general definition is given by definition 2.2 below.

2.2 Real-valued genetic algorithms

Originally, the concept of GAs was based on binary strings. Regardless of the problem, it would be mapped

onto binary strings and then appropriate recombination operators are applied. However, the influence of Evo-

lutionary Strategies (ES) (Rechenberg 1973, Schwefel 1977, Rechenberg 1994) grew stronger and the Genetic

Algorithm for real function optimisation was developed. One of the real-valued GAs is the Breeder Genetic

Algorithm (BGA) (Mijhlenbein & Schlierkamp-Voosen 1993b, MOhlenbein & Schlierkamp-Voosen 1993a).

It uses a vector of real numbers instead of bit strings, as a selection method it uses truncation selection and

it utilises different crossover operators and mutations: intermediate crossover, fuzzy crossover, exponential

mutation etc.

Formally, an evolutionary algorithm (that includes evolutionary strategies, genetic algorithms and evolu-

tionary programnung) could be defined in the following way (Bdek 1995a):

12

Definition 2.2 An Evolutionary algorithm (EA) is defined as an 8-tuple:

EA = (1,4), ü, 9, s�r, p, X)

where

*I=A., x A, is the space of individuals where A., and A, are arbitrary sets;

* (1): 1 ý-+ R denotes a fitness function assigning real numbers to individuals;

(2.2)

*a=f we,,..., we, I wei : P'ý-ýPýjUf woo J" ý-+ I'} is a set ofprobabilistic genetic operators we,

each controlled by specific parameters summarised in the set Oi CR

*X is a natural number denoting number of offspring individuals;

* is a natural number denoting number ofparent individuals;

* so, : (P- P-IP) i-+ P denotes the selection op erato r where p, XEN.

* r: P ý-+ f true, falsel is the termination criterionfor EA.

The above formalisation covers (ý, +, u) and (X,, p) strategies.

Even more general, Schwefel & Bdck (1997, p. 7) give the definition of (p, ic, X, p) evolutionary strategy

(ic >1 is the life span of parents and p is the number of ancestors for each descendant) as an ordered 19-tuple!

2.3 Operators for the real-valued GA

The use of real-valued GAs for real function optimisation simplifies/resolves the problem of coding and de-

coding of genotypes and phenotypes. However, the recombination operator (crossover) and mutation have to

be defined differently from operators described above or in say (Goldberg 1989). In the following the operators

used are described.

2.3.1 Crossover operator

If x= (xj, ..., x,) and y= (Y1,
---, Yn), there are several crossover operators for producing an offspring z=

(zi , Z�):

Discrete recombination (DR): In this case zi E fxj, yjj for each I<i<n. This corresponds to a standard

uniform crossover in the binary case. Geometrically it is represented in Figure 2.2 (a). The probability

of choosing allele xi or yj could also be specified, biasing choice more towards one of the parents.

Intermediate recombination (11R): In this case the offspring is given by

zi = xi +a- (yi - xi), xi <- yi, <

Here a could be fixed to a= 1/2 or chosen randomly. Geometrically, it is represented in Figure 2.2 (b).

13

--------------- y

--------------- Oz 3

(a) Discrete

- AD- 1

I*,

-

z 319

(c) Extended intennediate

SBX

Figure 2.2. Different crossover operators.

Extended intermediate recombination (EER): It is similar to IR except that -d < cc <1+d for some pa-

rameter d (Mijhlenbein & Schlierkamp-Voosen 1993b). Geometrical interpretation is as in Figure 2.2

(c).

Fuzzy recombination (FR): In this case (Voigt, MOhlenbein & Cvetkovi6 1995), the probability that the off-

spring has the value zi is given by a bimodal distribution

(zi) Ef0 (Xi), 0 (Yi) I

with triangular probability distribution Nf (r) having the modal values xi and yj with

xi-d- jyj-xjj: ý r<xi+d. lyi-xil

yi-d- jyj-xij: ý r<yi+d. lyi-xil

for xi :5 yj and d> 1/2. Geometrically, it is represented in Figure 2.2 (d).

SBX: similar to fuzzy recombination is simulated binary crossover SBX (Deb & Agrawal 1995, Deb & Kumar

14

(b) Intermediate

(d) Fuzzy recombination

1995) where the probability distribution used is presented in Figure 2.2(e). The children are computed

using the following algorithm (Deb & Beyer 1999):

1. Generate a random number uE U(O, 1);

2. Compute
1

Pq
(2 U) -i TT if u<0.5

(2.3)
(-2TTI ýu7) otherwise.

Here is il some parameter.

(I, t+ 1) (2, t+ 1) (14 3. Compute children x,, and xi from parents xi and xj2") using the equations

xi 0.5 - [(l + Pq)Xj +(l-Pq xi (2.4)

2, t+ 1) (I't) + (1 + Pq)Xi(2,1)] Xi(0.5 , [(l - Pq)Xi (2.5)

If the variables are within bounded domains (i. e. xjL :ý xi < xju), the probability distributions need to be

ad usted accordingly (Deb & Kumar 1995, p. 435). i

2.3.2 Mutation

There are several mutation types that can be used. The common mutation type for the binary case where only

one or two bits are flipped cannot be used here because the concept of complementary value is not defined. The

following mutation types have been used:

Random mutation For each variable that is going to be mutated, choose a random value within its range and

assign this value to the variable. So, every value is possible.

GauB mutation This mutation is similar to the previous one, the only difference being that mutation step Axi

is calculated according to GauS' distribution N(O, 1): smaller mutation steps are much more probable

then large mutation steps. This is a standard Evolutionary strategies (Rechenberg 1973, Schwefel 1977,

Back 1995a) mutation. Probability distribution is shown in Figure 2.3 (a).

EXP mutation This mutation type comes from the idea that the role of mutation at the beginning is to make

large jumps whereas later on, as the search progresses it should be used more for fine-tuning so small

jumps are more desirable. Exponential distribution is presented in Figure 2.3 (b). Here c is the constant

that depends on the generation number.

2.3.3 Selection

Selection is the third major genetic operator that selects the best individuals for breeding. There are many

different selection methods, and the best known (and used in the developed GA) are described below. In

15

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0
0

(b)

Figure 2.3. Probability distributions for (a) GauB mutation and (b) EXP mutation.

the most general terms, selection is an operator that selects (according to some criteria) p parents from k

individuals.

Proportional Selection (or Roulette Wheel) This method assigns probability of being chosen proportional to

its fitness:

f (x) Xx) Ef (y)
The main disadvantages of this method is that when the population settles down and individuals have

sinWar fitness, the selection pressure decreases and then it doesn't work any better then random selection.

Also, negative fitness values tend to confuse selection process.

Ranldng Method This method was proposed by Baker (1985) to overcome the above mentioned weakness:

The individuals in population are sorted according to their fitness, and the number of offsprings from a

given individual is solely a function of its rank.

Tournament selection in this selection method, k individuals (with replacement) are randomly picked from

the population (k-toumament) at a time, and the one with the best fitness is selected. The larger the

tournament size, the higher the selection pressure. Mathematical analysis of tournament selection could

be found in (Blickle & Thiele 1995) and generalised analysis of different selection methods in (Bdck

1995b).

Thmcation selection 1n this selection method, T- 100% best individuals are selected as parents to produce the

next generation. This method, commonly used by breeders in biology, is used in Breeder Genetic Algo-

rithm (BGA), (Miffilenbein & Schlierkarnp-Voosen 1993b, Miihlenbein & Schlierkarnp-Voosen 1993c),

and its variant (, u, k)-selection in evolutionary strategies (Bdck & Schwefel 1993).

2.4 Other evolutionary methods

Of course, genetic algorithms are not the only stochastic method for optimisation. Other methods include:

* Evolutionary strategies (Rechenberg 1973, Schwefel 1977, Rechenberg 1994);

16

10

* Evolutionary Programming (Fogel 1962, Fogel 1964, Fogel, Owens & Walsh 1966);

o Simulated Annealing (Laarhoven 1988, Laarhoven & Aarts 1987, Ingber 1989, Ingber 1993);

* Scatter search (Glover 1998, Laguna in press, Glover 1999);

* Tabu search (Glover & Laguna 1997, Glover & Laguna in press);

-P Differential evolution (Stom & Price 1995, Price 1999);

* Random walk;

* etc.

However, there is no universOy best method for optimisation i. e. there is no method that will in all cases

outperform other methods. The so called "no free lunch" (NFL) theorem (Wolpert & Macready 1997) proves

the following result:

Y Theorem 2.1 (No free lunch theorem) Let us denote by P(d, -n m, (x) the conditional probability of obtain-

ing a particular sample dyn (of costs of points visited by the algorithm sorted in time) with m iterations of

algorithm a on a given cost function f. Then, for any pair of algorithms al, (X2:

P(dy, If, m, al) P(d,, Y, fi M3 (X2)
ff

The simple corollary of the NFL theorem is that, averaged on the class of all functions, no algorithm

performs better than (say) random search. On the other hand, the result of NFL theorem is "too general" and

mostly theoretically important: we do not need an algorithm which will outperform all other algorithms on

all functions. Desired is a better performance on a certain class of functions. In order to achieve this, careful

choice of operators and parameters is needed. Chapter 4 presents our choice of GA tailored particularly for the

BAe design problem and other real-valued multi-objective optimisation problems.

17

CHAPTER3

Multi-Objective Optimisation

The genetic algorithm as presented in Chapter 2 is mostly suitable for one-dimensional functions, i. e. for

functions with single output. However, there are some extensions for multi-objective functions. In this chapter

several different GA-based multi-objective optimisation methods are presented and their advantages and dis-

advantages are discussed. At the end of the chapter, a new weighted Pareto method is described. It combines

the best of both Pareto and weighted sum methods

Definition 3.1 Let n>0, k>0, D=X, x X2 x ... x X, CRn, and R= Yi x Y2 x ... xyk gRk. Let ftirther

fi :D ý-+ Y for I<i<k and finally F: D ý-4 R, so that F (x) = (f, fk (x)).

Our goal is to optimise function F(x) under constraints i. e.

maxF(x) (3.1)
x

gl (x, p) :ý0, ---, gl(x, p) <0 (3.2)

hi (x, p) = 0, ---, hm(x, p) =0 (3.3)

where p= (pl,..., p,,) are additional (real-valued) parameters.

This problem is well known and a number of 'classical' (i. e. non-genetic) (Hwang & Masud 1979, Osyczka

1984) and genetic algorithm approaches exist (Schaffer 1985, Horn & Nafpliotis 1993, Fonseca & eming

1995). Good surveys of evolutionary algorithm methods include (Coello Coello 1999, Veldhuizen & Lamont

1998, Veldhuizen 1999). Comparison of several evolutionary approaches are given in (Zitzler & Thiele 1999,

Zitzler, Deb & Thiele 2000, Zitzler 1999).

Some of the methods for multi-objective optimisation are presented in the following sections. The most im-

portant ones from the aspect of conceptual engineering design were also presented and discussed in (Cvetkov]6

et a]. 1998).

18

3.1 Difference between single-objective and multi-objective optimisa-

tion

Comparing single-objective optimisation with multi-objective optimisation, an additional problem in the case

of multi-objective optirnisation is: How to define an optimum? Ideally point x* = (x*,
.... , x, *,) is a maximum

of the function F(x) if

(Vx = (xi,
.-., x�) Ei D) (fi (x) :ý fi (x *) A ... AA (X) :ý fk (X *» (3.4)

However, unless the problem is very easy, usually there is no such ideal point. For those problems with

property (3.4), it is enough to optimise one of fj e. g.

arg max fi (x)
x

The next two subsections give a few definitions needed for defining orderings and discuss multi-dimensional

orders.

Partial and total order

In the further text the following definitions are needed (Gratzer 197 1, Grdtzer 1978).

Definition 3.2 (Definition of order)

-* Binary relation R is a partial order on domain D if and only if it satisfies thefollowing three properties:

relleydvity: For all xED, R(x, x);

antisymmetry: Forallx, yE D, ifR(x, y) andR(y, x) thenx=y,

transitivity: For all x, y, zED, ifR(x, y) and R(y, z), then R(x, z).

-* Binary relation R' is a total order on domain D if

1. It is a partial order, and

2. For all x, yED, R'(x, y) or R'(y, x);

-* Binary relation R" is a strict (partial) order on domain D if it satisfies thefollowing two properties:

irrefle3dvity For all x EE D, --, R" (x, x),

transitivity For all x, y, zED, ifR" (x, y) and R" (y, z), then R" (x, z).

The infix notation xRy instead of R(x, y) is more usual for binary relations, and < or > are commonly used

for partial and > or < for strict orders.

19

Definition 3.3 (Definition of chain) Subset D' CD is called chain with respect to partial order < if every two

elements of V are comparable i. e. for all X, YE D, x<y or y<x

Example 3.1

1. The usual order on set of real numbers is total order: it is always possible to say for any two real numbers

x and y if x< y or y<x;

2. If D=f (x, y) I x, y E R} and (xj): ý2 (xi, yi) Wx < xi Ay < yi, then

* Order "ý2 is (non-total) partial order on D since for example (2,3) ý2 (3,2) and (3,2) ý2 (2-3);

* Sets f (x, 0) 1xE R} and f (0, x) IxE R} are examples of chains according to <2 -

This is exactly the problem in multi-objective optimisation. Multi-dimensional component-wise order

relation < is not a total order, i. e., it is not fulfilled that for every two vectors x, yER, x<y or y :5x

i. e. not every two elements are comparable. In multi-dimensional case, this ordering relation is a partial

order. Instead of one total order, we have (possibly many) chains where every two elements within a chain are

comparable. The greatest element of a chain is called a maximal element. Figure 3.1 gives an example.

6AD
-------- ------------------------------------ M -------------

-4ý -------- -----------

2 h2

1a
. 4v

C

------------- m

Ip

k0
------------ I

Ijn
I- -

V

U

t

S

Figure 3.1. Example of partial order. Points A, B, C, D and E are maximal elements of the order.

Figure 3.1 also gives example of chains: set ja, b, c, d, e, AI is one chain, {a, b, g, f, e, A} is another, ýi, Ej

is also a chain etc. Within a chain, the order of elements is known, but it is not possible to say that i<a or

a<1. They are incomparable. Points A, B, C, D and E are maximal elements of the order in Figure 3.1.

3.1.2 Concept of optimum in multi-objective optimisation

Using characterisation (3.4) as a definition of a maximum of a multi-objective function, in most of the cases

there wouldn't be any maximum at all. A classical example is the Schaffer's function (1984) presented at

w

20

Figure 3.2:

0

.1

-2

-3

-4

-5

-6

-7

-8

-9

-10

(fi (X), f2 (x» = (-X2, - (x - 2) 2)

f2

-1 -0.5 0 0.5 1 1.5 2 2.5 3

Figure 3.2. Plot of the function (3.5).

(3). 5)

Obviously, the first output (function fl) is at maximum for x=0, whereas the second (function f2) is at a

maximum for x=2, so there is no single point satisfying the condition (3.4).

Therefore, instead of maxima in the sense of (3.4), it can only be talked about maximal elements of chains

and there can be many chains. The concept of non-dominance becomes very important. It will be defined it

and used later with Pareto method in section 3.2.3.

3.2 Multi-objective optimiSation methods

In the following text, a short survey of several multi-objective optimisation methods is given with pro- and

counter-arguments of each method.

3.2.1 Scalarisation method - Weighted sum

Weighted sum is a method of scalarisation of vector functions (Hwang & Masud 1979, p. 32), (Osyczka 1984).

Definition 3.4 For a function F(x) = (ft (x),
---, fk(x)) from Definition 3.1 and a vector w= (WI,

---, Wk), SO

that Vi-
I wi = 1, define

wi - fi (x)
i=I

(3-6)

Instead of function F(x), function F.,,, (x) is optin-iised for a suitable vector w, using single-objective

optimisation methods.

Usually one assigns weights according to the importance of objectives: the more important objective will

get a higher weight, less important objectives will get lower weights. However, since not all the objectives have

21

the same range of values, they must be normalised.

One method of normalisation is the calculation of w; = 1/max,, fi(x). The vector (max,. fi(X))i=t, k i is

called the positive ideal solution (Gen & Cheng 1997, p. 90). The other method would be to keep track of the

maximal values found so far and dynamically update the normalisation factors. In this case separate runs for

optimising each objective are not needed.

The normalisation techniques described assume objective maximisation. If an objective y is being min-

imised, there are two approaches:

1. Use identity miny = -max (-y). However, the genetic algorithm has a problem with negative fitness

valuesl - that problem can be avoided by maximising M- max(-y) for a large enough M. More

precisely, if objective y is positive and bounded i. e. YE [m, M], then O< (M-y)I(M-m) < land value

1/ (M - m) can be used for the weight.

2. Assuming that y>0, use identity miny = 1/max(l/y) and maximise 1/y. In this case there are no

problems estimating weights, but it can not be always known in advance if the objective y is non-zero in

all cases.

After normalisation, the relative importance of each objective ci E (0,1] can be specified and the final weight

assiped as wi = ci - w,!.

Advantages using weights:

* Multi-objective function is reduced to a single-objective function;

* Traditional optimisation methods can be used.

Disadvantages using weights:

* Problem how to set weights - results are sensitive to weights ratio;

o Objectives must be normalised - computationally expensive in general;

However, weighted sum based GA optimisation methods, although very useful for multi-objective opti-

misation in general, are generally not suitable for optimisation during conceptual design. The main reason

is that in the conceptual design phase the likelihood of objective and constraint variation is high. Thus the

fitness landscape will change therefore necessitating the re-calculation and normalisation of weights many

times (Cvetkovi6 et al. 1998, p. 259).

The general problem that this method suffers from is the specification of weights. Table 3.1 illustrates

this problem: it shows how the change of weights (W4 for objective y4 and wq for objective Y9 influence their

optimal values. In this table only two objectives are considered but in some cases 20 or more objectives will

be considered at the same time. Those points, together with the interpolated Pareto ftont are also presented in

Figure 3.3

22

W4 W9 Y4 Y9
0.0 1.0 0.00 7901.88
0.1 0.9 33.02 7513.89

0.15 0.85 55.50 7134.80
0.2 0.8 63.66 6914.39

0.25 0.75 68.79 6731.05
0.3 0.7 72.39 6562.71
0.4 0.6 73.58 6481.46
0.5 0.5 76.16 6198.47
0.6 0.4 81.10 5545.35
0.7 0.3 81.75 5400.89
0.8 0.2 82.77 5031.09
0.9 0.1 82.87 4959.28
1.0

0.0 82.90
1

3251.60

Table 3.1. Influence of weight on BAe function

100

80

60

A 40

20

0

a-

D

0

"0

3500 5000 6500 8000
Y9

Figure 3.3. Influence of weights on BAe function

The weights specification problem could be overcome by randomly changing weights in each generation

(Murata, Ishibuchi & Gen 1998) but the advantages of that method are not quite clear.

3.2.2 Lexicographic ordering

Lexicographic ordering is a commonly used sorting method of names e. g. in telephone directories. This method

enable us to define a total order on Uj>O R':

Definition 3.5 (Leidcographic Order) The point (xj, x2,..., xk) E Rk is less in lexicographic order then the

point (yi, y2,. - ., yn) E R, where k<n, written (XI, X2, ... iXk) -<L (YhY2)
... I Yn) if

1. x, < yl, or

x, = yj and x2 < y2, or

3. XI :::::: YI, X2 --:::: Y2 and x3 < Y3, or

etc.
I at least simple GA or any other GA that uses proportional selection

23

xt = yi, ..., xkl = yk- 1, xk < yk, or

6. x, =: yi) ... ýXkj ==Yk- I, Xk=yk and k<n.

Example 3.2 For order -<L thefollowing holds true:

(2,3) -<L (3,1)

(2,2) -<L (2,3)

(3,4) -<L (3,4,1)

The use of lexicographic order has been described, among others, in (Ben-Tal 1979) and (Coello Coello

1996).

Advantages of using le3dcographic ordering:

* Lexicographic order is a total order - there is only one maximum according to this order;

* It is easy to implement - sequential optin-iisation: optimise first the most important objective, then from

the set that satisfy the first objective optimise on second etc;

Disadvantages of using le2deographic ordering:

* Importance of each objective is crucial;

* Relative importance of each objective must be known from the very beginning;

4o No comprornising possible.

However, the disadvantage of having to know order of importance in advance can be overcome using

random lexicographic order i. e. changing the order every couple of generations in a GA. This ensures that on

average each objective gets an equal share in optin-ýisation.

Strictly speaking, a genetic algorithm combined with lexicographic ordering applies this method for pop-

ulation sorting only and does not use it for direct optimisation of objectives. Some form of total ordering of

the population is needed for selection procedures that expect ordered populations (e. g. tournament, truncation

etc.).

3.2.3 Pareto based methods

Let us consider the vector function F: D ý-+ R from Definition 3.1, page 18.

Definition 3.6 (Pareto) The point xED Pareto-dominates a point yED with respect to the function F,

y :jX, if MI (fi (y) :ý fi (x)) and at least one of inequalities is strict. In the following text the denoted p 1=

supersCript F Will be omitted.

24

The point xp ED is Pareto-optimal or non-dominated (for a given fiunction F) if there is no point yED
that Pareto-dominates x i. e. (--, 3y E D) (x p : ýp y).

Set FCD is called Pareto firont with respect to the function F if every element x 4-2: F is Pareto optimal
with respect to thefunction F. In other words, Paretofront is a maximal set of non-dominated elements.

Example 3.3

(a) For a set of points A(2,10), B(4,6), C(6,4), D(7,5), E(8,4) and F(9,5), presented in Figure 3.4(a), Pareto

front is fA, B, F}.

(b) Figure 3.4(b) shows Pareto front for one 'real-world' (BAe) problem.

11

10

9

8

7

6

5

4

A(2,1 0)

B(4,6)
a

D(7,5) F(9,5)

C(6,4) E(8,4)
0

00

10

Yi
(a) Filled points belong to Pareto front

"

2000 6
-500 -400 -300 -200 -100

Y4

(b) real-world problem

Figure 3.4. Pareto front examples.

0 100

Pareto is discussed more fully in section 3.5, page 33 and on, where some generalisations are also intro-

duced.

31.4 Vector evaluated genetic algorithm (VEGA)

Schaffer (1984) was the first to explore sub-populations based GA methods for multi-objective optimisation.

In his thesis, he developed VEGA (Vector Evaluated GA). The only required change from the simple GA is a

selection step.

Definition 3.7 Let D be a real-valued, multi-dimensional domain and F(x) = (fl (x),
--., fk(x)) thefunction

with domain D. Thefollowing operators are defined:

CROSS : D2 ý-+ D- crossover

MUT: D ý-+ D- mutation

SELf : D' i-+ DI - selection according to objective f

Let P(t) := Pi U ... U Pk be the population in generation t. Then VEGA is defined as an iterative process

(p P(t+l)=MUT(CROSS(LJýr=jSELfj i

10000

8000

6000

4000

25

VEGA is illustrated in Figure 3.5: the population is divided into k subpopulations (k being the number of
objectives) and in the selection step, parents are chosen from each subpopulation only according to the relevant
objective. After the recombination/mutation step performed on the whole population, the population is split

randon-Ay into subpopulations.
GEN N

r-P,

.................................

Figure 3.5. Basic VEGA algorithm

Advantages of VEGA:

-a Easy to integrate within a GA as only minor modifications are needed;

* Can be easily scaled with the number of objectives;

9 Computationally not more expensive then the single-objective GA;

Disadvantages of VEGA:

-* Tends to average solutions very quickly;

* No concept of compromising;

GENN+l
.........................

...............

* Equivalent to optimising linear combination of objectives with weights changing from generation to

generation (Richardson, Palmer, Liepins & Hilliard 1989).

3.2.5 Variants of VEGA

Fourman (1985) applied a similar method to VEGA, but without subpopulations: in the selection step, tour-

nament was applied where the individuals were compared according to a randomly chosen objective.

26

Keeping subpopulations separate: There exists two variants (see also (Parmee, Johnson & Burt 1994)):

9 Subpopulations are not mixed at all, or every tmix generations;

* The nb best individuals are copied to every subpopulation;

17hese variants of VEGA have been applied in (Cvetkovid et al. 1998).

3.3 BAe function

CAPS (Computer Aided Rroject Studies) is an integrated computer software suite, developed at and by British

Aerospace (BAe) for use by engineers and designers during the earliest investigation stages of a new aircraft

project. Our project utilises their CAPS system.

The scope of disciplines covered by CAPS is wide: preliminary geometric definition, aerodynamic analy-

sis, mass estimation, performance analysis, cost estimation etc.

In a typical job CAPS is programmed to search for design solutions that meet Performance requirements,

whilst satisfying a number of constraints.

BAe has developed a miniCAPS model (Webb 1997) based upon the full CAPS representation for use by

the Plymouth Engineering Design Centre (PEDC). Initial development was in FORTRAN 77 but it has been

ported to C++ and further developed in the PEDC by Dr Andrew Watson, the project research fellow.

This section describes the BAe function (mathematical model of riiiniCAPS), also described in (Cvetkovi6

et al. 1998) and in more details in (Webb 1997). This function is still being developed but at the moment there

are n=9 inputs (variables) and k= 13 outputs (objectives). For this research, the function is considered a black

box and is presented in Figure 3.6. All the optimisation methods that have been described in this chapter will

be applied to the BAe function.

OUTPUT

INPUT
Take off distance

----------------------------- ----------- i Landing speed

Speciffic excess power 1

Requested climb Mach number Speciffic excess power 2

Cruise Height Sustained turn rate 1
Requested Cruise Mach Number Sustained turn rate 2

Gross wing plan area

EBAe

function Attained turn rate 1
Wing aspect ratio Attained turn rate 2
Wing taper ratio Ferry range
Wing leading edge sweep Take-off mass
Wing ttc Wing span
By-pass ratio (Wing chord)/(Fuselage length)

--------------------------------------- Ground attack mission

Figure 3.6. Schematic presentation of British Aerospace (BAe) function

27

3.3.1 Interaction among variables

Since it is very hard or even impossible to visualise functions with more then 3 variables, the visualisation of

the BAe function is also not possible. Nevertheless, in order to gain some intuition, some 3D plots of a pair of

variables vs. ferry range (FR) are presented in Figure 3.7

12(

9000

6000
3000 Ferry Range

0

Climb Mach No

(b)

8

Wing pl

(C)

OA

Wing ta.

(e)

wing I

9000
6000
3000 Ferry Range

0

Lb Mach No

9000

6000
3000 Feny Range

0

b Mach No

Cruise

Wing

Wing s

9000
6000
30()o Ferry Range

0

b'. Mach No

(g)

Figure 3.7. Function BAe component vise.

(d)

(f)

9000
6000
3000 Ferry Range

0

b Mach. "; o

9000
6000

3000 Ferry R4mge

0

b Mach No

9000
6000
30()o Ferry Ramge

0

b Mach No

Optimisation conflicts

As already mentioned, there are 13 objectives to optimýise, some of them conflict greatly. For instance, optimis-

iTIg Y3, y4 and yq, gives the situation 2 as presented in Table 3.2 (one run on GA with Pareto sorting).

21f optimisinc, on Y, an additional constraint y>0.001 is used.
0

28

Cniise Height 6000

(a)

_Optirfiise
Y3 Y4 Y9

Y3 148.1757 76.9852 0.0000
Y4 145.2489 82.9057 0.0000-
Y9 -1.7305 -492.6476 10263-6426

Y3t Y4 145.3017 82.8891 2310.7244
Y3, Y9 23.2492 -380.7826 10096.220T
Y41 Y9 115.2269 0.0001 7886.8315

_Y31
Y4) Y9 115.7906 0.0547 7873.7720

Table 3.2. Optin: dsing different combinations of objectives gives different results

Table 3.2 shows that optimising y4 (specific excess power (SEP) for supersonic case) affects ferry range

(FR) y9 a great deal and vice versa. Maximising FR result in a very bad values for SEP, maximising SEP, ferry

range equal to 0 is obtained. Since the goal of the project is the design of an aircraft that performs well in all

situations, both sub-sonic and supersonic configurations must be considered.

Results of using weights and the weight assignment method using positive ideal solution, are shown in

Table 3.3. Because of the interaction between objectives, additional constraints were needed requiring that

every objective that is optimised to be greater then 10-3.

Those results clearly show that choosing different optimisation methods and different objectives can give

totally different results that are, globally, not necessary better or worse, just different.

What? How? 1 1 Y3 I 'G(Y3) Y4 I G(Y4) I y91 =Cay (y =9)

Y31Y4tY9 PAR 119.72 4.27 0.68 3.65 7747.15 134.69

LEX 115.61 5.17 0.42 1.33 7826.03 100.81
WEI 146.84 F, 76.93 c 6070.39 0.64

Y31 Y9 PAR 5.62 6.27 -459.52 28.27 10220.1 43.41

LEX 0.34 0.64 -482.91 2.72 10249.8 10.47
I WEI 139.56 1 0.08 52.26 0.19 6959.5 5.93

Y4? Y9 PAR 117.33 4.41 0.29 1.19 7811.8 106.24

LEX 113.68 5.35 0.17 0.80 7846.14 84.12
WEI 1 145.72 6 76.16 0.002 6198.94 0.29

Y39 Y4 PAR 145.30 F, 82.89 6 1838.35 1734.38
LEX 145.30 E 82.89 FE 1527.58 1641.24

WEI 145.29 F, 82.90 F- 1637.69 1686-49
Y9 PAR -1.74 0.02 -491.83 1.25 10262.8 0.96

LEX -1.74 0.01 -491.98 0.79 10263.4 0.45
WEI -1.74 0.01 -492.19 0.81 10263.4 0.31

yi, ---, Y9 PAR 5967 F, 9.81 F, 4787.75 0.02
LEX 59.67 F- 9.81 F, 4787.73 0.03
WEI 114.66 0.16 37.19 1 0.21 1 5769.41 15.22

Table 3.3. Pareto (PAR), random lexicographic (LEX) and weighted sum (WEI) optimisations, average over 50

runs. Here 0<F, < 0.005 and a(y) is the standard deviation of Y.

Some results of VEGA and its variants, and a comparison with the Pareto method are presented in Table 3.4.

All results are averaged over 200 runs. All GA parameters are the same in all runs except for population size in

the case of Schaffer's VEGA. Uniform crossover with probability I and exponential mutation with probability

1/9 have been used, applied on real-valued chromosomes.

29

I method 11 V,; I (Y(V,;) I V4 I G(VA) I vo I CY(VO) I rvý -

Fournian 115.30 8.37 12.23 10.90 7593.0 143.6 7720.48
Pareto 120.07 4.57 0.44 2.41 7731.7 145.3 7852.17
Schaffer 145.67 4.55 71.8 13.0 5886.4 230.3 6103.93
Subpop (mix) 116.76 8.90 1 20.7 13.6 1 7355.5 159.8 7492.96
Subpop(copy) 114.94 11.14 1_ 20.3 16.0 1 7116.1 ý ý. o 7251.32

Table 3.4. Results on maximising Y3, Y4 and yq using different optimisation methods.

3.4 Pareto ranking

instead of just a dominant/non-dominant scheme for Pareto sorting that doesn't distinguish elements very well

(in some of our runs, at the end of the run more then 80% are non-dominated), a finer method can be used:

Pareto ranking (compare (Fonseca & Flerrdng 1995, Srinivas & Deb 1995, Valenzuela-Rend6n & Uresti-Chare

1997, Deb, Agrawal, Pratap & Meyarivan 2000)).

Our ranking procedure is performed in the following way:

Definition 3.8 Pareto rank r, in a set X=Ix1, ..., x,, I is assigned in the following way:

(Vx E X) rt (x) <--

(Vx E fxl,..., x,,))(Vy E fxl,..
-, Xnl\fx}) H sequentially!

If (rl (x) =rt(y) A x> y)rl (x) ý-ri (x)+ I

If (ri (x) = ri (y) Ax< y) ri (y) e- ri (y) +1

Elements with the highest rank are considered the best. Alternative Pareto ranking r2 (Srinivas & Deb 1995,

Deb et al. 2000) uses the following top-down approach:

m <- 1

XI=X

Repeat

m <-- m-

(Vx c: X') if x is non-dorninated

r2(X) e- M; X'= X'\ fX1

Until X'= 0

(VX E X) r2(X) ý- r2(X) + IMI-

In both ranking algorithms non-dominance can be tested using the whole population (or the rest of the

population), or a random subset of the population. In the later case the non-dorninated elements obtained

might not be truly non-dominated considering the whole population, however the process is much faster. It is

analogous to the distinction between local and global Pareto fronts (Deb 1999b, Zit7Jer 19)3.

areto-optimal set if for every solution xEP, there exists no solution y satisfying I Ix-yj I< F- dorninating an-, member
3Set P is a local P

Of P.

30

The best know algorithm for finding all maximal elements (i. e. for finding Pareto set) in a partially ordered
set of m-dimensional vectors of cardinalityn is of the complexity Cn(n): S O(nlog2n) (form< 4) and Cm(n'ý
0(n(1092 n), -2) (for m> 4) (Kung, Luccio & Preparata 1975).

Example 3.4 Suppose that the population has 15 elements with the objective values presented in Table 3.5(a).

Yl Y2
0: -87.44 7139.47
1: -34.74 3205.95
2: 14.38 4902.83
3: -41.99 6320.33
4: -81.61 5539.14
5: -7.82 4896.72
6: -226.22 0.00
7: -117.26 3537.79
8: 56.81 3731.48
9: -192.15 5365.38

10: -19.63 4108.06
11: -64.94 6959.60
12: -158.67 6537.84
13-

-
0.56

-
6462.38 riý

29.52 2304.88
(a)Random population.

Yl Y2 dominated? rank rl rank r-)
0: -87.44 7139.47 no 3 4
1: -34.74 3205.95 yes 1 1
2: 14.38 4902.83 1 no 4 4
3: -41.99 6320.33 yes 3 3
4: -81.61 5539.14 yes 2 1)
5: -7.82 4896.7T yes 3 3
6: -226.22 0.00 yes 0 0
7 -117.26 3537.79 yes I I
8 56.81 3731.48 no 2 4
9 -192.15 5365.38 yes 1 1

10: -19.63 4108-06 yes 2 2
11: -64.94 6959.60 no 3 4
12: -158.67 6537.84 yes 2 3
13: 0.56 6462.38 no 4 4
14: 2 2304.8F yes 1 3

(b) Dormnance and ranks of the population.

Table 3.5. Examples of ranks.

After application of the above ranking procedure, the following Pareto set and the rankings r, and rý

are obtained as presented in Table 3.5(b) with the graphical inter-dominance and ordering representation in

Figure 3.8.

4- 13 4

2

I

0
6

(a) Rank ri

2

I

13 0

(b) Rank r2

Figure 3.8. Graphical representation of Pareto rankings r, and r2.

Looking at the results in Table 3.5(b), it can be seen that those two ranking procedures sometimes give

different ranks, but, being based on the same ordering, the following property is valid:

r1 (x) :ý ri (y) <ý* r2 (x) :ý r2 (3.7)

31

6

It can be noted that the ranking r2 assigns the same highest rank to all non-dominated elements. On the

other hand, ranking ri assigns different ranks to non-dominated elements (e. g. non-dominated element 8 in

Figure 3.8 has rank 2, non-dominated elements 0 and 11 have rank 3 and non-dominated elements 2 and 13)
have the highest rank 4) allowing further classification among non-dominated elements.

3.4.1 Why ranking?

It is interesting to observe how the number of non-dominated elements in a population of a non-ranking Pareto

GA increases. Figure 3.9, presents a diagram of number of non-dominated elements in a population versus

generation number for the BAe function. Population size used is 100. Standard tournament of size 2 has been

used as a selection method. The results are averaged over 50 runs and standard deviation is presented using

error bars. Optimisation has been performed on Y3, y4 and yq simultaneously. It can be immediately seen that

after some 150 generations more then 50% of the populations is formed by non-dorninated individuals and that

the selection pressure gradually decreases with the number of generations.

In the case of conceptual design, this also means that the Pareto front, the set the designer is usually

interested in, will be much too large for a human to handle. Even with a small population of 100 individuals,

after 400 generations, the size of the Pareto front increases to 80 i. e. 80 solutions (more or less different) to deal

with. Therefore, it is desirable to have an additional classification method that is able to classify non-don-ýinated

elements. Our ranking method ri has that property.

so

so

70

I
60

50

40

30

Tj,

20 '
0 so 100 150 200 Z50 Juu jou 4uu

Generalion
Soo

Figure 3.9 Non-dominated percent of the population for tournament se-
lection of size 2, average over 50 runs. Average with standard deviation

as error bars.

3.4.2 Some general remarks about searching

For one searching process to successfully perform its function, three components are needed:

Ranldng: Use of ranking to distinguish between elements; Fine-grain distinguishing might be necessary;

32

Diversity: Some way to keep diversity of the population is needed: niching and sharing (Horn & Nafpll is ot
1993, Mahfoud 1995) could be used or some form of steady-state algorithm (Whitley & Kauth 1988,

Whitley 1989, Syswerda 1990), where new generated elements (e. g. in Pareto set) are accepted only
if their distance (genotypic/phenotypic or in function space) from all other elements are greater then

some threshold. One alternative method is given in (Bonham & Parmee 1999) for solving so called non-

efect problems of crossing over with population immigrants. They suggest "injecting low discrepancy

chromosomes into the crossover phase" (Bonham & Parmee 1999, p. 1492) to avoid this problem.

Elitism: Recent investigations by Zitzler et al. (2000) have shown that elitism is an important factor for im-

proving evolutionary multi-objective search.

3.5 Pareto optimisation based methods

In comparing the Pareto principle based multi-objective optimisation with lexicographic order based optimi-

sation (Ben-Tal 1979), there are two extremes concerning the objective importance: in the case of Pareto

optimisation, all objectives are considered equally important whereas in the case of lexicographical order the

first objective is the most important one and only when the first objective is optimised, the second objective is

then considered etc. This section describes the development of a new optimisation method based on the Pareto

principle with the possibility of specifying the relative importance of objectives.

As in the case of weighted sum based methods, the relative importance of objectives in this weighted Pareto

method could be specified using weights (quantitatively) or they could be combined with (in section 5.3.2 devel-

oped) preference method that translates qualitative into quantitative specifications. Without this combination,

our weighted Pareto method would suffer from the same problem as the weighted sum method: how to specify

weights in the case of 15-20 or more objectives (it is estimated that 7±2 is the maximal number of chunks of

similarly classified data a person can work on at the same time (Miller 1956, Cha 1997)).

3.5.1 Definition of weighted Pareto method

The terms strong and weak dominance (Luce & Raiffa 1957, p. 286) are defined here due to the slight termi-

nological confusion with game theory concepts concerning dominance: In game theory A strongly dominates

B if A is preferred to B for each state of nature, and A weakly dominates B if A is preferred to B for at least one

state of nature and is preferred or indifferent to B for all other states. For similar definition of dominance see

(Deb 1998, Lin 1976).

Lin (1976) also distinguish between 3 orders on k-dimensional vectors:

x>Y if and only if (Vi < k) (xi > Yi) (3.8)

x>y if and only if (Vi < k) (xi > yi) (3.9)

xýýy ifandonlyif (x>y)A(3j: ýk)(xj>yj) (3-10)

33

He notes that the orders (3.8) and (3.10) are definable in terms of each other and thus ordering a set in Rk

by ýý is equivalent to ordering a set by ý, (Lin 1976, p. 46), see Appendix A, page 130 for more details.
In order to avoid this terminological confusion, the definition of non-dominance used in this work is given

below:

Definition 3.9 The vector x= (xi,
. .., xk) is non-dorrýnated (in object space) by the vector y= (YI,

---- Yk),
denoted x >- y, ifxi ý: yj for all 1<i<k. In other words,

4ý (xi, yi) >11
i=I

where

(3.11)

y)
11 x>y

0, x<y

r7-

Equation (3.11) can be generalised in the following way (assun-ýing wi = 1):

k
if and only if wi - I> (xi, yi) >

or some thresholdc <I can be introduced i. e.

y if and only if wi - 1> (xi, yi) >, r.

(3.12)

(3.13)

Definition 3.10 Relation >-, defined by (3.12) is called w-non-dominance and the relation >-,, defined by w
(3.13) (w,. T)-non-dominance.

Note: The standard donýinance relation is just a special case of (3.13) for w= (1,1) andr= 1. kkT

Example 3.5 Let F(x) = (x2j, x22, x32, x42) and w= (1/2,1/3,1/6,0). Using above defined orders:

F(I 7 2,31-4) t F(l, 2,3,1)

F(1,2,3,5) >-,, F(1,2,3,7) but F(1,2,3,7) >- F(1,2,3,5)

F(l, 3,7,4) tO. 6 F(O, 4,5,9)
w

Setting all weights to Ilk (for k objectives) and thresholdr < 1, the case of so called 'weak donýnance' is

obtained, where for the dominance at least [k -, T] components are required to perform better. Related is also a

concept of 'restricted don-dnance' (Bana e Costa 1990a, p. 365) which can occur in the situation where the set

of points of indifference among objectives is disjoint with the set of feasible points.

Note: The relation >-' is transitive as a product of transitive (component-wise) orders and has all the usual
W

features of an order relation. Also, it is assumed that the weights do not change during the optirnisation process.

34

Definition 3.11 The Pareto front is defined as a maximal set of non-dominated elements (according to a given

order >-) and this definition is naturally wended to w-Paretofront and to (w,, r)-Paretofrontfor a given vector

of weights w and thresholdr i. e. according to the order >-,,, and >-',,, given by (3.12) and (3.13) respecrively.
It is assumed that at least one of the inequalities is strict.

Vector w can be specified directly by the designer or it can be calculated from his preferences which would

help the designer to work in more qualitative terms without the burden to reason if the weight should be set of

0.1 or to 0.09 and how is it going to affect his search.

The Pareto front method combined with genetic algorithms is a very powerful optin-ýsation method since it

maintains the diversity of population. However, it could be computationally very expensive.

One very recent method that introduced bias arnong the Pareto solutions is described in (Deb 1999a).

Weightings are introduced in the sharing function to change the density of solutions found: in the more in-

teresting regions they allow more points, in less interesting regions Pareto points are sparser. However, It Is

not immediately clear how small changes in weights influence the density and the whole Pareto front is still

generated. Another bias-introducing method is given in (Branke et al. 2000) that changes the shape of dom-

inance region from right angle to cover the wider region and restrict the Pareto front in that way as presented

in Figure 3.10. However, so far this research has only been restricted to 2-dimensional optimisation problems

and its generalisation to higher dimensional non-dominance is not straightforward.

(a) standard dominance region (b) standard dominance ignoring one objective

Figure 3.10. Standard and extended dominance by Branke et al. (2000).

Examples of using a weighted Pareto front are given is chapter 6, page 70.

Considering the Pareto front of y4 versus yq obtained using multi-objective Genetic Algorithm optiniising

Y4 and yq only, Figure 3.11 shows the final size of the (w,, r)-Pareto front at the end of GA run for different

35

(c) extended dominance region

weights w and different Pareto thresholds z. Results were obtained running GA with population size 50 for

200 generations withr from 0 to 1, step 0.1, and Y4-weight from 0 to 1 in steps of 0.05, and are averaged over

15 runs (3465 runs in total).

1.0

w

U. v V. V

80
60
40 Size 20
1.0

Figure 3.11. Size of (w,, r)-Pareto front of y4 versus yq for the BAe function as a function of w and'r.

The weighted Pareto method developed here is integrated with preference method in chapter 5 and applied

in chapter 6.

36

CHAPTER4

Optimal Parameter Setting for the Real Valued Genetic

Algorithm for Multi-Objective Optimisation of the BAe

Function

This chapter describes experiments run for the identification of an optimal parameter setting relating to genetic

operators and /or parameters for real valued genetic algorithm (RGA) developed for multi-objective optimisa-

tion. Since an universal optimal setting does not exist (as implied by "No free lunch" theorem in 2.4, page 17),

these experiments concentrate on the choice of parameters giving optimal results for the BAe function. A] I GA

operators used in the RGA are described in detail in chapters 2 and 3.

The GA for multi-objective optimisation has many different options:

RealGA v 1.105, Dragan Cvetkovic, EDC, 2000/04/12
Usage: main. BAe [options] [log-file], where options are:

-a number If -V 4 copy number individuals between subpopulations
-A file[, Ol Ask about preferences and compute weights.

If file is '-' read from stdin
If 0 is added, read order, not preferences

-B string Mask for input variables: 0 if fixed, I if variable

-c number Crossover probability
-C char Crossover type: N (n point), U (uniform), S (SBX), F (Fuzzy)

I (intermediate), R (random intermediate) or _
(none)

-d Toggle penalty on negative values. Default 1

-e number If 1, use elitist strategy otherwise do not

-E number Maximal number of functions evaluations

-f file_name File name with input arguments (default caps. dat)

-G n[, nl, n2] Show graphics every n generation and n1 vs. n2 graph
Parameters n1 and n2 are optional

-g number Maximal number of iterations

-h Print this help screen

-H number Do the hill climbing on the number best element

-i number Don't perform mating if distance less then

number*average distance. Default number is 0.350000

-I number Shuffle/Migrate population every number generations.
Works only with -V 3 or -V 4 option. Default 5 gen

-K number Cooling factor for EXP mutation (>=O) . Defaulr 0.100000

Actual cooling factor will be gen times this factor

-1 string Do lexicographic sort according to the mask.
Elements in mask are separated with ', ' and indexing starts
from 0. Example: 2,0,3,1 means sort for 3rd then for Ist etc

-L number Do random lexicographic sort with order
changed every number generation. Defa-jlt 0 gen

-m number Mutation probability. Default 0.111111

Mutation type: S (random), E (exp) G (Gaý: ss) or -M char _
(none)

37

-n number Number of crossover points (>O), defalilt is 2
-N string String with OUTPUT variables mask.

+ means maxmimise, - minimise, 0 ignore. Default 000+0000ýoooo
-0 number Part of the variable range outside definition

range to be explored (in [0,11, default 0)

-p number Number of individuals in population
-P n, sw Do Pare: o sort instead of fitness based one

Here n is the max size of Pareto set.
sw is R for ranking, S for stochastic and
T for vanilla Pareto. Default is T

-q nl[, n2, n3] Run in quiet mode: don't argue about bad
parameters, provide your own instead.

nl==! means stop after specified number of gen (default),
nl==2 means ask user if to continue for n2 (default 100) gen,
nl==3 means continue for n2 gen if the last

improvement was within n3 (default 400) gen
-R number Use ranking method for selection with number

as rank_jmin, otherwise use roulette wheel
-r number Starting random seed

if not presented will be generated
-s number Probability in stoch. tournament, default 0.75

-S char Selection type: one of W (roulette wheel), T (tournament)
B (truncation), P (Pareto truncation)
or R (random).

-T number Using tournament or pareto method with number
as a tournament size. If 1, will use stochastic tournament
If selection is truncation, fraction of the population

number Pareto sort threshold (between 0 and 1, default 1)

-U number Probability for parameterized uniform
crossover, default value is 0.500000

-V number Simulate VEGA. Meaning of the number:
0 --- no VEGA
1 --- Schaffer VEGA: maintain subpopulations etc
2 --- Fourman VEGA: choose using random objective
3 --- Work with subpopulations and shuffle them
4 --- Work with subpopulations and migrate bests.

-v number What amount of information to display:
0 nothing, 2 -- all, 3 -- every individual,
1 current run and best fitness. Default 0

-W file-name File with non I weights of OUTPUT array

-w file-name File with min and maxs of OUTPUT array

-X number Number of input parameters (default 9)

-Y number Number of output parameters (default 13)

-z file[, PIO [, file]] Specify scenarios file.
'_? specifies stdin
if IPI set ask for preferences among scenarios
If 101 set specify preference order instead
If file after P is specified, use as response file.

However, most of the options have default settings and therefore

.
/RGA -q! -vl

is more usual -

4.1 Related work

First results concerning genetic operators and parameter settings were obtained by de Jong (1975) and he

suggested:

* population size 50-100,

* crossover rate 0.6, and

* mutation rate of 0.0 1-

38

Study by Grefenstette, (1986) gives the following setting:

* population size 30,

* crossover rate 0.95, and

* mutation rate of 0.0 1.

Trying to improve on Grefenstette (1986), Schaffer, Caruana, Eshelman & Das (1989) performed extensive

testing (for improving online performance of GAs) and suggested the following setting:

* population size 20-30,

* crossover rate 0.75-0.95, and

9 mutation rate of 0.005-0.01.

The study by Cvetkovid & WhIenbein (1994) gives an optimal population size N* for ONENLAX function

using Breeder Genetic Algorithm (BGA) obtained by extensive testing:

OJ2) V-.
I-

N=1+ (10.28 - 12-071+ 7.3 n Inn - (-ýP= 1) 0.8 <I<1.4 (4A)
00

where n is the size of the problem (length of a chromosome), po is the probability of allele 1 in initial generation

(usually 1/2) and I is the selection intensity of the truncation selection T:

_12/2 eo i-757C

where to is defined so that:
11

e-t
2

dt, if T< 1-
T 77, fý"

- ýl
12 eI + 77-c -' dt, if T> 2-

More recent study is by Harik, Cantd-Paz, Goldberg & Miller (1999) and their estimate of the population

size is
r

2k- I In (a) Ubb N/ ýrnl

d

where k is the order of building block, cc is the probability of failure, (Tbb is the fitness variance of the partition

considered and m' is one less than the number of building blocks in a string.

4.2 Mutation

In RGA the user has a choice of three different mutation types (for details see section 2.3.2 on page 15):

1. Random mutation

2. EXP mutation with parameter c

39

GauB mutation

In the sequel, tests for finding optimal mutation type and the optimal value of EXP mutation parameter c
are described.

In all runs mutation probability p,,, = 1/n has been used, where n is the number of variables, as suggested r)
by Miffilenbein & Schlierkamp-Voosen (1993a) and Bdck (1993).

4.2.1 Mutation type

All three mutation types have been tried in their default settings i. e.:

* GauG noise is with nonnal NA 1) distribution;

* Default cooling factor for EXP mutation is c=0.1 x gen and the new value for variable x is

. x' =x± (xm - x.) - 2-'« (4.2)

where cc: U(O, 1) is a random number with uniform (0,1) distribution.

Experiments were run 100 times and results in combination with uniform crossover are given in Table 4.1 (a)

and in Table 4.1(b) in combination with 1-SBX crossover. Objectives to optimise are SEP2 and FR of the

BAe function (described in Section 3.3, page 27) and the search process would stop if the best fitness hasn't

changed for 400 generations. All other parameters of the GA were kept on their default values. As a random

number generator, Mersenne Twister (Matsumoto & Nishimura 1998)1 has been used as it possess much better

'randomness' properties than any 'built-in' random number generator (such as rand 0 or random () in UNIX).

Mutation
Type

Fitness
Aver Dev

Generation
Aver Dev

Random 7888.09 17.97 1857.4 936.45
GauB 7802.69 120.6 2822.0 1836.4
EXP 7863.48 1 69.08 521.86

(a) with uniform crossover

Mutation
Type

Fitness
Aver Dev

Generation
Aver Dev

Random 7905.22 5.67 1840.8 1092.9
GauB 7850.96 ý--- 95.78

- -
1185.8 1116.3

EXP 7 8 2.3 2
_495.27 (b) with I-SBX

Table 4.1. Results on different mutation types.

As it can be seen, in combination with uniform crossover, random mutation gives the best results but it

takes quite long to find them. GauS mutation (with default setting) performed quite bad in both fitness and

convergence, whereas EXP mutation managed to find very good results very fast. Combined with I-SBX,

EXP mutation performs the best and random as a second best.

4.2.2 Parameters of EXP mutation

Further runs have been performed modifying parameter c in EN? mutation. Averaged results over 100 runs

for different c values in combination with uniform crossover are presented in Table 4.2(a) and plotted in Fig-

'available from http: //www. math. keio. ac. jp/-ratumoto/emt. htrr, '

40

ure 4.1(a). Averaged results over 100 runs for different c values in combination with 1-SBX crossover are

presented in Table 4.2(a) and plotted in Figure 4.1 (b). Table 4.2(c) and Figure 4.1 (c) show different c values in

combination with I-SBX with run time limited to 200 generations.

Setting c=0.1 gives the best compromise between quality of results and convergence speed. Note that as

c --+ 0, EXP mutation behaves more and more like the random mutation.

EXP
factor

Fitness
Aver Dev

Generation
Aver Dev

0.01 7890.55 21.80 2169.8 409.14
0.05 7868.55 63.67 816.82 242.10

0.1 7859.31 69.75 520.14 219.44_
0.25 7906.05 9.48 898.29 412.99

0.5 7842.04 72.27 340.03 214.01
0.8 7802.04 1 134.6 422.45 284.56

(a) with uniform crossover

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

n

EXP
factor

Fitness
Aver Dev

Generation
Aver Dev

0.01 7909.24 0.71 1952.8 798.70
0.05 1 7909.11 0.98 1686.5 560.62
0.1 7908.33 3.01 1186.5 445.74

0.25 7904.95 12.57 871.31 409.37
0.5 7902.56 13.13 885.33 621.34
0.8 7892.36 1 33.79 684.90 1 0.87

Fýrwess
Gono(mbon

0.8

10 0.6

A2
io

0 z

0.2

0
0.01 0.1

(b) with 1-SBX
Firw5s

ton

0.01 0.1

(c) I-SBX, run limited to 200 generations

Figure 4.1. Normalised fitness and number of generations for different mutation factors for EXP mutation.

(b) with 1-SBX
EXP
factor

Fitness
Aver Dev

Generation
Aver Dev

0.01 7887.70 27.62 176.88 21.7
0.05 7901.24 10.14 1 190.62 10.70

0.1 7905.47 7.37 191.03 12.53
0.25 7901.69 17.86 185.56 16.70

0.5 7884.79 64.64 182.58 19.83
0.8 7872.28 52.99 180.78 24.7

(c) 1-SBX, run limited to 200 generations

Table 4.2. Results on different mutation factors for EXP mutation.

0 L. -

0.01 0.1

(a) with unifonn crossover

41

4.3 Crossover

Concerning crossover, the user has a choice of the following crossover types (described in Section 2-3.1,

page 13):

I. n-points crossover;

2. uniform crossover;

3. intermediate crossover (child is arithmetical mean of parents);

4. random intermediate crossover (child is computed as kPI + (I - k)P2. where k is U(O, 1) random

number with uniform distribution);

5. SBX with 11 Ef0.5,1,1.5,2,3,4,6,81.

43.1 Crossover type

Similar tests as for the mutation runs have been performed : 100 runs per crossover type (all with probability

1) with all other parameters kept constant: optimisation of SEP2 and FR, population size 50 etc. Results

are given in Table 4.3(a) and Figure 4.2(a). Limiting the run time for all crossover types to 200 generations

only, the results are as in Table 4.3(b) and Figure 4.2(b). From the results it can be seen that the intermediate

crossover gives quite good results but it takes many generations to converge to those results. Uniform and 4-

point crossover give good compromise. The SBX gives exceptionally good results for il <2 but unfortunately

the convergence time is excessive. Results of running the SBX without mutation, are presented in Table 4.4

and in Figure 4.2(c).

Crossover
Type

Fitness
Aver Dev

Generation
Aver Dev

1-point 7862.27 57.28 578.37 244.9
2-points 1 7848.45 76.66 1 480.75 186.17
4-points 7860.57 73.40 509.25 196.07
6-points 7853.74 98.88 564.95 244.49

0.5-interrn 7882.91 29.25 1089.4 267.18
R-intenn 7890.94 23.41 1 1058.3 300.52
uniform 7860.12 65.08 526.00 195.95

fuzzy 7899.33 14.26 773.09 206.18
0.5-SBX 7909.15 1.70 1398.4 610.08
I-SBX 7908.94 23.41 1058.3 300.52

1.5-SBX 7905.85 8.99 1064.3 429.40
2-SBX 7902.94 10.83 972.24 353.88
3-SBX 7895.22 19.30 863.48 391.70
4-SBX 7892.89 27.26 827.45 341.94
6-SBX 7879.4 8 37.22 652.20 234.75
8-SBX 7877.59 47.87 729.44 308.56

20-SBX 7843.76 90.56 663.95 205.93
(a) unlirmtect run

Crossover
Type

Fitness
Aver Dev

Generation
Aver Dev

I-point 7846.09 88.84 188.48 12.6
2-points 7859.32 74.50 187.15 13.9
4-points 7855.47 61.42 188.66 11.4
6-points 7864.19 57.48 186.56 12.8

0.5-interm 7883.07 26.85 193.73 6.49
R-interm 7882.16 29.81 194.73 6.23
uniform 7855.69 81.46 188.77 10.6

fuzzy 7900.34 15.29 188.00 14.15
0.5-SBX 7905.97 5.14 187.77 15.89
1-SBX 7906.30 3.94 190.78 13.2

1.5-SBX 7904.65 7.84 186.89 14.7
2-SBX 7898.64 14.35 189.21 12.7
3-SBX 7893.09 24.84 187.78 13.5
4-SBX 1 7886.65 34.49 184.55 18.3
6-SBX 7878.08 46.61 1 188.33 15.4
8-SBX 7863.36 56.18 185.71 15.7

20-SBX 7868.48 54.79 184.43 16.39
(b) 200 generations only

Table 43. Results on different crossover types.

42

Crossover
Type

Fitness
Aver Dev

Generation
Aver Dev

1-SBX 7672.43 179.6 6237.7 5344.2
1.5-SBX 7370.36 253.0 3898.8 3744.7
2-SBX 7221.20 290.8 2519.2 3300.4
3-SBX 7073.62 311.7 397.27 790.64
4-SBX 7016.57 291.7 213.63 389.51

_6-SBX
6925.35 313.0 125.09 189.52

8-SBX 6901.72 335.3 63.88 77.597

Table 4.4. Results on different SBX types without mutation.

1

0.8

fA CD

14 0.6.
CD

An
cc
E 0.4
8
z

0.2

n

Fftness
eneration

............

12460.51 RI UF0.5SIS1.5S2S 3S 4S 6S SS20S
Different crossover types

(a) unlimited run

0.8

to

0.4

0.2

Riness
Generation

011
12345678

(c) SBX without mutation

Figure 4.2. Normalised fitness and number of generations for different crossover types.

1

0.8
W

0.6
,a 0 A

R
E 0.4
8
z

0.2

n

F69is
G neration

12460.51 RIUF0.5S 1S1.5S 2S 3S 4S 6S SS 20S
Merent crossover types

(b) 200 generations only

43

4.3.2 Crossover probability

Next, the optimal crossover probabilities for uniform crossover and for SBX are computed. Results for uniform

crossover are given in Table 4.5(a) and the results for l-SBX are given in Table 4.5(b). The corresponding L,
graphs are given in Figure 4.3(a) and 4.3(b).

Crossover
Probability

Fitness
Aver Dev

Generation
Aver Dev

0.0 7846.78 107.6 509.98 203.13
0.1 7862.71 66.98 553.59 250.27
0.2 7867.83 58.30 521.03 184.3
0.3 7844.66 90.46 538.93 239.30
0.4 7853.91 71.00 512.20 205.74
0.5 7853.97 92.06 531.58 213.07
0.6 7868.59 58.17 530.00 211.49
0.7 7859.25 79.86 526.72 200.64
0.8 7854.74 71.61 533.14 223.38
0.9 7863.79 69.06 539.88 198.51
1.0 7863.71 78.21 552.39 1 210.74

(a) uniform crossover

Crossover
Probability

Fitness
Aver Dev

Generation
Aver Dev

0.1 7866.33 48.46 597.92 259.72
0.2 1 7880.75 36.43 1 614.26 257.63
0.3 7887.48 36.64 683.34 263.18
0.4 7898.92 13.80 811.89 349.55
0.5 7901.13 17.07 889.77 395.64
0.6 7905.32 6.41 1035.0 477.71
0.7 7905.95 7.98 1130.2 441.83
0.8 7907.16 4.47 1150.5 435.98
0.9 7908.02 2.98 1195.3 551.87
1.0 7908.53 1 2.75 1231.6 481.86

(b) 1-SBX

Table 4.5. Results on different crossover probabilities.

1

0.8

(0 CD

0
> 0.6

0.4 r-
b
Z

0.2

FltneSS
eneration

1

0.8

Co
0.6

0.4

0.2

n

//
�"/

n
0 0.2 o. 4 0.6 0.8

(a) uniform crossover

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b) 1-SBX

Figure 43. Fitness and generations as a function of crossover probability.

It can be noticed that increasing crossover probability improves the results but (in the case of SBX) also

increase the convergence time. Another factor that requires some consideration is that increased crossover

probability increases the number of crossovers performed. However, in most cases, the crossover operator is

not expensive, and the fitness calculation is usually the main bottleneck. Therefore setting crossover probability

to its maximal is not a problem here.

4.4 Selection type

Regarding selection types, the user has a choice of the following selection types (described in section 2.3.3 on

page

44

1. Roulette wheel selection (i. e. proportional selection);

2. Tournament selection;

3. Truncation selection;

4. Random selection (where parents are put completely random in a mating pool);

The standard set of experiments (100 runs, run until the best fitness is constant for 400 generations) has

been run. Results for uniform crossover are presented in Table 4.6(a) and plotted in Figure 4.4(a). Results for

1-SBX are presented in Table 4-6(b) and plotted in Figure 4.4(b). Taking into account both the best fitness and

number of generation, it can immediately be seen that 2-tournament produces the best results. Considering

fitness only, proportional and random selection both perform very good but it takes many generations to obtain

results: 3 to 4 times longer than when using 2-tournament.

Selection
Type

Fitness
Aver Dev

Generation
Aver Dev

Proport. 7886.49 27.48 1231.4 548.00
Random 1 7881.86 33.18 1534.9 655.92
1-tourn 7173.65 251.7 195.65 272.92
2-tourn 7859.03 65.74 526.44 219.92
3-tourn 7825.26 97.69 412.84 192.44
4-tourn 1 7825.53 96.28 399.23 208.72
8-tourn 7832.85 105.5 423.48 181.57
16-tourn 7825.82 104.0 497.10 308.10
0. I-trunc 7832.33 88.99 462.13 276.51
0.2-trunc 7820.23 112.9 436.78 240.07
0.3-trunc 1 7807.09 122.8 355.07 156.58
0.4-trunc 7817.24 122.7 435.18 182.22
0.5-trunc 7844.31 91.45 525.29 264.98
0.6-trunc 7850.26 84.01 769.52 738.47
0.7-trunc 1 7864.86 64.96 821.40 514.54
0.8-trunc 7866-88 47.50 1146.9 458.62
0.9-trunc 7877.43 43.91 1443.5 496.75
1.0-trunc 7880.78 34.19 1553.0 652.84

(a) uniform crossover

I

0.6

0.6

E
2; 0.4
Z

0.2

Selection
Type

Fitness
Aver Dev

Generation
Aver Dev

Proport. 7906.89 3.95 1671.7 830.24
Random 7897.29 36.59 1996.9 919.66
1-tourn 7434.31 160.66 461.01 402.61
2-tourn 7908.32 2.60 1188.5 418.31
3-tourn 7895.99 22.62 797.89 349.94
4-tourn 7853.90 69.03 638.21 351.87
8-tourn 7796.94 132.57 518.75 287.15
16-tourn 7795.03 146.01 597.62 346.27
0.1-trunc 7824.83 113.78 576-80 396.91 1
0.2-trunc 7812.23 128.45 395.88 208.51
0.3-trunc 7833.58 109.82 453.21 246.06
0.4-trunc 7872.09 50.51 560.57 326.41
0.5-trune 7894.93 31.38 808.67 413.93
0.6-trunc 7906.82 6.92 1159.8 539.21
0.7-trunc 7907.93 5.01 1427.1 623.68
0.8-trunc 7908-93 1.99 1914.2 807.47
0.9-trunc 7904-17 8.07 1978.9 1078.0
1.0-trunc 02.98 1 8.12 2224.2 1013.6

(t)) 1--SB. N

Table 4.6. Results for BAe using uniform crossover and different selection methods.

-

PR 11 0 31 41 61 151 0.1 T O. ZT 0.3T 0.47 O. 5T O-ST 0nO. 8T 0-9-F 1 .01
Ditiewl &&*c3*n iyW

(a) uniform crossover

0.8

0.6

0.4

0.2

n

clowal'on

pA !IZ 31 41 al 161 01TO. ZT 0.3T O. AT O-ST 0 6T 0 7T 0 81 0 91

DM~l sol"son "

(b) I-SBX

Figure 4.4. Fitness and Generations for different selection types.

45

4.5 An ideal setting - discussion and conclusions

From the above tests, it follows that the ideal parameters and/or operator setting for RGA is:

* 1-SBX as crossover operator;

* Crossover probability 1.0;

* 2-tournament as selection method;

* EXP-mutation with k=0.01;

-* Mutation probability I/n (n is the number of input variables);

* Population size 50;

9 Number of generations 200;

Each RGA run needs to be limited to some fixed number of generations (say 200) otherwise, it would keep

converging for quite a long time, because of the SBX features.

It is to be stressed that these findings are very problem specific and a different optirrdsation problem might

require different genetic operators and parameters. However, (continuous) real function optimisation problems

are generally less sensitive to parameter setting than combinatorial problems (travelling salesman (TSP), job-

shop, bin packing etc.) where Hamming cliffs and "Himalaya effects" are much more noticeable.

However, we must not forget that:

* Every setting is generally only suitable for the class of the problem it was investigated on;

* Some of the results reported in subsection 4.1 (related work) above were obtained for the 'toy

problems' (ONENL4. X etc.) and with the very simple GA;

9 In general, the best way is to always perform tests for optimal parameters (resources and/or time

perrrýtting).

46

CHAPTER5

Use of Preferences in Multi-Objective Optimisation

This chapter presents a transformation method based on preference relations. It transforms non--crisp (quali-

tative) relationships between objectives in multi-objective optimisation into quantitative attributes (numbers).

The preference method is integrated with two multi-objective Genetic Algorithms: the weighted sum GA and

the weighted Pareto method, introduced in section 3.5.1, page 33. The complexity issue is discussed here as

well as the influence of different preference valuations on the results. Examples of preference relation applica-

tions with traditional Genetic Algorithms will be presented in chapter 6.

5.1 Introduction - Accuracy of quantitative qualification

This sections discuss some observational problems. The following quote from Nisbett & Wilson (1977, p. 254)

gives an indication of the problem that humans inherently face in the process of judgement and particularly in

the process of reporting on the influential factors.

Slovic and Lichtenstein (1971) have reviewed the literature concerning the ability of subjects to
report accurately on the weights they assign to various stimulusfactors in making evaluations.
Most of the investigations of this question have employed either clinical psychologists or stockbro-
kers as subjects, and the judgemental domain has been largely limited to clinical diagnoses and
assessments of the financial soundness of stocks. Subjects are asked to diagnose patients using
Minnesota Multiphasic Personality Inventory (MMPI) scores or to assess stocks using such indi-
cators as growth potential and earning ratio. Then subjects are asked to state the degree of their
reliance on variousfactors. These subjective weights are then compared to the objective weights
derivedfrom regression of the subject's judgement on the variousfactors. Slovic and Lichtenstein
(1971) concluded that self-insight was poor and that of the studies which allowedfor a compar-
ison of perceived and actual cue utilization "all found serious discrepancies between subjective
and objective relative weights".

In other words: even when the correct solution to the problem is obtained, we cannot always accurately

name the factors affecting the solution process. In chapter 3 two multi-objective optimisation methods are

presented that are sensitive on weights chosen: weighted Pareto and weighted sums. Taking Into account the

results of the quoted study by Nisbett & Wilson, one arising question is: is it possible to develop a method

to help the engineer in estimating factor weights during the design process? This chapter introduces one

47

such method for transformation of qualitative into quantitative values. Nevertheless, the process does not give
an universal solution: if the designer chooses the wrong factor to optimise, it will not correct the designer.
However, the interactivity of the conceptual design process would give some feedback to the designer enabling
him to realise his mistake.

When dealing with industrial design problems, it rapidly becomes apparent that there are significant dif-

ferences between so called 'textbook optimisation problems' and 'real world applications'. In both cases,

a function to be optimised is a multi-objective one (as given by definition 3.1 and equations (3.1) ý in -(3.3) 1

chapter 3, page 18). Additionally, in this kind of multi-objective optimisation not all objectives are equall, ý,
important, which necessitates the use of weights or preferences.

As already mentioned, people generally have problems in reporting accurately on the weights thq assigom

to the various stimulus factors in making evaluations. In conceptual design, this means that the designer can-

not always completely objectively define the preferences regarding the objectives to be optirrýsed. Therefore,

the following situation occurs frequently: A subjective statement "objective A is much more important than

objective B" cannot always be supported with a quantitative representation. One method for overcoming this

problem is a fuzzy multiple objective optimisation (Lai & Hwang 1996). In this chapter the problem is ad-

dressed in a different manner and the developed methods are integrated with different GA-based optin-ýisation

techniques.

5.2 Multiple Criteria Decision Making (MCDM) and Multiple Criteria

Decision Aid (MCDA)

This section is based on (Roy 1990a), and gives a short introduction to MCDM and MCDA

5.2.1 MCDM and its main features

Until the end of 1960s in operations research (OR), decision-making problems were formulated on the follow-

ina three bases: In

1. A well-defined set A of feasible alternatives a;

2. A real-valued function g defined on A precisely reflecting the preference of the decision-maker D,

3. A well-formulated mathematical problem:

Find a* in A such that g (a*) ý: g (a) Va E A.

Accordingly, the general framework of MCDM consists of:

1. A well-defined set A of feasible alternatives a;

48

2. A model of preferences, well shaped in D's mind, rationally structured from a set of attributes. The

preferences are defined using utility function U:

a'Pa if and only if U (a') >U

a'Ia if and only if U(a') = U(a)

3. A well-formulated mathematical problem: the discovery of an optimal alternative a* in A such that
U(a*) > U(a) Va EA.

5.2.2 From MCDM to MCDA

The practice of operations research (OR) and MCDM has shed light on some fundamental limitations on

objectivity. Five major aspects have to be taken into account (see also discussion in section 5.1 and (Cvetkovi6

et a]. 1998)):

1. The frontier of A (of feasible alternatives) is often fuzzy. Because of this, the borderline between

what is and what is not feasible has inevitably a certain amount of arbitrariness. A more crucial

limitation on objectivity comes from the fact that this borderline is frequently modified in the light

of what is found through the decision process itself (c. f. quote by Goel in section 1.1.1, page 3).

2. In many real world problems, decision maker D, as a person truly able to make the decision, does

not really exist: usually, several people take part in the decision process and we tend to confuse the

one who ratifies the decision with what is called the decision-maker.

3.. Even when D is not a mythical person, D's preferences very seldom seem well-stated: in and among

the areas of firin convictions lie hazy zones of uncertainty, half-held belief or, indeed, conflicts

and contradictions. We have to adn-ýit, therefore, that the study itself contributes to answering

questioning, solving conflicts, transferring contradictions and destabilising certain convictions.

4. Data such as the numerical values of performances gk(a), the analytical forms of distributions such

as 5'(yk) or 8a(Yi,
-.., y,,) and numerical values of the characteristics of those distributions are, in k

many cases, imprecise and/or defined in an arbitrary way.

5. In general, it is imPossible to say that a decision is a good one or a bad one by referring only

to a mathematical model: organisational, pedagogical, and cultural aspects of the whole decision

process which leads to making a given decision also contribute to the quality and success of this

decision.

Therefore, the general framework of multiple criteria decision aid (MCDA) consist of*

*A not necessarily stable set A of potential actions s;

* Comparison based on n criteria (or pseudo-criteria) 9k;

49

* An ill-defined mathematical problem.

5.2.3 Requisite for preferences

For an appropriate don-iinance theory, the following seven requisites could realistically be formulated (Brans &
Mareschal 1994):

1. The amplitude of the deviations between the alternatives should be taken into account;

2. As the criteria are generally expressed in different units, the scaling effect should be completely

eliminated;

I When comparing two alternatives a and b, an appropriate multiple criteria decision aid method

should come to one of the following conclusions:

*a is preferred to b, or b is preferred to a;

oa and b are indifferent;

*a and b are incomparable.

4. Multiple criteria problems are not mathematically well-stated. Depending on the logic of the

method and on the kind of additional information that is required, different results can be obtained.

It is therefore important that the method be understandable by the decision maker. Black box effects

should be avoided.

5. An appropriate method should not include any technical parameters having no economical signifi-

cance.

6. The analysis of the conflicting aspects of the criteria must be available.

7. Finally, it is also important to have a clear interpretation of the weights of the criteria.

In our approach, as many aspects as possible will be addressed. However, a very deep understanding of the

specific decision making problem is needed in order to fully address all these aspects.

5.3 Fuzzy preferences and orders

The following section describe some methods for specifying weight coefficients that will be used. Concerning

the use of preferences, the most common situation found in the literature is given in (Ch, clana, Herrera &

Heffera-Viedma 1998):

For a finite set of alternatives X=f xl, x2, ---, x.,, 1, (m. > 2) and a set of experts E=f ei, e2. .. -, em, 1,

(m, > 2), experts can represent their preferences in three different ways:

Preference ordering of the alternatives: an expert ej provides his preferences on X as an individual

preference ordering Oi = joi(l),
---, oj(m,,)} from the best to the worst.

50

Fuzzy preference relation: the expert's preferences on X is described by a fuzzy preference relation,
Pi CXxX with membership function ppj :XxX ý-+ [0,1] where ppj (xi

, xi, . denotes the Pj il i2

preference degree of the alternative xi, over xi..

Utility function: an expert ej provides his preferences on X as a Set Of Ma utility values, Uj u1i
i i< Mal, where ui E [0,1] represents the utility evaluation given by expert ej to the alternative xi.

However, this is not directly applicable to multi-objective optimisation problems of conceptual design,

since it the not the problem of choosing one alternative from a finite set, but to choose the order of importance

of all of them. Fuzzy preferences could support the estimation of relative importance (weights) of objectives

in multi-objective optimisation problems.

5.3.1 Preference order

The intensity ofpreference or, shortly the preference of x over y is usually defined as R(x, y) =f(g(x), Ng(y)),

where f is a non-decreasing function of both arguments and N is a strong negation (strictly decreasing, con-

tinuous and idempotent i. e. with N (N (x)) =x property) (Fodor & Roubens 1994, p. 177).

For a given preference relation R, strict preference relation P and indifference relation I are defined in the

following way:

P(x, y)=1-R(y, x), I(x, y)=nlin(R(x, y), R(y, x))

For a complete (fuzzy-)preference matrix, it is possible to define a complete order among the objects.

Relation R defines the directed valued graph G= (A, R) and entering score SE(a, R), leaving score SL and

netflow SLIE(a, R) can be defined:

def SE (a, R) R (c, a)
cEA\fal

SL (a, R) qef R (a, c)
cEA\ýaj

SLI E (a, R) [R(a, c)-R(c, a)](---:: ýSE(a, R)+SL(a, R))
cEA\jaj

and the corresponding orders (Fodor & Roubens 1994, p. 15 1). In the case when R (a, b) +R (b, a) =1 for

all a, b (probabilistic relation) i. e. R(a, b) = P(a, b), they all give the same order', therefore, as the relations

considered will satisfy this property, only the leaving score and the induced order will be used:

SL (a, R) R (a, c)
cEA\f al

a >L b if and only if SL(a, R) > SL(b, R)

'if n is the cardinalitY of A and R is probabilistic, then SL(a, R) -SE(a, R) = n- land SIIE (a, R) = 2SL(a, R) - (n- 1).

(5.1)

(. 21)

51

Example 5.1 (From Fodor & Roubens 1994, p. 150) Wine experts give their preferences on five M6doc wines
a, b, c, d and e using the following matrix:

0.50 0.57 0.57 0.29 0.67

0.43 0.50 0.70 0.52 0.28

R 0.43 0.30 0.50 0.72 0.48

0.71 0.48 0.28 0.50 0.48

0.33 0.72 0.52 0.52 0.50

The table for the score is the following:

SL SE SLIE

a 2.10 -1.90 0.20

b 1.93 -2.07 -0.14

c 1.93 -2.07 -0.14

d 1.95 -2.05 -0-10

e 2.09 -1.91 0.18

giving the same complete order presented in Figure 5.1.

0
Figure 5.1. Partial order a>e>d>b-c

53.2 Our approach

Our approach is in a way similar to linguistic ranking methods (Chen, Hwang & Hwang 1992, p. 265) using the

concept of linguistic variables and modifiers (Zadeh 1973, Zadeh 1975). For every two objectives the designer

is asked to specify one of the following characterisations:

9 Less important;

9 Much less important;

e Equally important;

* More important;

* Muchmore important;

e Don't care.

52

The number of degrees of importance (such as slightly more important, vastly more important etc.) can be

easily and in quite straightforward way extended but there is a danger of specifying too many levels losing the, C,

main advantage of this approach over quantitative methods.

Since k objectives require in the worst case k(k - 1)/2 questions, the designer is first asked to identifý, the

objectives of interest at this stage of the optin-ýisation process and to specify the relative importance of these

only. However, for clarity and brevity, this step will be skipped here.

Conceming objective importance escalation (from much less important to much more important), it is worth

mentioning the work of Lootsma (1996,1997a, 1997b) described in section 5.4.3, and the work of Greenwood,

Hu & D'Abrosio (1996) described in section 5.4.4, page 68. Coello Coello (2000) gives a survey of use of

preferences in optimisation.

Treatment of don't care relation

In the further text, don't care will be treated exactly as equally important. There are some psychological

justification for this: if we do not care in respect of two objectives, then we also do not care which one Is

preferred. However, in future research it is intended to analyse this relation more closely. Alternatively, the

approach by Vincke (1990, p. 113) can be used: "Given a partial preorder structure, it is always possible to

replace the incomparabilities by preferences or indifferences in order to obtain a complete preorder structure"

Roy (1990b) distinguishes two types of hesitations:

weak preference If it could not be decided between a >- b and a ýý b, but being sure that b ý4 a;

incomparabRity if it could not be decided between a >- b and b >- a.

Roy further states that the hesitations may come from (Roy 1990b, p. 158):

- the existence in decision-maker's mind of zones of uncertainty, half-held belief, or conflicts and

contradictions;

- the vaguely defined quality of the decision-maker D;

- the fact that the scientist who built the model ignores, in part, how D compares a and b;

- The imprecision, uncertainty, inaccurate determination of the maps g(a) and g(b) by means of

which a and b are compared.

5.3.3 Formal definitions and properties of our preference relations

The following relations are introduced:

53

relation intended meaning

; Z: ý is equally important

--< is less important

< is much less important

is not important

is important

The required properties of these relations are (see Definition 3.2, page 19 for definition of reflexivity,

transitivity etc):

-* Relation ; -, is an equivalence relation (reflexive, symmetric and transitive):

x ; ztý x (5.3)

x ýý y Y;: Zý x (5.4)

x yA y P: ý zx-z (5.5)

* Relations --< and < are strict orders (irreflexive and transitive):

X 7ý X (5.6)

x It x (5.7)

x --< yA y -< zx -< z (5.8)

<y Ay <zx<z (5.9)

Relation - is congruent with < and -<:

x -< yA pý zx -< Z (5.10)

x<yAy-, Z X< z (5.11)

* Relation < is sub-relation of -<:

<y=: ý x --<

-* Miscellaneous properties:

!xv -x
(5-13)

-x Z* x9 y (5.14)

--lx A -Y: =ý X ; zý Y (5.15)

x -. < yAy <Z=: > X< Z (5.16)

54

This set of properties is not a mini=d one, as some of the properties could be inferred from the others, but
it is not our task to specify the minimal set of properties.

Using predicates -< and <, predicates >- (is more important) and > (is much more important) are then
defined in the following way:

def
x >- Yý* y -< x (5-17)

x>y sgy <x (5-18)

5.3.4 Some philosophical aspects on transitivity

Whether preferences should be transitive is a very much discussed question in the Logic of preference field
(von Wright 1963, von Wright 1972, Hannson 1970, Martin 1963). Some authors argue that human prefer-

ences are not necessary transitive and give some very good examples of non-transitivity of preference relations
(Fishburn. 199 1, Tversky 1969). There is a recent journal issue dedicated to the topic of transitivity of prefer-

ences (Gehrlein 1990).

However, in a conceptual design framework, being pragmatic, it could be argued that transitivity reduces
the number of questions asked (if A is considered more important to B, and B more important to C, it is auto-

matically inferred that A is more important to Q. In most cases transitivity is used to avoid cyclic preferences

i. e. A -< B, B -< C and C --< A or indifferences such as A -, B, B -, C and A -< C.

One example for cyclic preferences is cited by Fishburn (1996):

Multiattribute comparisons provide a source of cyclic preferences for an individual. May
(1954) asked62 college students to make binary comparisons between hypothetical marriage part-
ners x, y and z characterized by three attributes, intelligence, looks and wealth:

X. very intelligent, plain, well off
Y: intelligent, very good looking, poor
z: fairly intelligent, good looking, rich

Seventeen of the 62 had the 2-to-I majority cyclic pattern x >- y >- z >- x, the other 45 had
transitive preferences.

As it could be seen, intransitivity of preferences could yield to contradictions. Contradiction is something

that classical mathematical logic tries to avoid at all costs because starting from contradictions every possi-

ble conclusion is derivable. However, there are some branches of mathematical logic that try to avoid the

contradiction problem:

The logic of relevance or entailment (Anderson & BeInap 1975, Dunn 1986) where derivation of con-

clusion from premises require that the premises are relevant to the conclusion i. e. statements such

as (which is valid in classical mathematical logic):

(2 -: A 3) =* Last Fermat theorem is true

are rejected since antecedent is not relevant to the consequent.

55

Paraconsistent logics (da Costa 1974, Asenjo & Tamburino 1975, Priest, Routley & Norman 1989)

where contradictions are in a way localised not to affect the rest of the logic. They distinigi; u1sh
between the triviality of the logic (if it contains all formulae) and the contradictoriness of the logic

(if there is some formula 0 so that both 0 and -0 are in contained in that logic). Those two concepts
have the identical meaning in the classical case. The idea of paraconsistent logics is, even if there

are some contradictions, to work on the largest possible non--contradictory put of it.

Modifications to our system of preferences and their inference rules to be based on one such logic are

possible, but this is more a matter of ftniher research.

Paper by Huylenbroeck (1995) suggests some method of conflict analysis and resolution. He uses several

tests to decide in conflicting situations is there an indifference, weak or strong preference, or incomparability.

This classification however depends on several numerical parameters, some very sensitive.

5.3.5 Group preferences

In the most real world cases, the designer is not just one person but a group of people usually with different

and sometimes contradictory opinions relating to what is important and what is not. This causes already hard

decision making process to be even harder.

Group preferences for accumulating designers preferences could be used, but there are some problems

with their application, as stated by Arrow's Impossibility Theorem (Arrow 1951). 'ne following quote from

(Keeney, Raifa & Meyer 1976, p. 523) explain the problem of aggregating individuals' preferences:

44 *** Arrow's problem is roughly asfollows: Given the ranking of a set of alternatives by each
individual in a decision making group, what should the grouping rankingfor these alternatives be?
He postulated some very reasonable assumptions concerning the aggregation of individuals'rank-
ings, and then he investigated their composite implications, which turned out to be quite surprising
and disturbing. These assumptions are asfollows.
Assumption A (Complete Domain) There are at least two individual members in the group, at

least three alternatives, anda group ordering isspecifiedforallpossible individual members'
orderings.

Assumption B (Positive Association of Social and Individual Orderings) Ifthe group ordering
indicates alternative A is preferred to alternative B for a certain set of individual rankings,
and if

1. the individual's paired comparison between alternatives other than A are not changed
and

2. each individual'spaired comparison between A and any other alternative either remains
unchanged or is modified in A'favour

then the group ordering must imply that A is still preferred to B.

Assumption C (Independence of Irrelevant Alternatives) If an alternative is eliminated from

consideration and the preference relations for the remaining alternatives remain invariani
for all the group members, then the new group orderingfor the remaining alternatives should
be identical to the original group ordering for these same alternatives.

Assumption D (Individual's Sovereignty) For each pair of alternatives A and B there is some

set of individual orderings such that the group prefers A to B.

Assumption E (Nondictatorship) There is no individual with the property that whenever he pre-
fers alternative A to B, the group will also prefer A to B regardless of the other individuals'

preferences.

56

Arrow (1951) proved that there is no rulefor combining the individual's rankings that is consis-
tent with the seemingly innocuous Assumptions A through E. More precisely, we have thefollowing
theorem:

77teorem 5.1 (Arrow's Impossibility Theorem) Assumptions A, B, C, D, and E are inconsistent.

Thus, we conclude that our Decision Maker can find no procedure that can combine several
individual's ranking of alternatives to obtain her ranking and that will simultaneously satisfy these
five assumptions.

One interpretation of Arrow's Impossibility Theorem is that, in general, there is no procedure
for combining individual rankings into a group ranking thatdoes not exp licitly address the question
of interpersonal comparison ofpreferences. "

In other words (Arrow 1950, p. 24): "If we exclude the possibility of interpersonal comparisons of utility,

then the only method of passing from individual tastes to social preferences which will be satisfactory and

which will be defined for a wide range of sets of individual orderings are either imposed or dictatorial".

It is difficult to give the exact conditions for Arrow's theorem because even Arrow sometimes mentions

four (Arrow 1967) and sometimes five conditions (Arrow 1950, Arrow 1952). The following quote from (Arrow

1952, p. 5 1) give an explanation about four versus five conditions:

Condition 1 is implicit in the preceding discussion: the social choice function should be capa-
ble of defining an orderingfor the collectivity, whatever the individual preference scales.

Condition 2 bears on the relation between the individual orderings and the collective orderin
which results from them: the collective ordering should reflect positively the individual welfare
judgements. Suppose thatfor a given set of individual preference scales, society prefers x to y.
Suppose that an individual modified his ordering by rising x on his list, which remains otherwise
unchanged; it is clear that in this case we should require that society stillprefers x to y ...

The third condition that one should, in my opinion, impose on a social choice function is that
the social choice among a set of candidates should depend on the individual preferences for those
candidates and those candidates only.

There certainly exist trivial methods of aggregation which satisfy these three conditions. The
first is the establishment of a collective ordering independent of any individualp reference. Another

consists in distinguishing one individual in the society and requiring that the society prefer one
possibility to another whenever that individual does so, in short, a dictatorship. Neither of these

methods answers the problem of aggregation in a truly democratic society. But do there exist other
methods for constructing a social choice function? The answer is No. There are no methods,
other than the two trivial ones just cited, for combining several individual preference systems and

making of them a single preference system for society as a whole, at least if the three proposed

conditions must be fulfilled.

In order to avoid trivial cases, Arrow adds the following two conditions (Arrow 1952, p. 56):

Condition 4: It is impossible that the preferences of society be always in agreement with those

of a single individual.
Condition 5: For every pair ofpossibilities x and y, there exists at least one system of individual

preference orderings which causes x to be preferred to y.
Condition 4 excludes the case of "dictatorship". Condition 5 excludes the case where the

social choicefunction would impose an ordering a priori, independent of individual preferences.

He further notes that Conditions 2 and 5 are here only to establish the Pareto Unanimity Principle. This

principle could therefore have been substituted for the two conditions.

A detailed description of Arrow's theorem could also be found in (French 1986).

57

Arrow's impossibility theorem also has some opponents, as the following quote from Tullock's Towards a
Mathematics of Politics, published by University of Michigan Press, 1967, demonstrate (quoted from (Arrow

1969)):

A phantom has stalked the classrooms and seminars of economics andpolitical sciences for nearly fifteen years. The phantom, Arrow's General Impossibility Theorem, has been generally inter-
preted as proving that no sensible method of aggregating preferences exists. The purpose of this
essay is to exorcise the phantom, not by disproving the theorem in its strict mathematical form,
but by showing that it is insubstantial. I shall show that when a rather simple and probable type
of interdependence is assumed among the preference functions of the choosing individuals, the
problem becomes trivial if the number of voters is large. Since most cases which require aggre-
gation ofpreferences involve large number ofpeople, "Arrow problems" will seldom be of much
importance.

Of course, it must not be forgotten that Arrow's theorem deals with independent individual preferences
(such as in voting), whereas in the designer group there is always interactivity so the engineers can sort out their

differences (although it might cause the possible danger of dictatorship). A recent paper (Scott & Antonsson

1999) concludes that "... engineering design decision-making occupies a middle ground between decision with

an idealized decision maker and decision by groups of fully autonomous citizens, and on this middle ground

Arrow's Theorem has no detrimental consequences".

5.4 Description of the preference algorithm

Slightly simplified C code of the preference algorithm is given in appendix B, starting on page 13 1. The

algorithm is as follows:

Let the set of objectives be 001 Ok) - Construct the equivalence classes f Ci <i< m)

, Ci =0 andc, n cj =0 for i: of the equivalence relation - so that U"i-' A i. Choose one element xi

from each class Ci giving set X= Ixt, xn) where m<k. In the sequel we are going to work on

set X.

Use the following valuation v:

- if a<b then v(a) cc and v(b)

- If ab then v(a) y and v(b)

- If ab then v(a) v(b) =E2

Note 1: Taking into account the intended meaning of the relations, it can be assumed that a<y<

e= 1/2 <8<0. As already mentioned, it is assumed that a+ = 'Y+ = 1. Also note that cc, P,

, y, 5 and e need not be constant. Their order and property a+ P= y+ 8=I is what matters. More

discussion about choosing parameters is given in section 5.4.1 below.

Note 2: Above valuation is the simplest possible case. More complex cases such as v(x) =g(x, p. t)

etc. are also possible, where p is some parameter, t is time (i. e. it would be possible to change our

2Since we work with class represents, this is only possible if a=b.

58

preferences as the time passes), and g is some real-valued function.

* Initialise two matrices R and R,, of size mxm to the identity matrix E,,,. They will be used in the

following way:

xi9xj <=> R(i, j)=CC, R(j, i)=ß ý#> Ra(i, j)=0, Ra(j, i)=2

xi-<xj <--> R(i, j)='Y, R(j, i)=5 <* Ra(i, j)=0, Ra(ji)=l

xi; ý-, xj ý* R(i, j)=F-, R(j, i)=F, <* Ra(i, j)=1, Ra(j, i)=l

Note: This valuation gives already the idea how to generalise preferences to have s stages instead

of only 5 (from "much less important" to "much more important"): if xi is (say) s' times more

important the xj, simple assig-nmentR, (i, j) =s' and R,, (j, i) =0 etc. is all what is needed.

* Perform the following procedure:

Stepl For all i<m and for all j<m such that j :Ai do

Stepl. 1 If Ra (i, j) + Ra(i, i) =0 then

- Ask whether xi < xj, xi -< xj, xj < xi or xj --< xi

- Using equations (5.19) set R,, (i, j) and R,, (j, i) accordingly:

If xi < xj set R,, (i, j) 0, R,, (j, i) 2.

If xi xj set R,, (i, j) 0, Ra U, 01-

If xi xi set Ra (i, j) 1, Ra U, 0 0-

If xj < xi set Ra (i, j) 2, Ra U, i) 0-

Stepl. 2 Using Warshall's algorithm (Warshall 1962), compute transitive closure of Ra (some mod-

ifications are necessary but straightforward):

fork E 11,2,..., ml

for jE 11,2 M)

for iE 11,2,
--.,

(i, j) ý- minj2, maxlR,, (i, j), R,, (i, k) - R,, (k, j) 11;

The rationale behind the formula is the following:

- If one of R,,, (i, k), Ra (k, j) is 0 (no path between i and k or between k and j), then R,, (i j)

does not change, otherwise, use transitivity properties of -< and < and (5.16).

- Tenn min (2, -) is used so that Ra (i, j) Gf0,1,21.

Step2 Using (5.19), calculate matfix R from Ra:

-If Ra(iii) 'I and R,, (j, i) = 1, set R(ij) =F, and R(j, i)

-If Ra(i)j) =0 and Ra(iii) = 1, set R(ij) =, y and R(jj) =

If R,, (i, j) I and R,, (j, i) 0, set R(i, j) 8 and R(j, i) ='y.

If Ra (i) j) 0 and Ra (j, i) 2, set R(i, j) a and R(j, i) = P.

59

- If Ra (i, j) =2 and Ra (j, i) = 0, set R (i, j) =P and R(j, i) = a.

Other values are not allowed and indicate an error.

Step3 For each xi EX compute weight as a normalised leaving score:

W(xi) =
SL (Xi, R)

E., j Gx SL (xj, R)

and for each yEC, set w(y) = w(xi).

Example 5.2 Let 0= Joi,..., 06,07}. Suppose that 07 is a non-important objective and ot ýý' 02 and 03 ; ýý 04-

The classes of equivalence are:

Cl : -- 1013 021, C2 : -- ý031 041) C3
--2

ý05}
ý

C4 ý06}

and X=f xi, x2, x3, x4) where xi E C, for 1<i<4. Let R= R" = E4 - identity 4x4 matrix.

At the beginning of the run, matrix Ra is an identity matrix:

000

000
Ra

0010

L1001

Suppose that the first question gives answer x2 < xj, than:

1200200

01000100
Ra and after transitive closure Ra

00100010

oooijL0001

the second question gives answer x3 --< xi with the matrix R,,:

210

R,,
0100

and after transitive closure Ra
0010

0001

1

00

001

0001

60

and the third one x, .< x4. After 3 question situation is the following:

1210210

Ra
0100

and after transitive closure R,,
0100

00100010

L10011211

Fourth question gives answer x2 < x3 and the following matrix R,,:

21020

01000100
Ra and after transitive closure Ra

02100210

L1211jL1211

Since for each pair (i, j): Ra (i, A+ Ra U, 0 :A0, there is enough information to construct the preference

matrix R (without computing transitive closure 6 questions would be needed and additionally handling of

potentially non-consistent answers). If a=0.05, P=0.95, y=0.35,8 = 0.65 and e=0.5, then

8

0.50 0.95 0.65 0.35

0.05 0.50 0.05 0.05

0.35 0.95 0.50 0.35

0.65 0.95 0.65 0.50

Further,

SL(x,, R) = 1.95, SL(x2, R) = 0.15, SL(X3, R) = 1.65 and SL(x4, R) = 2.25

and the order of importance is x2 < x3 --< xt -< x4.

Weights are further calculated as

Wl -= W2: -- W(Xl) ý W(01) =: W(02) = 1.95/6 = 0.325

W3: =W4=--W(X2)-=W(03)ý=W(04)=0.15/6 = 0.025

w5 =: w(x3) = w(o5) = 1.65/6 = 0.275

W6 =: W(X4) -= W(06) = 2.25/6 = 0.375

W7 -: -- W(07) -: --
0-000

and after normalisation so that they sum to 1:

WI = W2 = 0.2407, W3 = W4 = 0.0185, w5 = 0.2037, W6 = 0.2778, W7 = 0-

61

5.4.1 Initial values of parameters and their influence

One valid question is how the valuation:

* If a<b then v(a) =a and v(b) =p

9 If a -< b then v(a) =, y and v(b) =5

* If a ; ýý b then v(a) = v(b) = F,

influences the obtained weights and if specifying parameters I oc, P, y, 8. F-I is necessary, what is the advantage

of our preference method in comparison to the original weights specification method?

The first advantage is in reducing the number of parameters: for n objectives using weights, n-1 parameters

(numbers) need to be specified (since they sum to 1), whereas with preferences, as 0=I-a, 5=1 -Y and

e=1-e= 1/2, only two need to be specified: a and y. Further, the idea is that even parameters cc andy don't

have to be specified every time and could be considered in the same way as, say, crossover type or mutation

probability: once working, they do not need to be changed and could simply be hidden from the designer (user).

The designer can change them if he is not satisfied with the results, but is not forced to do so.

Further, increasing the number of objectives, reduces the range of each weight so the influence of parameters

a and 7 becomes even less noticeable. This is the consequence of the following theorem:

Theorem 5.2 Under the assumption that (x +P= y+ 5=2-F, = 1, and that there are no equivalent or non-

important objectives, thefollowing inequality holdsfor weightfactors w(x):

<
2p

< W(X) <
2v

<2 (5.20)
m-mm

where m is the number of objectives and p= minla, D, y, 5l, v = maxlec, P, Y, 51.

Proof: Since a+ 0 =y+8 = 2. e= land per definition R(i, j)+R(j, i) =I for all 1< ij: ý m, the sum of

elements in the preference matrix R (of size mx m) is M2 /2, and therefore

Sy SL(x, R) =
M(m -

2
x

Further:

(m - 1)p,. 5 SL (x, R) < (m -

(m - 1)p (M - 1)v
s< w(x) <s

ýj-u
< (x) 2v

m-m

Since 0<p: S a, Pi 7,8 <v<1, the inequality (5.20) is valid, and that completes the proof of the theorem.

62

For the more general case, with equivalent objectives, the following theorem is true:

Theorem 5.3 Under the assumption that a+P= y+ 8=2-F, = 1, that there are k objectives, all of them

important, and that there are m<k equivalence classes (w. rt. relation -), thefollowing inequality holds:

2p
< W(X) <

2v

m+2(k-m)v - m+2(k-m)p
(5.221)

where p= minf a, P,, y, 8}, v= max I a, P, y, 8). As before, w(x) denotes the weight assigned to the objective x.

Proof: Let 0 be the original set of objectives of cardinality 101 = k, let C= 0/ ;: ýý be the set of class represen-

tatives of cardinality I CI =m and let C1,..., C,,, be the corresponding equivalence classes. Denote R the fuzzy

preference matrix (of size mx m). Denote ftirther:

A

S SL (x, R), S SL(x, R)
xEC XE 0

From the proof of the theorem 5.2, the following is true:

S= M(M- (5.22)
2

(m - 1)p! ý SL(x, R) < (m - I)V. (5.23)

Then

s=L SL (x, R)
XE 0

= 1: SL (x, R) + r, SL (x, R)
xEC xE (0\ C)

m
s+ Ci 1) SL (xi, R)

where, per definition xi E Ci. Using (5.22) and (5.23), the following is obtained:

and similarly

M(m - 1) n M(m - 1)
+ (k-m)(m- 1)v (5.24) s< + (m - Ov (I C41 - 1)

2 2

M(m - 1) m M(m - +(k-m)(m- 1)p (5.25')
2+

(M- 1)PE
=1

('C" - 1) =2

Hence, using the property 0<a<bA0<c<d #ý a-c<b-d, and inequalities (5.24) and (5-25):

and similarly

W(X) <
(m - Ov

-=
2v (5.26)

m(m-')+(k-m)(m-I)p m+2(k-m)p
2

w(x) =
SL (x, R)

>
(m- 1)p

-=-
2p (5.27)

m(m-')+(k-m)(m-1)v m+2(k-m)v«
2

63

Inequalities (5.26) and (5.27) give together (5.21) and that proves the theorem.

Note: Theorem 5.2 is a special case of the Theorem 5.3 for k=m.

Exainple 5.3 In example 5.2 on page 60, m=4, k=6, p= minf cc, 0, y, 5} = 0.05 and v= maxf cc, P, y. 81 =
0.95. Substituting into (5.21):

0.01282 < w(x) < 0.45238.

In the example in Section 6.5 on page 76, the parameters are k= 13, m= 10, p=0.05 and v=0.95, and

the inequality (5.21) is reduced to:

0.00636 < w(x) < 0.18446.

Figure 5.2(a) shows the plot of the upper and lower bound for different v (usingy =1- v) for k=6, m=

and Figure 5.2(b) gives the same plot for k= 13, m= 10.

0.5

0.4

0.3

0.2

0.1

0
0.5

max
min

- ----------
0.6 0.7 0.8 0.9

v
(a)

0.5

0.4

0.3

0.2

0.1

0
0.5 0.6 0.7 0.8 0.9

V

(b)

1

Figure 5.2. Lower and upper bound for (5.2 1) for different v and (a) k=6, m=4 and (b) k= 13, m= 10.

The influence of parameters cc and yon the weights in Example 5.2 (page 60) is given in Table 5.1. Analyt-

ically, they can be computed using formulas:

W(01) =
2- cc

, W(03) =
3a

) W(05) =1-a+2,
y

W(06) =3-
a- 2y

8+2a 8+2a 8+2a ' 8+2a

From the Table 5.1 it can be seen that the weights of objectives change relatively little with variation of

preference parameters. Similar analysis could be performed for examples in sections 6.4 (page 73) and 6.5

(page 76) where the number of objectives is 8 and 13. In those cases there is even less variation in weights as

predicted by Tbeorems 5.2 and 5.3.

5.4.2 Scalability and complexity issue

Another important question regarding preferences is "how does the preference method scale with increased

number of objectives? ". It is easy to see that in the worst case scenario for k objectives n*(k) =k- (k - 1)/2

max
min

64

a 'Y W(01) W(03) W(05) W(06)
0.05 0.05 0.2407 0.0185 6.1296 0.3519
0.05 0.15 0.2407 0.0185 0.1543 0.3272
0.05 0.25 0.2407 1 0.0185 0.1667 0.3148
0.05 0.35 0.2407 0.0185 0.2037 0.2778
0.05 0.45 0.2407 0.0185 0.2284 0.2531
0.10 0.10 0.2317 0.0366 0.1341 0.3293
0.10 0.15 0.2317 0.0366 0.1463 0.3171
0.10 0.25 0.2317 0.0366 0.1707 0.2927
0.10 0.35 . 2317 0.0366 0.1951 0.2683

0.45 0.2317 0.0366 0.2195 0.2439
0.15 0.15 0.2229 0.0542 0.1386 0.3072
0.15 0.25 0.2229 0.0542 0.1627 0.2831
0.15 0.35 0.2229 0.0542 0.1867 0.2590
0.15 1 0.45 1 1 0.2229 1 0.0542 0.2108 0.2349
0.25 0.25 0.2059 0.0882 0.1471 0.2647
0.25 0.35 0.2059 0.0882 0.1706 0.2412
0.25 0.45 0.2059 0.0882 0.1941 0.2176
0.35 0.35 0.1897 0.1207 0.1552 0.2241
0.35 0.45 0.1897 0.1207 0.1782 0.2011
0.45 0.45 0.1742 0.1517 0.1629 -q. -I-8-5 47

Table 5.1. Influence of parameters a and y on valuation in Example 5.2.

questions are necessary. However, transitivity and the other preference properties usually reduce that num-

ber. In order to find the average number of questions needed, the following simulation has been performed:

for a given number of objectives k, give a random answer to each of the question and count the number

of questions needed to construct the complete preference matrix. The tests have been performed for kE

14,5,6,7,8,9,10111112ý 15,18,21,25,30,35,40,50,60,75,1001, each test repeated 100 times (with different

random number seed) and average value fiq(k) and its standard deviation cy, (k) have been calculated- The re-

sults are presented in Table 5.2 and plotted in Figure 5.3. For a comparison, the maximal theoretical number

of questions n* is presented in column 4 of the table. As it can be seen whereas n* - O(k 2), the following
qq

approximate formula holds true:

(k) ýý (0.85 +1- k)-k-Ink
40

i. e.

(5.28)

Flq (k) - 0(, \Ik- -k- ink+ k- Ink) - O(V"k- -k- Ink) (5.29)

The value of (5.28) is presented as the last column in Table 5.2.

Note: The worst case scenario (i. e. all n* questions are needed) happens when all answers are in the 'same

direction' (e. g. yj >- Y2, Y1 > Y3, ---, Y1 >- Yk, Y2 > Y3, ---, Y2 >- Yb Yk-1 >- yk) and, therefore, the transitivity

cannot reduce the number of questions. In some cases asking the questions in different order might help: e. g.

for order xi >- x2 >- x3 instead of asking xj? x2, x, ? x3, k7? x3 which all give answer >- the questions xl? x2, x-?? X3

are asked, and since both answers are >-, preference x, >- x3 is automatically inferred. In this case, using 'depth

first' traversing instead of 'breadth first' traversing is helpful. Of course, one does not know in advance the

65

k fiq Gq (k)
4 4.36 0.6745 6 4.99
5 6.37 0.4852 10 7.29
6 8.89 0.5842 15 9.80
7 11.78 0.7047 21 12.48
8 14.83 1.5378 28 15.32
9 17.61 1.0040 36 18.29

10 20.84 2.0137 45 21.39
11 23.80 1.2144 55 24.61
12 26.48 1.1145 66 27.93
15 37.30 1.7552 105 38.46
18 50.04 2.6282 153 49.74
21 62.25 2.8793 210 61.67
25 79.51 2.6723 300 78.4
30 101A8 2.3376 435 100.76--
35 125.68 3.0281 595 124.18
40 150.77 3.3900 780 148.75
50 202.42 3.2820 1225 200.84
60 257.78 3.2492 1770 256.38
75 345.49 4.7958 2775 345.3

100 501.31 5.6527] 49-50-1 -506.57

Table 5.2 The number of questions h. (k) needed for k objectives with random answers. Average over 100 runs.

designer's opinions and the order of questions cannot be changed accordingly. But, dynamically changing the

order of questions as they are being answered is a matter of further research. Also, more precise estimate of

number of question needed, maybe using search theory techniques (Pronzato, Wynn & Zhigljavsky 2000), is

planned.

5.4.3 Lootsmals work

There is a similar work done by Lootsma (1996,1997a, 1997b). The notation from (Lootsma 1997b, p. 89)

will be used in this subsection. Lootsma considers a finite number of alternatives Aj, j=1, ..., n under a finite

number of performance criteria Ci, i=1, --., m with the respective criterion weights ci, i=1, ..., m, assuming

5000

0 4000
0
. 0.. - 0 3000
cr

2000

-0
1000

0

nq

n* q

20 40 60 80 100

Number of objectives

Figure 5.3 The number of questions hq(k) needed for k objectives with random answers and the maximal

number n* (k). Average over 100 runs q

66

that ET,
= I ci = 1. The decision maker assesses the alternatives under each of the criteria separately and expresses

his/her judgement of alternative Aj under cTiterion Ci by the assignment of the grade gij. In order to judge the

overall perfonnance of the alternative Aj under all criteria he calculates the final score sj = Y_'i= I cig ij.
Lootsma first splits the domain of objective P i. e. [Pniin! Pmax] into 7 subregions [Pi, Pi+ I] where Pi ý: Pmin -i-

(Pmax - Pmin)2'/64 for 0<i<6, and assigns the desirability (price being cheap, somewhat more expensive,

more expensive, etc, vastly more expensive) and grades (from 10 for excellent, to 4 for poor) accordingly. Z:)
Between two ob ectives Cf and C, belonging to the same domain, he then assigns the following gradations of j

relative importance:

16 Cf is vastly more important then C,

8 Cf is much more important then C,

4 Cf is more important then C,

2 Cf is somewhat more important then C,

I Cf is as important as Cs

1/16 1 Cf is vastly less important then C,

-hj-h2 If hi is the grade assigned to criterion Ci, then the ratio of the weights of two criteria Ci and Cj is vý2

Example 5.4 (From Lootsma 1997b, p. 93): Suppose that the customer is buying a car and has the following

4 criteria:

criterion grade range

consumer price 9 20000 - 40000 Dfl

maximum speed 5 140-220 kni/h

acceleration (0-100km) 7 8-20s

cargo volume 6 200-2000 dM3

Then the following weights for criteria have been calculated:

criterion weight

consumer price v/29 (v/2-9 + v/-2 + \1Y + v/-2
6 0.475

maximum speed V2-5 2 N/r-9 + V/2-5 + /-7 V2 + 0.119

acceleration V2-7 / (N/r2-9 + V/r2-5 + V/2-7 +)-, 0.238

cargo volume v2 /(V/ 29 + V/2-5
-7 + V/2

---6 + X/2 0.168

For example, for the following table for two different cars and grades:

criterion Fiesta 1.3 44kW (grade) Mondeo 1.8 85kW (grade)

consumer price 25000(6) 40000(4)

maximum speed 153(7.5) 195(9.5)

acceleration 15.3(4.5) 11.1(6)

cargo volume 250(5) 480(7-5)

67

judging alternatives (Fiesta vs. Mondeo) the following results are obtained:

s(Fiesta) =

s(Mondeo) =

5.4.4 Greenwood's work

0.475 .6+0.119 . 7.5 + 0.238-4.5 + 0.168 -5=5.7

0.475 .4+0.119 - 9.5 + 0.238.6 + 0.168 - 7.5 = 5.7

In (Greenwood et al. 1996), the following technique for Pareto ranking is used:

"Our approach to using EAsfor solving MOPs is unique in two respects. First, rather than asking
a decision maker to explicitly rank the attributes, we ask for the ranking of a small number of
candidate solutions to the MOP This ranking of solutions implicitly defines a ranking of attributes.

They base their method on imprecisely specified multi-attribute value theory (ISMAUT) (D'Ambrosio

1996) to perform imprecise ranking of attributes. The method is as follows (Greenwood et a]. 1996, p. 442):

An imprecise multi-attribute value function for an alternative x has the following form:

VX =E WkVk (ak)

k

where Wk are the strictly positive weights (summing to 1), and vk(ak) is the attribute value function (utility

function) for attribute ak. Function V, is called imprecise, because weights Wk do not have specific value, but

are constrained by preferences among attributes. By definition:

x >- Vx > Vx, wk [vk (ak)
- vk (a') > k

k

so, set of preferences define a constraint set W of weights wk.

It follows that alternatives x andx" can be compared by solving the following linear programming problem:

Minimise (w. r. t. wk): wk[vk(ak") - vk(ak)] subject to: Wk E
k

Let

z= min wk [vk (a") - vk (ak)
Wk

k

Then:

* if z>0 thenx" ý-- x;

If z< OA f>0 then x >- i';

* Jfz<OAý<Othenx; ý-, x"-

rmnl: wk[vk(ak) - vk(a")] Wk
k

Example 5.5 (Greenwood et al. 1996, p. 443) Suppose that the following table concerning attributes is given:

68

Alternatives Attributes

vl(al) v2(a2) V3(a3)

X1 0.75 1.0 0.4

X2 0.5 0.0 0.8

X3 0.0 1.0 1.0

X4 1.0 0.0 0.0

and suppose that the user has specified the preference x2 >- xi. The question is how to rank x2 and x4.

Preference x2 >- xj, defines the following set

W'f (WI
3 W2 3 W3) 1-0.25w1 - W2 + 0.4W3 > 01 Wi > 01 WI + W2 + W3 --2 l}

and after solving the linear programming problem: z>0 and x2 ý- x4.

One of the problems with this approach is mentioned by the authors: so far they assume that it is always

possible to find the solution to linear programming problems. However, if the user specify a contradictory set of

preferences, there is no solution. To avoid this problem, they use an exponential time algorithm for identifying

the inconsistent preference statements, increasing the complexity of the algorithm. Another problem with this

approach is that it is not completely obvious when and how often the designer needs to specify his preferences.

5.4.5 Conclusion

In this chapter a new preference method is introduced, some theoretical results proved and various problems,

methods and approaches discussed. The fact that there are several different approaches to preferences (notjust

two mentioned above) proves the general usefulness of preferences in multi-objective design and optimisation.

The question which of the methods is the best is however very hard to answer since they are not directly

comparable and they serve different objectives. We do believe that our proposed method is simple and elegant

and does not suffer from drawbacks of other methods (e. g. inconsistency problem of Greenwood's method). Its

usefulness is demonstrated in the next chapters where it is integrated with several optimisation methods, some

of which are developed here, some developed elsewhere.

69

CHAPTER 6

Applications of Preferences

The concept of preferences and of the relative importance of the objectives, developed in the previous chapter,

can be integrated with Genetic Algorithms in at least two different situations:

1. weighted sum based optimisation, and

2. weighted Pareto optimisation.

In both cases the preference method is used to calculate the weights as required by the optimisation method.

6.1 Weighted sum based optimisation

Weighted sum based optimisation is described in section 3.2.1, page 21. The preference method integrated with

weighted sums has a significant advantage over the traditional weighted sum based optin-Lisation methods since

the user doesn't have to express the weights quantitatively but qualitatively (within a few categories) which is

much more user friendly. Figure 6.1 shows the optin-ýsation results using different preferences on weighted

sum optimisation of BAe function. It demonstrates that the choice of preferences has a great influence on the

results obtained: e. g. the preference setting SEP2 < FR generates the solution (0.0014,7909) - the aeroplane

with very good ferry range but difficult to steer, whereas the preference setting SEP2 > FR generates the

solution (82.89,4920) representing the aeroplane easy to control, but with much shorter ferry range than in the

first case.

6.2 Pareto optimisation based methods

Weighted Pareto, method is described in section 3.5.1, page 33. Weight vector win w-Pareto front could either

be specified directly by the designer or it can be calculated from his preferences which would help the designer

to work in more qualitative terms without the burden to reason if the weight should be set of 0.1 or to 0.09 and

how is it going to affect his search.

70

9000

6000

FR

4000

SEP2 vs. FR

SEP2<<FR

SEP2<FR

;
EP2-FR

SE; 2>FR

SEPý>>FR

0 50 100
S EP2

Figu-re 6.1. The influence of preference settings on the BAe function.

This section describes applications of the weighted Pareto method. First, an example of a simple test
function is given, and then, in section 6.3, the real world problem from cooperation with British Aerospace
(BAe) is presented.

6.2.1 Simple function example

As a simple test function that can immediately show some features of w-Pareto front, a two-dimensional
function F, (xi, x2) = (ft(xi, x2), f2(xj, x2)) is maximised (i. e. n= k= 2) where:

fl (xi, x2) = sin(x2l +x22 -

f2 (xi, x2) = sin(x2l +x22 +
(6.1)

for XI i X2 G [0,37r/4]. Function f, has maximum for x2, + x22 = 7c/2 +1-, 2.5708 and f2 has maximum for

x? + xý - 7c/2 -10.5708 - so they don't have common maximum. Using different preferences, i. e f, --< f2, 12-

f, -, f2 and f, >- f2, three different vectors w are obtained, and three different w-Pareto fronts are showed

in Figure 6.2(a)-(c). Results were obtained running GA (described in more details in section 3.3 and with a

parameter setting as in section 4.5) for 15 generations. These graphs show very clear separation of Pareto fronts

obtained using different preferences.

6.3 BAe function and GA/Pareto optimisation

The British Aerospace (BAe) design problem is introduced in section 3.3, page 27. Briefly (at the moment,

as the complexity of the model is constantly increasing), there are 9 input variables x, ..., xg and 1-33 output

objectives yl, .--, Y13 to optimise simultaneously. The interaction between y4 (specific excess power SEP2) and

yq (ferry range FR) is specially interesting as they strongly conflict.

However, as already mentioned, the BAe design problem is not only an optimisation problem, actuallý-.

71

f2

I

0.8

0.6

0.4

0.2

0

-0.2

-0.4

f2 0,4

02

0

-0.2

-0.4
-0.4 -0.2 0 0.2 0.4 0.6 0.8

fi

(b) fi gý-, f2

J

H 0.4 -0.2 0 0.2 0.4 0.6 0.8
f,

(a) fl -<
f2

I

0.8

0.6

f2 0.4

0.2

0

-0.2

-0.4

t

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
A

(C) ft >- f2

Figure 6.2. Different parts of Pareto front of function (6.1) for different preferences.

optimisation is a rather small part of it. The problems of conceptual design relate to the fuzzy nature of

initial design concepts and the many different variants that engineers wish to try. Computers should be able

to help them exploration of those variants whilst also suggesting some others (Cvetkovi6 et al. 1998, Pannee

1997, Parmee 1998a). Therefore, interaction with the designer (team) is very important. Our goal is to assist

designers in the preliminary design process phase (more in the sense of MCDA (multiple criteria decision aid),

than MCDM (multiple criteria decision making) (Bana e Costa 1990b, Carlsson 1996). Figure 6.3 shows a

schema of such a system where the designer is an actual part of a design system.

COMPUTER BASED
OPTIMISA77ON

MODULE

CONSTRAWT FUZZYRULES

HANDLrNG RANDLrNG

MODULE MODULE

DESIGNER
(Engineer)

Figure 63. Schema of an engineering design system.

Using the results from chapter 4, and as explained in chapter 3, the core of the genetic algorithm used

is based on the Breeder Genetic Algorithm (Miffilenbein & Schlierkamp-Voosen 1993b). It utilises genetIC

operators suitable for real valued chromosomes (arithmetic crossover, exponential mutation etc.), and is adapted

to use techniques for multi-objective optirrýsation.

Figure 6.4(a)&(b) shows two w-Pareto fronts of y3 versus y4 for different preferences i. e. for different

72

weights, whereas Figure 6.4(c) shows the shape of the complete Pareto front. This shape was obtained us-
ing the least square method of fitting Pareto front data points. The function obtained was y= -803573 +
0.0158774/(x- 148.185) + 16458.4x - 112.338x2+ 0.255556x3 and is plotted in Figure 6.4(d).

Figure 6.5(a)&(b) show two w-Pareto fronts of y4 versus yq for different preferences i. e. for different

weights, whereas Figure 6.5(c) shows the shape of the complete Pareto front. The shape was obtained generat-

ing large number of Pareto front points and searching for the best functional approximation which in this case

was the function y= 7216 - 28925/ (83 - 0.9x) +I 17V8_3 - 0.9x. It can be immediately seen that by varying z: 1

Pareto threshold and the weights of each objective, different Pareto fronts can be obtained. Exact relationship

and applicability will be investigated in further research. Knowing the behaviour of the Pareto front with re-

spect to those parameters would enable us to vary the parameters during the genetic algorithm run to identify

those parts of the Pareto front that are of special interest (considering the density of points in given regions

etc.). Note that during the run some Pareto front points would be generated that are out of these parts, but

postprocessing the obtained data by simply removing all points that are too far away from the front's "centre

of gravity", the desired front can be obtained. This postprocessing method is explained in section 6.6, page 77.

83

82

al

BO

79

78

77

-7r

83

82

81

so

79

78

77

7f;

S.
_

145 1453 146 146.5 147 147.5 148 148.5
Y3

(a) Y3 > Y4

83

52

81

'Ir 80
A

79

78

77

76 L
145

Y3

(c) complete Pareto front

145 1453 146 1463 147 147.5 148 148.5

Y3

83

52

81

so
79

78

77

76

ý

14

Y3 < Y4

Figure 6.4. w-Pareto front Of Y3 versus y4 of the BAe function.

6.4 Example involving 8 objectives

This section presents the case involving more than 2 objectives. Suppose that the following 8 objectives of BAe

function are optin-ýsed:
IY3)Y4)Y5, Y6), V7)Y8)Y9: YI31

73

5 145.5 146 146.5 147 147.5 148

Y3

(d) Its function approximation

I AS S IAG 146.5 147 147.5 148 148.5

9000

8000
7000

Y9 6000

5000

4000

3000

9000
BOOD

7DOO

Y9 6DOO

5000

4DOO

3DOD

-400 -300 -200 -1DO 0 1DO
Y4

(a) y4 ý- yg

10000
9000

woo

7000
Y9

6000

5000

4000

3000

-500 -400 -300 -200 -100 0 100
Y4

(c) complete Pareto front

Figure 6.5. w-Pareto front of y4 versus yq of the BAe function for different preferences.

and that the following answers concerning preferences (those are the exact questions the program asks -6
questions only for 5 distinctive objectives) are specified:

Y3 ýý Y4 Y5 ýý A Y7 '; ýý Y8

Y3 >- Y5 Y3 >P Y3 -< Y9 Y3 >- Y13

Y5 ý- Y7 YS -< Y13

This results in the following preference order:

Y9 >- Y3 r-" Y4 >- Y 13 >- Y5 A> Y7 Y8

and, using the same valuation as in Example 5.2 on page 60, the following weights:

W3 = w4 = 0.1722, w5 = W6 = 0.1126, W7 = w8 = 0.053, wg = 0.1921, W13 = 0.1325

Performing weighted Pareto GA oPtimisation (with Pareto set size limited to 400) gives as a result an 8-

dimensional hypersurface. Some of its 3D slices are presented in Figure 6.6. (page 75). For the comparison,

right hand side contains the same 3D slice without preferences (i. e. using standard Pareto method).

Note that these are just 3-dimensional slices of an 8-dimensional surface. There is still a problem of

displaying n-dimensional surface for n>4. Although a very small part of the 8D Pareto front is displayed.

the shift towards the smaller values of p in Figure 6.6(a) can nevertheless be noticed as the objective N. 7 Is the

least important of all. Similarly, the values of y5 are less in Figure 6.6(a) than in Figure 6.6(b). This can be

74

-400 -300 -200 -100 0 100
Y4

(b) Y4 < Y9

0

6

y

(e) Y9 >- Y3 >- Y13

Y9

Y9

0

Y13

60

Y9

(f) Y3 ýý Y9 ýý Y13

Y9

Y9

Y13

Figure 6.6.3D slices of Pareto fronts (Y3
3 Y7, Y9), (Y5

3 Y7, yq) and (Y3, Y9 i Y13) with and without preferences.

75

(a) Y9 >- Y3 >> Y7 Y3 ýý Y7 ýý Y9

(C) Y9 ý- Y5 > Y7 Y5 ^-ý Y7 Y9

easily explained by noticing that the weight factor for yq (0.1921) is almost twice the weight Of Y5 (0.1126) and
almost four times the weight of y7 (0.053). A similar effect could be noticed in other Pareto front slices.

6.5 Example with 13 objectives

Another large experiment involves all 13 current objectives fYl)Y2)Y3, Y4, Y5iY6iY7iY8, Y9, YIO, YII, YI2: YL31 Of

the BAe function. Suppose that the designer has the following preferences (again, as required by the program

- 24 questions for 13 objectives (instead of theoretically maximal 78), or 21 question for 10 non-equivalent

objectives instead of 45):

Y3 ýý Y4 i Y5 ýý Y6) Y7 ýý Y8

Yl >- Y2, YI -< Y3, YI >- Y5, YI >- Y7, Yl < Y9, YI >- YIO) YI > Yll i YI >- Y12ý Yl -< Y13

Y2 -< Y53 Y2 >- Y73 Y2 -< YIO) Y2 -< Yl I) Y2 >- Y12

Y3 << Y9) Y3 -< Y13

Y5 >- YIO) Y5 >- YI I

Y7 >- Y12

Y9 >- Y13

Y10 > yl I

If the objectives are ordered manually, by splitting the set of all objectives into these less than yi and these

greater than yi, the results obtained (for non-equivalent objectives fYI, Y2, Y3, Y5, Y7, Y9, YIOYII, YI2, YI31) are

presented in Table 6.1.

Yi More impormt than yj Less importmt than yj
Yi fY3, Y9, YI31 f Y2) Y5, Y7J103Yl 1, Y121

Y2 fYhY3, Y5)Y9, YlO, YIhYl3j fY7iYl2l

Y3 IY9, YI3} IYI, Y2)Y5; Y7)YIO)Yl I J121

Y5 fYI)Y3)Y9, YI31 fY2, Y7, YIO)YII)YI2j

Y7 JYI, Y2, Y3, Y5, Y9, Y10, Yl 1, Y131 1Y121

Y9 0 f YI, Y2) Y3) Y5, Y7, YIO, Yl 1, Y12; Y131

Y10 f Yl 3 Y3, Y5, Y9, Y131 fY2, Y7, YIIJ12ý

Yll JYI, Y3J5, Y9iYlO)YI3J ýY2, PJ121

Y12 f yj 3 Y2, Y3, Y5, Y7, Y9, YIO, YI 13 Y131 0

fy9l IY1, Y2, Y3, Y5, Y7, YIO; Yl 1) Y121

Table 6.1. Ordering of objectives

This gives the following order:

Y9 >- Y13 >- Y3 ýý Y4 >- YI >- Y5 r-"' Y6 >- YIO >> Yl I >- Y2 >- Y7 Y8 >- Y12

76

and the weights vector

(0- 1003,0.0334,0.1054,0.1054,0.0951,0.0951,0.0283,0.0283,0.1414,0.09,0.0386,0.0231.0.1157).

The optimisation run was performed using GA with population size 500 for 500 generations and the size of
Pareto front was limited to 1000. Objectives fyhY25Y10J11, Y12} are minimised and all other are maximised.
Each objective is normalised to [0,1] range. The obtained graphs are similar to these shown in Figure 6.6,

except that the effect of preferences is less visible since the number of objectives has been increased.

6.6 Restricting Pareto front

Even though the Pareto front obtained using preferences is a subset of the whole Pareto front, the search process

still finds isolated points further away from the region of interest, as illustrated in Figure 6.8(a) (obtained by per-
forming Pareto optimisation on y4 and yq using y4 < yq preference). For example the point (-334-77,9399-75)

(the most left point of the front) is very far away from the actual region of interest. The points obtained can be

restricted using the concepts of the centre of gravity and the average distance in the following way:

(i Definition 6.1 For a given set S y(i) = (y(') ')) 11 <i< ns, Ig RI of size ns, its centre of gravity is I)...) Y.

defined as ys' = (yl,
---, y.) where

ns
Yci

U)
I yi

ns j=l

and its average distance is calculated as ds:

(6.2)

ns ns
ds=-Yllys Y(i)112=-Y, (6.3)

ns ns

The restricting algorithm is simple: after computing average distance ds, and centre of gravity y', all points S
in the Pareto front with the distance greater than (x, - ds from the point yc are removed, for some positive S

real-valued parameter cc,,.

Figure 6.8(b)-(d) show the results obtained restricting Pareto front of y4 < yq (presented in Figure 6.8(a))

for (x, E 11,2,31. Figure 6.7 shows the size of restricted Pareto front (i. e. percentage of the unrestricted Pareto

front size) as a function of cc, Our experience shows that the values around (x ; ý-, 2 for 2D Pareto front give the

best results.

6.7 Combining preferences with cooperative optimisation

One of the ftLrther applications of preferences is the distributive cooperative Genetic Algorithms described

in (Parmee & Watson 1999, Parmee, Cvetkovi6, Watson & Bonham 2000). Ignoring the Taguchi method

(Peace 1993) used, and concentrating only on the cooperative part, the main idea of this kind of optimisation is

77

0 100
N
U)

80 2

m
60

0
CD 40

CD 20 2
0) CL

=UV

9000

8500

8000

7500

7000

6500

6000

5500

5000

4500

Figure 6.7. Pareto front size as a function of restricting parameter cc,.

Corder of Gravity

. 350 -300 -250 -2DO -150 -10D -50 0 5D 100
y4

a, = +oo
blaUL)

9000

8500

8000

7500

70DO

6500

6000

55W

50W

A, nn

I -Vastric
Center of Gravity

-7350
-300 -250 -200 -150 -100 -50 0 50 100

y4

(c) cc, =2 ac =1

Figure 6.8. Restricting Pareto front for y4 < yq preferences. Influence of a,, factor.

the following:

A proposed co-evolutionary distributed method utilises individual GAs for the optimisation of each
objective. The problem is therefore reduced to a number of concurrent co-evolutionary tasks spe-
cific to the overall design domain. PVM software controls the distributed architecture ensuring
minimal clock timefor these multi-objective problems.
The fitness for each objective is normalised relative to the maximum and minimum values found
during each GA run with constant adjustment as new upper and lower limits are identified. For

each generation, solutions relating to each objective are compared with the best individualfrom

the other GA populations. If a variable is outside a range defined by a range constraint map it is.

adjusted by a penaltyfunction. (Parmee & Watson 1999, p. 1658)

The constraint map is defined as a monotonically non-increasing real function dp :N --ý [0ý 1]. Parmee &

Watson (1999) used the following functions:

1. dp(t) =1 (no distance constraints);

2. dp(t) =max 11 -tln., pp} (full linear constraint function);

9000

8500

8000

7500

7000

6500

60DO

5500

500D

ASW

I --Ole ýnclsd -7-
Center of Gravity -

. 350 -300 -250 -200 -150 -1DO -50 0 50 100

y4

(b)cx=3
9500

90DO

B500

SDOO

75DO

7000

6500

6000

5500

5000

4500
-350 -300 -250 -ZDO -150

y4

78

012345

Rest6cbng iactor

-100 -50 0 50 100

I dp (t) = maxf 1- 2t/n,,,, pp} (half linear constraint function);

4. dp(t) = pp + (1 -pp) - (1 +cos(7ct/n.))/2 (full cos-like constraint function);

5. dp (t) =
pp+(1-pp)-(1+cos(27ct/nm))/2, t<n,,, /2;

(half cos-like constraint function).

I

PP) t>n,, /2.

where pp is the minimal relevant distance value (0.1 in above paper), t is the current generation number, and n,
is the maximal number of generation of the GA (100 in above paper). If the difference between variable x in
two individuals from different GAs (optimising different objectives) is greater then dp (t) of their variable range,
their fitness functions are multiplied by the penalty factor ýp < 1. Formally, fitness function in generation i is

defined as

fi (X 0
--..:

ri (X) *IkI Xd (Xj, Xi, t) where Xd (X7 Y,
Op, if Ix-yl ý: dp(t);

(6.4)
j=l 1) otherwise.

or, in C:

A compute fitness penalty based on distance and constraint map */
fl, = cmap[gen]; A maximal allowed distance without penalising
for(i=O; i<popsize; i++) A now apply constraint map

for 0 0; j< nx; j++) f
f2 f1 *(XRANGEU][1] - XRANGEU][0]);
for (k = 0; k< slaves; k++)

if (s :A k)
if (fabs(pop[s][i]. decvalUl-pop[k][Ol. decva]U])>f2)

pop[s] [i]. fitness fitpen; A fitpen = 0.5

In the case of 3 objectives, ATRI, SEP1 and FR, and three populations, the graph of FR objective is

presented in Figure 6.9. lt can be seen that at the beginning, where there is no constraint map, each population

gives different values for FR, but as the constraint map gets stricter they all converge towards (phenotypically)

similar solution.

However, the original algorithm considers all objectives equally important and solutions converge towards

the middle solution. The question is: is it possible to use the preference method to make some objective more

important (e. g. aeroplane with good ferry range is more important than the aeroplane with good ATR)? This

question is discussed in the rest of this section.

The problem with the fitness function (6.4) approach is that the penalty function is phenotype based, i. e. the

distance is measured in variable space, not in objective space where the concept of preferences is applied.

One method of overcoming this problem is by modifying the penalty factor Op in equation (6.4) in the

following way: If the objective fi(x) has preference based weight wi and fj(x) preference based weight wj,

then:

79

10000

9000

8000

7000
cc
U-

6000

5000

4000

so
si
S2 --------------

3000 1- 11i
0 10 20 30 40 50 60 70 80 90 100

Generation

Figure 6.9. Converging towards common solution.

- 1f the distance between variables is > dp (t), multiply the fitness fi by minj 1, (wi/wj) - op I and

multiply the fitness fj by minj 1, (wjlwi) - op}.

- If the distance between variables is < dp(t), do not change fitnesses fi and fj.

i. e. mathematically, the modified equation (6.4) is needed:

k OP - Op (X, Y), if Ix-yl ý: dp(t);
fi (X) t) : ---

fio (X) *II Xd (Xi
i Xi i t) where Xd (X) Y, 0= (6.5)

j=l 11 otherwise.

for

Op (x, y) = minf 1, wxlwyl (6.6)

and wt is the weight of objective t.

In that way, if objective fi is more important than objective fj, its fitness gets less penalised and the con-

vergence process is biased towards objective fi.

The corresponding C code is the following (comparing with previous version that implements equation

(6.4), there is only one line of code added):

A compute biased fitness penalty based on distance and constraint map
fl. = cmap[gnuml; A maximal allowed distance without penalising
for(i=O; i<popsize; i++) A now apply constraint map

for 0=0; j< nx; j++) f
f2 = (XRANGEUI[l] - XRANGEUI[Ol) * fl;
for (k = 0; k< slaves; k++) I

fp = rnin(l, fitpen*weight[s1/weight[k1); A fitpen = 0.5

if (s :A k)
if (fabs (pop[slave] [i]. decval 0]-pop [k] [Ol. decval 0 1) > f2)

pop[s][i]. fitness fp;

80

Tests using 2 GA processes So and SI, So optimising SEP 1, S, optimising FP, have been run and the results
for FR for different preferences are shown in Figure 6.10. Figure 6.11 shows the results for SEP1. All test

are averaged over 20 runs. It can be seen that using different preferences, the results are more biased towards

regions where the preferred objective has higher values. There is also an interesting behaviour noticeable in
Figure 6.1 0(b) and in Figure 6.11 (b) where the processes are diverging. One possible explanation is that the

use of preferences decrease the severity of penalty factors, so preferred objective is not "encouraged" towards

compromise region as heavily as in the non-preference case.

12000

10000

8000

6000

4000

2000

sd Si

12000

10000

8000

ir 6000

4000

2000

0 20 40 60 80 100 120 140 160 180 200
Goneraon

(a) SEP1 < FR
so

9000 si
8000
7000

$000

5000

4000
LL

3000

2000

1000

0
0 20 40 60 80 100 120 140 160 180 200

Gonerabon

(c) SEP l Pz, FR
IDOOO

9000

8000

7000

6000

cc 5000

4000

3DDO

2000

1000

m

sd
sl

0 20 40 SO 80 100 120 140 160 ISO 200
Generation

(d) SEP1 >- FR

iuvuv so I

9000 sl
8000
7000

6000

Ir Son

4000

3000

2000

1000

0
0 20 40 60 OD 100 120 140 160 180 200

Gemrawn

(e) SEP1 > FR

Figure 6.10 Co-evolution and different preferences: results for FR. Process So optimises SEP I. and process S,

optimises; FR.

6.8 Problems, discussion and further research path

The previous two chapters described a novel method for transforming qualitative characterisation of objective

relative importance into quantitative characterisation. An algorithm was given that implements the transfor-

mation. Integration with traditional and GA based multi-objective optimisation methods was discussed and a

novel Pareto optimisation method integration with weights/preferences was developed. Some applications of

preferences in the new Pareto based method were presented. Also, a method for integrating preferences into

co-evolutionary optimisation framework was given. In the future work further development of the preference

81

01. 0 20 40 60 80 100 120 140 160 180 2DO
Generation

(b) SEP I -< FR

E

ISO
140

120

100

so

so

40

20

0
0

160
140

120

100

CL
UJ 80
U)

60

40

20

0
0

lou
140

120

100

so

60

40

20

0L
0

ISO
14.0

So -
sl -

120

100

LU 130
U)

60

40

20

1) ýO Zo So 0 120 140 ISO 180 200
Goneraon

(b) SEP I -< FR

160 r

140

120

100

so

60

40
-

20

0
0

F

Figare 6.11 Co-evolution and different preferences: results for SEP1. Process So optimises SEP1 and process
S, optimises FR.

model is planned and its more tight integration into the real world applications.

To conclude this stage, here is a word of warning from (Keeney et a]. 1976, p. ix):

"... Now assume you are a harassed decision maker sitting infront of an output device deluged
with a mountain of conflicting information. You are confused. What should you do? How can you
sort out the issue and start thinking systematically about your choice problem: which policy should
you adopt in the real setting?

We are convinced of one thing: The decision maker cannot simply plug these incommensurate
outputperformance measures into an objectiveformula that someone has proposed ex ante without
any reference to the real-world meaning of the various measures. Instead, our prescriptions lead
us in an opposite direction: we advocate that the responsible decision makerforce himself to think
hard about various value tradeoffs and about his attitudes towards risky choices and we suggest
ways that this process can be systematically examined by dividing his complicated choice problem
into a host of simpler choice problems. "

Another challenge is the actual realistic number of objectives and preferences one can deal with. There is a

difference between the following two design stages:

* detailed engineering design tends to perform the optimisation as far as possible, but rarely deals

with more than a couple of objectives, and

* conceptual engineering design where the global idea of a product is created by slmultaneous]ý,

tackling as many issues as possible (cf. section 1.1 and (Pahl & Beitz 1996)).

82

20 40 50 80 100 120 140 150 ISO 200
Gerambon

(a) SEP1 < FR

20 40 60 80 100 120 140 ISD 180 200
Generation

(c) SEPI Pý FR

20 40 60 80 100 120 140 150 180 200
Gonerabon

(d) SEP l >- FR

20 40 60 80 100 120 140 16D 18D 200
Gonv""on

(e) SEP I >> FR

There is also a point of view expressed by Sen & Yang (1998) that adding user preferences makes sense

only up to the certain point. After that, they simply have no further influence. Our situation is similar: with an

increased number of objectives, they become less and less sensitive to user specified preferences.

83

CHAPTER 7

Scenarios in Engineering Design

In section 1.1, page 1, different phases of engineering design has been introduced and it has been established

that different phases of design require different levels of creativity: the degree of creativity is the highest in

conceptual design and the lowest in the detail design. Further "... in creative design, knowledge needed to

address a problem typically is not available in a form directly applicable to the problem. Instead, at least

some of the needed knowledge has to be acquiredfrom other knowledge sources, by analogical transferfrom a

different problemfor example" (Goel 1997).

Therefore, we can say that the conceptual design phase has the following components:

* Mathematical model;

* Cognitive model.

They are presented in Figure 7.1.

Mathematical Cognitive
model model

y= max F(x) fuzzy logics,
g(x, P) <0 preferences,

optimisation'ý
scenanos, Z
preferences

Model

Figure 7.1. The initial Phase of computer aided whole system design

For the mathematical model solving, an genetic algorithm has been used, described in chapter 3. The

cognitive model component is more subjective and cannot always be expressed in strict mathematical model

84

terms. Further, different designers working on the same conceptual design problem, although sharing the same
mathematical model, may have different ideas and opinions i. e. different cognitive model.

The previous chapters have introduced the preference method that is used to connect the two components

of preliminary design. In this chapter another tool, scenarios will be introduced and used.

7.1 Scenarios

Scenario handling is another tool that we want to integrate into our conceptual design system.
In a typical design situation, the designer has one or several preferential situation (scenarios) that he adds

to the fitness function such as: "I would like to have y5 E [0,4] or, if not possible (or feasible), then I would like

to have yi + Y3 > 100 etc. " Therefore, additionally to the mathematical model with its set of objectives and a
fixed set of constraints, there is a dynamical, interactive set of additional constraints or goals.

Definition 7.1 Scenario is formally represented as a conjunction of relations (constraints) in a fairýy rich

mathematical language, similar to the concept of Horn clause in mathematical logic, Prolog or resolution

based automated theorem proving methods (Chang & Lee 1971, Loveland 1978). Each scenario is a func-

tion of model's inputs, objectives and (eventually) some additional parameters. Its value is between 0 and 1,

representing the percentage of the relations satisfiedfor given values of (its) inputs.

Formally, using Backus-Naur Forms (BNF), a scenario grammar is presented in Figure 7.2. Computer

implementation is based on the following YACC (Johnson 1975, Aho, Sethi & Ullman 1987) grammar:

/* scenarios grammar for the first case */

%token NUM VAR OBJ /* number, variable or objective
%token NEQ EQ GEQ LEQ LT GT /* relations */
%token ABS SQRT MIN MAX EXP LOG SIN COS ADD SUB MUL DIV /* operators

%nonassoc NEQ EQ GEQ LEQ LT GT /* nonassociative relations */

%left ADD SUB /* left associative operators */
%left DIV MUL /* kft associative operators, higher prior*y
%right POW /* exponential sign, right associative
%left NEG /* sign change */

line /* nothing
line I \nI
line list I \n
line list ' ;'

list element
list I &I element

element expr LT expr
expr EQ expr
expr NEQ expr
expr GEQ expr
expr LEQ expr
expr GT expr

expr expr ADD expr
expr SUB expr
expr MUL expr

10

20

30

85

expr DIV expr
expr POW expr
ABS I(' exprl)l
SQRT expr ')I
EXP expr ') I
LOG V expr 1)'
SIN I(' exprl)l
COS I (I expr ') I
MIN I(, exprl, l exprl)l
MAX I(' exprl, l exprf)f
I (I expr 1) 1
SUB expr %prec NEG
VAR
OBJ
NUM

(scenario-1) -+ (scenarioý [; (scenario)]
(scenario) (element) [& (elementý]
(element) (exprý (rel) (expr)

(rel) --- <I=I>I >= I <= I <>
(expr) (expr) (add-op) (term) I (term)
(term) (termý (mult-op) (efactor) I (efactor)

(efactor) (factor) ýpow-op) (efactor) (factor)
(factor) ((expr) (expr) I (op)p (expr) (var) (const)

(add-op) +
(mult-op) -+
(pow-op) -+

(OP)p --+ sqrt I abs I max I min I sin cos I log I exp
(var) x ýconst) IY (const)

(const) (number)

Fi, Q, u-re- 7.2. Formal Backus-Naur Form (BNF) grammar of scenarios.

Example 7.1 Consider a following set of 3 scenarios:

Sl : (Y3 > 100) A (Y2 > 7000)

S2: (y4 - e-" < 2x2 + VIT-3y5) A (yi < 12.42x4) A (xi + x2 > 20)

S3: sin(x2/100) < 0.54

Those scenarios can be specified in the following (C-like) notation:

y3 > 100 & y2 > 7000

y4*exp(-xl) <= 2*x2 + sqrt(7.3*y5) & yll < 12.42*x4 & xl + x2 > 20

sin(x2/100) < 0.54

If x, = 1.0, x2 = 17.9, x4 = 5.12, yj = 59.4, y2 = 7122, Y3 = 95, y4 = 360 and Y5 = 1400, then

v(SI) =17V (S2) =2 V(S3)
23

40

86

7.1.1 Combinations of scenarios

The evaluation of scenarios Si (for 1<i<M,) gives the set of (0,1 ý-real values f v(Si) 11 <i<M.) but the
question is how to interpret the set of scenarios S= jSj 11 <- i

-<
Ms) and what is its value v(S)? This is a

problem in itself and there are several possible approaches:

1. Let the designer specify the relative importance of each scenario, using weights wi or using our preference
based method for specifying importance. Then

V(S) wi - V(si)

2. The following geometric progression can be applied: importance factor of scenario S, is cc, scenario S-) is
a factor a less important than S, (i. e. its importance factor is (X2

.
), scenario S3 is a factor a less important

than S2 etc., where (x is a solution of the equation

In that case v(S) is computed as

ms

Exi=i, o<x<i.

ms

V(S) (xi - v(si) (7.1)

Continuing Example 7.1, using this method: M, = 3, (X = 0.5437 and v(S) = 0.6296, i. e. the set of

scenarios is accomplished by approximately 63%.

The advantage of this method is that the designer does not have to worry about specifying the importance

of scenarios, since they have been calculated automatically. However, this model is rather limited, and

depends heavily on the scenario order, so that the designer has to know what is the most preferable

scenario, what is the second one etc. (as in the lexicographic ordering described in section 3.2.2, page 23).

3. Third method considers each scenario independently of the others and performs a parallel, distributed,

island-based optimisation where each island optimises the original problem plus one scenario. In this

case, agents or some other methods can be used that can monitor the fulfilment of the scenarios. The

advantage of this method is that there is no need to fulfil all scenarios (they could be conflicting) and that

the system (through agents) can signal back the possibility or impossibility of the fulfilment of scenarios.

Obviously, this method has the broadest potential and our future work will mainly be in that area. Some

work is presented in chapter 8 describing agents in the conceptual design context.

4. Fourth method is the classical one: use penalty functions (Michalewicz 1995) and penalise the solutions

that violate some of those scenarios. However, "... there is no general guideline on designing penalvy

functions, and constructing an efficient penalty function is quite problem-dependent" (Gen & Cheng

1997, p. 52).

87

7.2 Different scenarios scenario

The previous section describes a scenario grammar as defined in Definition 7.1 and shown in Figure 7.2. It gives

a level of fulfilment of scenarios (as a real number between 0 and 1), but which has very limited expression

power (i. e. no disjunction nor negation within the scenario). In this section a new, more powerful scenario

grammar is created, that includes these two additional logical operators (using symbol \/ for disjunction and
- for negation). The values of scenarios are limited to true (1) or false (0) i. e. a scenario is true or a scenario
is false. A combination of those two approaches is possible, but this would require some form of multi-valued
logic (Urquhart 1986). However, that is a matter of further research. One possible approach is the following

interpretation:

kk
is the number of valid formulas v(A 00 n i=1

n17 at least one of Oi is true V
i=1 0, otherwise.

V(-O) =I- V(0)

This interpretation uses the same conjunction operator as the first grammar, but unfortunately not all of the

usual properties of the logical operators are fulfilled (e. g. de Morgan's laws).

The complete specification of the modified grammar is given in Figure 7.3.

(scenario-1) -+ (scenario) [; (scenario)] *
(scenarioý ---+ (element) [(Iog-opý (scenario)] ((scenario)
(element) (expr) (rel) (expr) (scenario) ((scenario)
(Iog-opý &I\/

(rel) <1 =1 >1 >=I <=I <>
(expr) -4 ýexpr) (add-op) (term) I (term)
(term) (term) (mult-op) (efactorý I (efactor)

(efactor) (factor) (pow-op) (efactor) (factor)
(factor) ((expr) (expr) I (op)p (exprý ývar) ýconst)

(add-op) +
(Mult-opý
(pow-op) -4

(OP)p sqrt I abs I max I min I sin cos I log I exp
(var) x (const) IY (const)

(const) ýnumber)

Figure 73. Formal Backus-Naur Form (BNF) grammar for scenarios.

The corresponding YACC grammar contains the following specification (this is not a complete YACC

88

grammar, some details are on-iitted for brevity as they do not contribute to its understanding):

/* scenarios grammarfor the second case */
'Votoken NUM VAR OBJ /* number, variable or objective
/otoken NEQ EQ GEQ LEQ U GT NOT / relations */
, 0/otoken AND OR ABS SQRT MIN MAX EXP LOG SIN COS ADD SUB MUL DIV /* opersators
%nonassoc NEQ EQ GEQ LEQ LT GT
%left AND OR /* left associative relations
'Voleft ADD SUB /* left associative operators
'Yoleft DIV MUL /* left associative operators, higher priority
'Yoright POW /* exponential sign, right associative
O/oleft NOT NEG /* sign change and negation 10
IYOCV0
line /* nothing

line I \nI
line list I \n I
line list I; I

list element
list AND element
list OR element
f (F list I) I

element expr U expr
expr EQ expr
expr NEQ expr
expr GEQ expr
expr LEQ expr
expr GT expr
expr
I (I list I)
NOT list

expr expr ADD expr
expr SUB expr
expr MUL expr
expr DIV expr
expr POW expr
ABS I(' exprl)l
SQRT I (I expr 1)
EXP IV exprl)l
LOG IC expr ')I
SIN IV expr'),
COS I(' exprl)l
MIN I(' exprl, l exprl)l
MAX I(' exprl, l exprl)l
I (I expr 1) 1
SUB expr %prec NEG
VAR
OBJ
NUM

Example 7.2 Returning to the example 7.1 (page 86), using new interpretation, scenarios are specified in the

same way as before, but their values are different:

V(SI) ý--- 0) V(S2) ---:
0) V(S3) : --::

1

instead of the previous:

V(Sl) V (S2) ý2 V(S3)
23

This is not as fine as before, but it allows to also express scenarios such as

20

30

40

50

89

1. S4: «xi > 0) /\ (x, < 5» V «xi > 10) A (xi < 15»

2. S5 : --, «y2 < 0) V (y4 + y5 > 66»

in the following way:

(XI >0& X1 < 5) V (xj > 10 & X1 < 15)

- (y2 <0V y4 + y5 > 66)

Using the same variable valuations as in Example 7.1, their values are:

V(S4) Ii V(S5) -: --

In the further text the second version of scenarios will be used.

7.3 Applications of scenarios

The main application of scenarios is to give additional constraints and objectives that are not built-in into

the basic (miniCAPS) model. That gives the designer a lot of flexibility as it enables him to dynainically

change those additional requirements. Each of scenarios can have a preference-based weight assigned. Fitness

function is calculated as:

f (x) = fo (x) x 1: wi - v(Si) (7.2)
i

where wi are preference weights summing to 1, and f, (x) is the original fitness function.

Example 73

Data for all aircrafts are from (Sharpe 1999, Jane's 1nformation Group 1999) as well as from (Chandler

1999).

(a) Suppose that the following set of scenarios is given:

constraints for F-117A Stealth Fighter

yI1 <=13.20 Wing span
A <=105.9 Wing plan area

y9 >=2327 # Ferry range estimated as combat radius w 2.7

yIO >= 24894 # take-off mass

Al " 1890 # take-off run

Running the program with this set of scenarios and maximising yq and y1o and minimising yj and yj I

gives the following solution:

I -nput parameters: 0.9 7383.3 0.8969 80 2. -78 0.6 60 0.12 0.873S

relevant outputs: yl=602.45, y9=7691.98, ylO=29288.96, yiý'=-3.2

whereas running without any scenarios, the following solution is obtained:

90

ýrp- parameters: 0. -978 8089.48 0.9 8 0 6 0. ' 60 0.12 C-74-6
relevant outputs: y-l=969.33, y9=7448 . 92, y! 0=371-51

. 64, y---=2'-. 9

i. e. since wing span is not limited any more, much better take-off mass is obtained, but also causing
longer take-off run.

(b) With the following set of scenarios:

constraints for Grumman F-14D Tomcat
Y11 >= 11.65 & yl, <='9.55 # Wing span
x4

,
<=52.49 # Wing plan area

y9 >=3200 # Ferry range
ylO >= 33724 # take-off mass
x3 >= 0.83 # max cruise speed 10-19km

lyl
<= 427 # take-off run

the solution that is obtained violates scenario S4 (take-off mass constraint):

input parameters: 0.8492 6856.77 0.79 52.11 5.5 0.1 60 0.03 0.9154
relevant outputs: yl=425.45, y9=5359.99, ylO=25762.06, yll=16.93

Here the take-off mass parameter is violated, but all other are fulfilled.

Using preferences, scenario S4can be fulfilled:

By setting the following set of preferences for above set of scenarios f SI)
... i

S6 1: S4 >- SI ": ýý S2 ýý S3 ý-'

S5 ý-4 S6.
) the solution is obtained where S4 is fulfilled, but scenarios St, S2 and S6 are not:

input parameters: 0.8079 8089.5 0.8597 860.1 60 0.12 0.3836
relevant outputs: yl=969.33, y9=7448.92, ylO=37151.64, yl--, =2-. 9

This certainly gives the designer possibilities to balance different constraints and objectives: if the take-

off mass is more important than take-off run (as in the case of bombers and transporters), the search can

be biased in that direction. If however, take-off run and wing span are more important (for fighters), it

will set the preferences accordingly, taking into account lesser take-off mass etc.

(c) A similar example is shown below, with the following set of scenarios:

constraints for F-111 Aardvark Bomber

yll >= 9.74 & yll<=19.20 # wing span
x4 <=61.07 & x4 >=48.77 # wing plan area
y9 >=4707 # Ferry rancre
ylO >= 45360 # take-off mass
x3 >= 0.75 # max cruise speed 919km/h

yl <= 951 # take-off run

If the program is in its original form, regardless of preferences, the take-off mass scenario cannot be

fulfilled. The limitation is in the input range of variable x4E [20,801 (from the input file caps. da:).

However, increasing wing plan area (x4) range to 110, using preference setting S4 >- Si ; zý S,
r-

S3
ý

S5
ý

S6, a solution is obtained where S4 is fulfilled, but scenarios S1 and S2 are not:

91

inputs: 0.8953 9077.8174 0.8924 110 6 0.1 60 0.1064 0.4961
relevant outputs: yl=950.9987, y9=7817.30, y10=467/60.24, yl--=25.7

This example will be expanded later on in section 8.7.2 on page 110.

This example demonstrates the power of the developed system for interactive analysis and change of pa-

rameters in the run and provides almost immediate feedback about the objectives, constraints and preferences.

Some further scenario examples for different aeroplanes are given in appendix C, page 138.

7.4 Scenarios in BAe system for conceptual design

Our system developed so far that applies scenarios together with designer interaction and genetic algorithms

is simply represented as in Figure 7.4. it incorporates multi-objective optimisation methods, preferences and

scenarios.

Objective I

Scenario I

Scenario

Scenario 3

etc.

Objective 21e**(Objective n

SYstem :::::::::::::::::::..
CDatabase

Designer

Figure 7.4. Schema of the computer/human design system.

The fitness function for our engineering design system is schematically presented in Figure 7.5. For the

simplicity reasons, the intermediate fitness function is illustrated for weighted sum based transformation, but

any other multi-objective optirnisation method can be equally well used. It can be seen that the model of our

system (reflected, as required for GAs by fitness function), goes through several transformations: first the set

of objectives is transformed into a (usually but not necessary one-dimensional) fitness function, which is then,

by means of scenarios, further transformed into another fitness function which better reflects and refines the

92

designer's needs and ideas. This transformation is at any time interactively changeable by the user (designer).

OBJECTIVES

t2

tk

Preference
based

weights
Wl

(1)2

SCENARIOS

lntermediate
fitness

function

W

(71
(72

Figure 7.5. Transformation of fitness function

Fitness
function

I

93

CHAPTER 8

Agents and their Use in Conceptual Design

The chapter discuss the use of agents generally, and in the conceptual design context in particular.

8.1 Introduction and a general framework

The first question one asks is "What is an agenel. There is a nice quotation about it in (Wooldridge & Jennings

1995):

Carl Hewitt recently remarked (at the 13th international workshop on distributed AI) that the
question what is an agent? is embarrassingfor the agent-based computing community in the same
way that the question what is intelligence? is embarrassingfor the mainstream AI community. The
problem is that although the term is widely used, by many people working in the closely related
areas, it defies attempts to produce a single universally accepted definition. This need not be a
problem: after all, if many people are success Ily developing interesting and useful applications, fu
then it hardly matters that they do not agree on potentially trivial terminological details. However,
there is also the danger that unless the issue is discussed, 'agent' might become a 'noise' term,
subject to both abuse and misuse, to the potential confusion of the research community.

According to (Stenmark 1999):

An agent can be anything from a human being to a thermostat! Since this is a too broad
definition to be useful, we shall try to narrow it down by restricting us to software agents and
looking at some previous definitions. A personal agent is someone who acts on someone else's
behalf One way of defining a software agent is thus as a piece of software that assists people
and acts on their behaif A slightly more complicated definition: An autonomous agent is a system
situated within and part of an environment that senses that environment and acts on it, over time,
in pursuit of its own agenda and so as to effect what it senses in thefuture. Though the definitions
may vary between people there are a number of aspects that most people agree upon a pro aram 0
must posses to qualify as an agent. An agent should be:

Autonomous. The agent must have control over its own actions and be able to work and
launch actions independent of the user or other actors.
Reactive. The agents can detect changes in its environment and react to those in a timely
matter by answering to events and initiate actions.

" Communicative. The agent is able to interact and communicate with users and other agents.

" Goal-driven. Agents have a purpose and act in accordance with that purpose until it is
fulfilled

Other aspects also often mentioned are dynamic (agents should be able to operate depending on
time and space), adaptive (agents learn and change their behaviour based on previous experi-

ences), temporal continuous (agents should not be started or stoppedfor explicit tasks but rather

94

be a continuously running process), andlor mobile (agents should be able to move themselvesfrom
one machine to another, and across different architectures and platforms).

He further classifies agents into the following categories:

Interface agents Interface agents are used to decrease the complexity of the more and more sophisti-
cated and overloaded information systems available. They may add speech and natural language

understanding to otherwise dumb interfaces, or add presentation ability to systems.

System agents System agents run as integrated parts of operating systems or network Protocol devices.

They help managing complex distributed computing environments by doing hardware inventory,

interpreting network events, managing backup and storage devices, and performing virus detection.

These agents do not primarily work with end-user information.

Advisory agents Advisory agents are used in (complex) help or diagnostics systems.

Filteting agents Filtering agents are used to reduce information overload by removing unwanted data,

i. e. data that does not match theuser's profile, from the input stream.

Retrieval agents Retrieval agents search and retrieve information and serves as infonnation brokers or
documents managers.

Navigation agents Navigation agents are used to navigate through external and internal networks, re-

membering short-cuts, pre-load caching information, automatically bookmarking interesting sites.

Monitoring agents Monitoring agents provides the user with information when particular events occur,

such as information being updated, moved, or erased.

Recommender agents Recommender agents are usually collaborative; they need many profiles to be

available before an accurate recommendation can be made.

Profifingagents Profiling agents are used to build dynamic sites with information and recommendations

tailored to match each visitor's individual taste and need. The main purpose is to build customer

loyalty and profitable one-to-one relationships.

Watt (1996, p. 89) also discusses the definition issue:

"... 'Agent" is a difficult wordfor a difficult concept; covering a rag-bag of concepts that span
a whole gamut of different kinds of behaviour, including, for example, autonomy, learning and
social interaction; but there is a common ground An agent will set out to do something, and do it;
therefore it has competencesfor intending to act, for action in an environment, andfor monitoring
and achieving its goals. Of course, the adequate performance of these, other competences, such
as learning, negotiation, andplanning, may be helpful or even necessary.

This is not the whole story. Agency is a lot more than action in an environment, or, rather, the
environment is notjust a simple passive system. Often the environment will contain other agents,
which is why social interaction and collaboration are so often stressed as a feature of agency.
More interesting, perhaps, the environment may even contain people, leading to the human kind

of agency - the kind we talk about in terms like 'estate agent'. Agents are embedded in an
environment, but this environment is social as well as physical - social not only in that an agent
is working with other agents, but also in terms that an agent must work with people as well. The

environment, therefore, and the social rules that apply, are those of human social behaviour"

95

There is a large research area describing the logical background of agent theory (including topic such as
belief, intension, default reasoning, possible world semantics etc.). An overview of theoretical aspects of agents
is given in (Wooldridge & Jennings 1995).

8.1.1 Agent hierarchy

From a higher level view, there are the following types of agents:

Interface agents that help the designer deal with a system and which (if designer wishes it) can hide

some low-level non-interesting details from the designer;

Search agents that cover the process of optimisation, cooperation, population monitoring, jumping out

of regions, constraint questioning etc.

h9ormation agents that deal with information obtained, that can look for interesting solution, filtering

uninteresting ones, making decision what and where to explore, resolving conflicts etc.

There is a similar classification given in (Sycara, Decker et al. 1996) where the agent system RETSINA has 3

types of agents: interface agents (interacts with user receiving user specifications and delivering results), task

agents (which carries out the plan and exchanges information with other agents) and information agents (which

provide intelligent access to a heterogeneous collection of information).

8.1.2 Negotiations

According to Sycara (1991), there are four conflict situations where negotiation is used in design. These

conflicts are (Berker 1995):

* Different agents make conflict recommendations for a parameter value;

9A value proposed by one agent makes it impossible for another agent to offer consistent values for

other attributes;

*A decision of one agent adversely affects optimality of other agents;

* Alternate approaches achieve similar functional results.

The negotiation process proceeds as follows:

1. Generation of proposal;

2. Generation of counter proposal based on feedback from dissenting agents;

3. Communication Of justifications and supporting evidence.

A paper by Nwana, Lee & Jennings (1996) also gives an overview of different coordination techniques. One

negotiation process, tailored for conceptual design multi-objective process wil I be presented In section 8.5. L

page 106.

96

8.1.3 Agent communication

Agents need a common language in order to be able to communicate. There are severa. 1 agent languages

developed: KQML (Finis, Weber et a]. 1993, Labrou & Finin 1997), AKL (Franzen, Ilaridi & Janson 1992,

Janson & Ilaridi 1993) ...
Nwana & Wooldridge (1996) argue that agents need ontology, i. e. fundamental knowledge shared between

agents, in order to communicate meaningfully.

Therefore, as per (Genesereth & Ketchpel 1994), "... an agent communication language (ACL) can best be

thought of as it consists of three parts: its vocabulary, an inner language called KLF (Knowledge Interchange Cý
Format) and an outer language called KQML (Knowledge Query and Manipulation Language). An ACL

message is a KQML expression in which the 'arguments' are terms or sentences in KIF fon-ned from words in

the ACL vocabulary. "

However, in the conceptual design context, it can be argued that a "full-blown" language like KQML is

an "overkill" since its language is too rich for the kind of communication we need. A much simpler language

based on (simple) message passing using PVM or using shared memory is sufficient. The advantage of KQML

is more apparent in a context where agents need to communicate with "foreign" agents in mobile and 1ntemet

based communication.

Concerning communication between agents, the first developed was one that uses blackboard architecture

(Hayes-Roth 1985, Brenner, Zarnekow & Wittig 1998), as presented in Figure 8.1 (a), where all agents are able

to read from and to write to a shared memory area. The other method is directed message passing from agent

to agent, as shown in Figure 8.1 (b) using message transport methods (e. g. PVM, MPI, etc).

usk-uboul
Agent A Agent B

reply

reply usk-uboul

Agent C

(b) Direct communication

Figure 8.1. Agent communication methods.

8.1.4 The use of reinforcement learning

According to (Moriarty, Schultz & Grefenstette 1999), all reinforcement learning (RFL) methods share the

same goal: to solve sequential decision tasks through trial and error interactions with the environment. In a

sequential decision task, agents interact with a dynamical system by selecting actions that affect state transl-

97

(a) Blackboard system

tions to optimise some reward function. More details can be found in (Sutton & Barto 1998). The following
paradigms can be used for the agent design (Moriarty et al. 1999):

9 Reinforcement learning (RFL);

* Planning;

* Supervised learning.

They argue that RFL provides a flexible approach to the design of intelligent agents in situations where the
significant domain knowledge is either unavailable or costly to obtain. Their discussion is however more in the
domain of intelligent robots.

There is also an approach mentioned by Glover & Laguna (1997, p. 14): Fisher & Thompson (1963)
introduced an innovation of altering between multiple rules at each decision node by a probabilistic strategy,

which used reinforcement learning to amend the probabilities of choosing the rules according to the quality of
schedules produced over multiple solution runs.

8.1.5 Agents, yes or no?

Talking about agents in the context of legacy systerns, Jennings & Wooldridge (1995) say the following:

"Although agent based technology clearly has an important role to play in the development of
leading edge compound applications, it should not be regarded as a panacea. The majority of
applications which currently use agents couldbe solved using non-agent techniques (inmost cases
not as well, but in some cases better!). Thus the merefact that a particularproblem domain is open
or involves legacy systems does not necessarily imply that an agent based solution is the best one
(or even that it is afeasible one). As with all system designs, the ultimate choice depends upon a
large number of technical and non-technicalfactors... "

And further on:

"The above systems, in common with the majority of other agent applications, herald a fun-
damentally new paradigm for developing and implementing complex systems. The traditional
(idealised) software engineering model ofproviding a complete system specification and then im-
plementing it in a number of rigid, deterministic components (modules) is inappropriate for the
types of applicationfor which agents are being considered ...

Whilst this new system paradigm offers many exciting opportunities, it has a down side which
invariably places a limit on the types ofapplication to which agents can be applied. Thefirst major
problem is that the overall system is unpredictable and non-deterministic: which agents will in-
teract with which other is which way to achieve what cannot be predicted in advance. Even worse,
there is no guarantee that dependencies between the agents can be managed effectivelýy, since the
agents are autonomous andfree to make their own decisions. ... The second main disadvantage
is that the behaviour and properties of the overall system cannot be fixed at design time. While a
specification of the behaviour of an individual agent can be given, a corresponding specification
of the system in its entirety cannot, since global behaviour necessarily emerges at run time. "

A very successful agent-based application is described in (Ygge & Akkermans 1999): they describe climate

control of large buildings with many office rooms using "marked based agent approach". Agents buy and sell

cooling power resources (Huberman & Clearwater 1995). A very comprehensive review of computer supported

cooperative environments for engineering design is given in (Shen & BartMs 1996, Shen & Nome 1999).

98

Maes (1994) presents a parallel between traditional Artificial Intelligence (AI) approaches and agents based

approaches:

1. Traditional Al has focused on systems that demonstrate isolated and often advanced competences. Tra-
ditional AI provides -depth" rather than "width" in their competence. In contrast, an autonomous agent
has multiple integrated competences. Typically, the competences are lower-level competences.

2. Traditional AI has focused on "closed" systems that have no direct interaction with the problem domain.

Their connection with the environment is very controlled and indirect through a human operator. In

contrast, an autonomous agent is an "open" system. An agent is "situated" in its environment. It is

directly connected to its problem domain. It can affect or change this domain. The problem domain

is typically very dynamic which means that the system has a limited amount of time to act and that

unpredictable events can happen.

3. Most traditional AI systems deal with one problem at a time. Often the system does not have time

constraints for solving the problem and does not have to deal with interrupts. From the system's point

of view the problem domain does not change while the system is computing. In contrast, an agent is

autonomous: the system is completely self-contained. It has to monitor the environment and figure out

by itself what the next problem or goal to be addressed is. It has to deal with problems in a timely fashion.

Typically an agent has to deal with many conflicting goals simultaneously.

4. Traditional AI focuses on the question of what knowledge a system has. AI systems have declarative

"knowledge structures" that model aspects of the domain of expertise. All of the internal structures are

static. In contrast, the emphasis in autonomous agent research is on what behaviour a system demon-

strates when put into its environment. The internal structures of an agent are dynamic "behaviour pro-

ducing" modules.

5. Finally, traditional AI is not usually concerned with the developmental aspect or the question of how the

knowledge structures got there in the first place and how they should change over time. In contrast, in au-

tonomous agent research there is a strong emphasis on "adaptation" and on a "developmental approach".

This means that the system improves its own internal structures over time, based on its experience in

the environment. The agent actively explores and updates its structures using an incremental, inductive

learning method. The user can gradually evolve a more sophisticated system by adding structure to an

already existing "working" system.

8.2 Agents developed for BAe conceptual design process

Previous sections present a fairly general framework for agents and their use. The following pages describe

agents we have developed for the BAe conceptual design process. In most of the cases, the philosophý. of

99

simple agents was followed: an agent performs only one function (similar to SIFA (Brown, Dunskus et a].
1995, Berker 1995) - single function agent). Agents in SIFA are designed to perform one function only and
they have the following parameters:

Function defines what kind of work it performs;

Target defines on what parameter or object the agent has an immediate effect

Point of view specifies the perspective that the agent takes in performing its function on its target. The

point of view can be cost, strength etc.

(Brown et al. 1995) argue that in this way it is much easier to construct new agents and (equally important)
it is also much easier to debug agents.

The agents developed for the BAe conceptual engineering design system are schematically presented in
Figure 8.2.

Agents

Interface agents Search agents Information agents

Preference Constraint JumpOut Scenario PopMonitor Decision Filtering interesting incremental

Figam 8.2. Agent hierarchy

They are going to be described in more details in the following sections.

8.3 Interface agents

Interface agents are used to decrease the complexity of the more and more sophisticated and overloaded con-

ceptual design systems. They build an (user friendly) interface between the designer and the computer, as

presented in Figure 8.3. The designer can specify:

* Quality threshold of solutions;

* If some specific situation occurs, what should an agent do;

0 etc.

The idea is that the agent(s) should simplify the designer's task in the following sense:

* Look for the interesting solutions. Here the notion of "being interesting" is defined by the de-

signer, or e. g. good solution with large Hamming (or Euclidean) distance from the majority of the

population etc.

100

'06, v

"(i

Figure 83. An interface agent sitting between designer and computer.

* Help the designer in a (boring) Q&A preference estimation (section 5.4, page 58) procedure (e. g.

"Statement: A is the most important to me and B the least important of all the objectives" that the

agent needs to transform into a series of answers to x? y questions)

* etc.

An agent has been implemented in the system that helps the designer in the preference estimation procedure.

It allows the designer to specify for example the following preference order on the command line or in a file:

Y9 'ýý YIO > Yl ýý Y2 ýý A >- Y3 ýý Y4 >- Y5 > Y7 ýý YI 1 >- Y8

instead of answering the following sequence of questions:

Y9 Pý Yto

YI -' Y2 Pzý Y6

Y3 ýý Y4

Y7 ýý YI I

YI >- Y2 i YI >- Y5) YI >> Y7 i YI > Y8) YI < Y9

Y3 >- Y5 i Y3 > Y7 i Y3 > Y8

Y5 > Y7

Y5 >> Y8

Y7 >- Y8

(11 questions for 6 different classes of objectives - this is an unusually high number of questions (average from

Table 5.2 on page 66 is 8.89) caused by all preferences except one going into the same direction).

101

VA 1
10

The agent must be careful in interpreting given order to generate exactly those queries that it would ask in
a pairwise questioning method since its set of generated questions and answers should also be used by machine
based agents to establish preferences reading them from a file. In order to create exactly these question it would
normally ask, it needs to simulate the whole question-answer process including computing transitive closure
(as described in section 5.4) to generate the minimal number of questions. The process is simplified by the fact
that the order given is always of the form:

Yii P lYi2 P2 ... Pk- lYik (8.1)

where piEI>, >_ 1, i. e., el ements are sorted in non-increasing order.

In the initial stage, the designer will probably prefer the second method (pair-wise comparisons), but as the

process goes on, specifying the complete order is easier, especially if the changes are incremental (like in the

case of the incremental agent described in section 8.7.1 on page 109 below).

8.4 Search agents

Among the search agents we have the following classes of agents:

Jump out agent that searches exclusively out of boundaries;

Quality monitoring agent that monitors the quality of solutions;

Constraintagent that tries to find out what solutions can be obtained by breaking one of the constraints;

Scenario agent that solves the original problem without one of the scenarios;

Population monitoring agent that monitors the convergence of the population;

These agents are described in subsequent sections.

The following need to be considered in applying agents:

* Where to search?

o Variable 'variable' ranges;

* Constraint vs. objective space (i. e. shall we use penalty functions to transform constraints into

objectives etc.);

8.4.1 Jump-out agent

This agent searches exclusively out of boundaries. It can start a new GA that works in parallel with the main

one, or it can be just a quick hill-climber that starts from one of the solution, changes a randomly chosen

variable to be out of defined range and then perform hill-climbing, as in Figure 8-4. Fventuallý,, we could start

modifying good solutions, notjust any random population member. The idea is: Suppose 1= (xj , x,,) ED

102

is a population member. Create x' D where at least one of i-i 0 [xL,, S Xý tart optimis no,
for certain number of steps and see if anything meaningful could be obtained. Parameters of the agents limit
how far outside domain can the agent go and for how many generations. It could also be specified how many
individuals to create. The method used could be hill climbing, Simulated Annealing (Laarhoven & Aarts 1987),
Scatter Search (Glover 1998, Laguna in press, Glover 1999) etc. This could be combined with tabu lists (Glover
& Laguna 1997, Glover & Laguna in press) that remembers what regions have already been explored.

ox

Figure 8.4. Jump out of domain

8.4.2 Quality monitoring agent

If the solution fitness is at least 90% of the best solution, this agent will notify the designer about it. The

percentage of the best solution is a configurable parameter. Also, the engineer should be able to configure the

system when it wants that information:

* Immediately, so that he can lead the search in that direction, or

* Afterwards, for off-line analysis;

8.43 Constraint agent

This agent tries to break some of the constraints, and if a good solution is obtained, it informs the designer.

See Figure 8.5. Constraints can have different levels of 'breakability' assigned (say from 0 to 1, or from

'absolutely unchangeable' to 'you can do whatever you want with it'). For each solution the information how

many constraints did it break (if using penalty functions for resolving constraints) need to be stored.

It is also possible to have an agent that monitors the best solutions and for each of them, the agent tries

further optimisation of the solution, ignoring one of the constraints. If the obtained solution is significantly

better, present it to the designer and let him decide if that constraint is necessary. Ile designer can mark some

of the constraints as non--questionable (as before).

8.4.4 Scenario agent

Let each agent solve the original problem minus one of the scenarios (scenarios as defined in section 7.2.

page 88). For m scenarios, that would mean m+1 parallel GAs (one eventually without any scenanos), as in

103

Constmint elimination

Figure 8.5. Elimination one of constraints.

Figure 8.6. This could be very costly since parallel search processes are required. However, the increased use
of parallel and more and more powerful computers makes such parallel methods increasingly feasible.

F-S,

F-S,

)

Figure 8.6. Solving original problem F minus one scenario Si.

8.4.5 Population monitoring agent

If the GA search is too concentrated in one part of the search space, try to "jump" far away (but still within the

domain D) and start a new search there. This is illustrated in Figure 8.7. Bookkeeping about already explored

regions is needed in order to avoid visiting the same region many times.

Note: There are already agents implemented that monitor the state of the population and perform an action

accordingly:

o If using CHC (Eshelman 1990)1, and if average distance in the population is less than 0.1, then
'According to (Whitley 1993, p. 31), CHC stands for fross generational elitist selection, Heterogeneo"s recombination arJ

Cý -

104

COnstraint
elin-dnation

l'e 0 x* -ý

Figure 8.7. Changing region of the search sPace

re-initialise one part of the population. Also increase the mutation rate to keep the versatility of the
population;

When adding elements to the Pareto front, elements that are too similar to already existing elements
(phenotypically or genotypically) are rejected;

Three levels of spontaneous behaviour are available:

Machine-based agent automatically decides to try jumping out of regions, breaking constraints etc.;

The designer only decides on the action taken;

Interactively: agent suggests and the designer declines or accepts.

8.5 Agent cooperation

Let us consider a system with several agents, each with a task to optimise a single objective. The question is

how to make them collaborate, negotiate and cooperate. Each agent is aware of the quality of its own solution.

If the quality of one's solution is inferior to the quality of solution of some other agents and their solutions

are contradicting, that agent should compromise and accept a worse solution from the point of view of that

agent, for the benefit of other agents. In the case they cannot decide (e. g. both agents think that they have

quality solutions), the designer will be asked to decide, as illustrated in Figure 8.8. Once the designer resolves

a conflict, the agents need to remember the decision and try to learn from it so that the next time a sinfflar

situation happens, they can resolve the conflict among themselves without designer's intervention. Some forni

of voting system, where the importance of each agent also plays a certain role, can be used for resolving

conflicts.

If an agent is successful, it is made more important than the others (so that good solutions usually count as

more important in the negotiation process). For each "best solution" increase the value of the solution. If an

agent is less successful, reduce the agent's importance or the quality of its solutions. Limits to both maximal

and minimal possible importance of an agent are needed in order to keep diversity of solutions generated.

fataclysmic mutation.

105

.............. -(A2 (A

A3

A4

Figuure 8.8. Agents cooperation and designer interaction in resolving A, - A3 conflict.

8.5.1 Our idea of compromise

Suppose that the function to optimise is

(fl (X)
j3

(X»

where each fi : Rk F--ý R, and suppose that there are I agents A,,..., A, optimising it. That means that each agent

Ai is responsible for an objective or a set of objectives to optimise, and it returns its fitness function (xi(x).

Each agent then computes the penalty of a given point x as presented in Figure 8.9. Penalty pi(x) is calculated

as a difference of ai(x) from the best solution found so far cci(x(*')) by that agent:

W (8.2) Pi(x) = licci(x) - ai(XI

for some norm II- 11. Then p (x) can be computed as

1

wi - pi (x) (8.3)
i=I

where Ej wi =1 and wi is the importance factor of each agent. The agent which has found a solutions with

minimal penalty gets a reward (i. e. its weight wi get increased by some amount 5), whereas the worst one get

its weight decreased by 8.

Here is the algorithm in more details:

106

7ý-
x

A] A3

p Al (X) pi

Figwre 8.9. Calculating penalty of a solution.

1. Give agents a starting point xo and let them optimýise their fitness functions a(x) starting from xO. C)
2. For each agent's Ai returned vector x* , calculate a vector (p, (x*(')),

... , pi(x(*'))) and the function

P(X(i) *) using equations (8.2) and (8.3),

3. Find

(i) x�= arg min p (x.)
NK1

x* = arg max p (x (i»

and the coffesponding indices i, of the agent with the best solution x. and i2 of the agent with the

worst solution x*.

4. Increase wi, by 8 and decrease wi, by 6 (taking into consideration the upper and lower lin-ýJts);

5. Set xO = x. and go to step 1.

In the most simple case, for the penalty function p(x), the following function can be used

ai (x) - ai (4)i (x o)), if positive;
Pi(x) =

0, otherwise.
(8.4)

where cDi(xo) is the solution obtained by agent Ai starting from point xo and using optimisation algorithm (Di

(genetic, algorithm, simulated annealing, tabu search, scatter search, hill climbing, downhill simplex, differ-

ential evolution (Price 1999), random search, ...). Randomness can also be introduced, similar to simulated

annealing (Laarhoven 1988, Tanner 1993) methods. The randomness could also be applied in step 3 of the

above algorithm in deciding on the best and the worst solution.

107

8.6 Information agents

This class of agents should be more intelligent then the previous classes and they should be able to inake
autonomous decision concerning:

* "spawning" an agent to search in a given direction;

* "killing" an agent that is not very successful;

* negotiation between agents (unless they need to consult the designer);

* recognition of novelty of a solution (eventually consulting the database of existing solutions) and

turning designer's attention towards it;

* when to consult the designer;

* etc.

The agents described below belong to the class of information agents.

8.7 Closing loop: Agents in a BAe conceptual design context

In a BAe context we can apply agents in a way as presented in Figure 8.10. In the conceptual design system

output

F
Constraint 5

Agerus

Designer

Fig, u--re- 8.10. Agents in a BAe context.

developed so far, there is a standard search path: Preferences -* Search Engine -ý Output. The new component

here is a process picking up the solutions from the search engine and presenting them to the consortium of

agents that look at it from the different interest or a point of view (say agent A monitors objective 1, agent B

monitors objective 2, etc, agent D monitors variable I which, ideally should be between 0 and 5 or between

15 and 20 etc.). This information is presented to the designer together with some suggestions ("can we change

this preference? " or "this solution path is no good for some constraints" etc.) and preferences and some

108

mathematical model details are being changed (with designer's approval). Ths connects agents niceIN, with
the scenario concept described in the chapter 7, page 84. The agents can be employed to monitor scenarios

and to analyse those that are never completely fulfilled. The unfulfilled scenarios can give an indication about
the changes needed to improve the design. These changes should ideally be suggested by the agents. if the
fulfilment could be achieved by simply changing preferences, agents should also suggest the necessan., chan-ges.

How realistic this goal is depends mainly on the complexity of scenarios and/or interaction of the pararneters.

In some cases it wouldn't be possible to satisfy all constraints and scenarios, but in such a case the agent should

admit that it is not able to resolve the situation in a satisfactory manner.

An agent has been implemented that monitors the fulfilment of different scenarios through a certain number

of generations. In the case that some scenario was not fulfilled for that number of generations, it warns the

system and the designer, about it. The autonomous decision relating to what exactly needs to be changed in

order to fulfil some scenario (or constraint or objective) is very hard and therefore is best left to the designer.

The following text, section 8.7.1, describes an agent that tries to fulfil scenarios through changing prefer-

ences and variable ranges. Every time it finds an unfulfilled scenario, it suggests the changes to the designer

and if approved, continues search in the modified setting.

8.7.1 Incremental agent

The incremental agent developed in this section will close the design loop as presented in Figure 8.11. In

that figure it is assumed that agent and scenario values are incorporated into the fitness value as some form of

penalty. In that way they give the search algorithm directions where to search.

Designer

Database :I CIO
........................... Agents

Preferences

Population
MiniCAPS

Fitness

Genetic

Figure 8.11. GA - Scenarios - Agents closed loop

The way the agent works is the following:

Preferences

Designer inpul

Scenarios

New
Fitness

109

1. Use the original designer's preferences (both for objectives and for scenarios) and
run optimisation process;

2. If some of the scenarios are not fulfilled, suggest increasing importance of those

scenarios that are not fulfilled and repeat the search process;

3. If some scenarios are still not fulfilled although they are classified as the most im-

portant, suggest changing variable ranges (of those variables mentioned in scenarios)

and repeat the search with this new setting;

1
4. If some scenarios are still not fulfilled, give up and report to the designer.

An example is given in section 8.7.2 below.

8.7.2 Agent-scenario example

Example8.1 This example continues example 73(c) on page 91. Incremental agent method will be used here.

The scenarios are:

constraints for F-111 Aardvark Bomber

yll >= 9.74 & yll<=19.20 # Wing span
x4 <=61.07 & x4 >=48.77 # Wing plan area
y9 >=4707 # Ferry range
ylO >= 45360 # take-off mass
x3 >= 0.75 # max cruise speed 9! 9km/h

yl <= 951 # take-off run

The process goes as follows:

1. The original set of designer's objective preferences is:

I Pý Y9 -, j yIo ^-, 4 yiI

and the original set of designer's scenario preferences is:

Sl 'ýý S2 Pzý S3 ý- S4 r-" S5 ýý S6

The search process gives a solution x3 = 0.8710, x4 = 61.07, yj = 880.457, yq = 7004.211, Yio

30936.1328 and yj 1= 19.1421, so scenario S4 is not fulfilled and this is noted by the agent.

2. At this stage the agent suggests increasing importance of scenario S4i. e.:

S4 >- St ýý S2 ýý S3 ýý S5;: ýý S6

110

This gives a solution: x3 = 0.8573, x4 = 61.07, yj = 880-4575, yq = 7004.2085, y1o = 30936.1 33 , 28 and
yj I= 19.142 1, so scenario S4 is still not fulfilled and is noted by the agent.

The agent suggests another increase of the importance of S4scenario i. e.:

S4 > Sl ýý S2, 'ýý S3 ýý S5 ýý S6

This gives a solution: x3 = 0.8908, x4 = 61-07, yj = 880.4577, yq = 7004.2085, y1o = 30936-1367 and

y, 1= 19.142 1, and again scenario S4 is not fulfilled and this is noted by the agent.

4. Since the importance of the scenario S4 cannot be ftirther increased, the agent suggests modifying the

variable bounds. It suggests increasing variable ranges by 10% (using -0 option of the RGA program

described on page 37) and starting again.

5. With all equal scenario preferences there is no difference, so S4 importance increase is suggested again. tý

6. For a preference setting

S4 >- SI r-"' S2 '-" S3 ýý S5
-ý'

S6

the solution obtained finally satisfies S4, but violates scenarios S1, S2 and S6: x3 = 0.9062, x4 = 86.0,

yj = 1781.6176, yg = 6627.2627, y1o = 45947-1289 and yj I= 23.552 1.

7. Agent suggests
S4 >- St

-r"
S2 Pý S6 >- S3 ;: ýý S5

which again gives a solution where S4 is not fulfilled, so the next suggestion is

S4 >SI -'
S2 S6 >- S3 ýý S5

This gives a solution where scenarios S1, S2 and S3 are not fulfilled: x3 =0.9167, x4= 86, yj =758-8561,

yq = 2897.9304, yio = 46982-3555 and y1i = 23.5521. At this point the agent calls the designer for

ftirther assistance.

From the analysis performed so far, the designer can immediately see that (using the given aeroplane

model) either S4 is feasible, or S1 and S2 are feasible (wing span and wýng plan area are interdependent

with take-off mass). At this point the designer decides to use the following preferences (the last set of

preferences above)
S4 > Sl ýý S2 P-' S6 >- S3 ýý S5

and to just increase the range of x4 to [20,120], keeping all other to their original ranges. This gives the

solution x3 =0.871, x4 = 120, yl = 950.9998, yq =7846.061, ylo=49923.9375 and yIi =26.8328, that

violates scenarios S, and S2 but is probably the best compromise in these circumstances.

ill

9. If the designer, instead of maximising, decides to minimise take-off mass, the result obtained IS X3
0.8635, x4 = 120, yj = 878-0648, yg = 9829.6230, y1o = 45360.0234, and yj I= 26-8328.

10. If the designer, out of curiosity, further increases the range of x4to [20,140], the solution is x3= 0.868 1,

X4 ý-- 140, yj = 950.9993, yg = 8517-5781, yio = 49452.2812 and yll = 14.4914, where only scenario

S2 is not fulfilled, resulting in an aeroplane design with a very large wing plan area but small wing span

(probably some delta-shaped wing).

11. Etc.

As it can be seen from the above example, the use of scenario-agent-search system provides an excellent

environment for interactive analysis and change of parameters in the run. It provides an almost immediate

feedback about the objectives, constraints and preferences.

112

CHAPTER9

Conclusion

In this thesis we have developed several techniques that we hope are going to be useful during the process of
conceptual engineering design.

For the optimisation part of the design, genetic algorithms modified to handle multi-objective problems
have been developed and a novel technique of weighted Pareto optimisation has been applied, as described

in section 3.5.1 on page 33. A Pareto ranking method is also introduced in section 3.4, page 30. Different

parameters and operators of a genetic algorithm have been tested and an optimal setting of GA parameters for

the BAe problem estimated. The optimal GA characteristics are real coding, EXP mutation, SBX crossover

and tournament selection of size 2. Details and justification are given in chapter 4, pages 37 on. The behaviour

of weighted Pareto front size as a function of weightings vector w and thresholdT has been investigated and

discussed.

Optimisation methods have been applied on the British Aerospace airframe conceptual design project using

the miniCAPS module developed initially by BAe and further developed within PEDC by Dr Andrew Watson.

A module for handling scenarios has been developed. Scenarios are treated as dynamically specified con-

straints in fairly rich mathematical and constraint language. It enables dynamic evaluation of constraints, but

also changing, deleting and adding new constraints on line. Two different versions of language have been

developed:

One, without a disjunction operator (V) and with a conjunction operator (A) implemented as a

percentage of components being satisfied;

Second, with the full set of logical operators (and, or, not), with interpretation in the set ý0,11.

Each method has its advantages and disadvantages, and it is not easy to say which one is the "right one". It

usually depends on the context and on the expressive power of scenarios needed. Scenarios are described In

chapter 7, pages 84 on.

A new method for transforming qualitative categories into quantitative measurements based on fuzzy pref-

erences and the MCDM methods has been developed in order to simplify the transformation process. Several

applications of the new preference method have been developed and described:

113

1. The use of preferences in optimisation:

(a) Weighted sum based multi-Objective Optimisation;

(b) Weighted Pareto method;

2. The use of preferences in co-evolutionary optimisation;

3. The use of preferences in scenario and constraint handling;

4. The use of preferences in agent based methods.

The question of complexity of the procedure has been investigated and although the worst case scenarios is

quadratic i. e. 0(k2) (in number of questions needed as a function of number of objectives k), the average case

gives a more modest 0(k3/2 - Ink) (section 5.4.2, page 64).

The question of sensitivity of weights on the preference interpretation has also been investigated. The lower

and upper limit on the weight value, depending on the preference parameters has been calculated.

The development of an agent based system for engineering design is described in chapter 8, page 94 on.

Classes of agents have been developed that help the designer in the engineering design process. Certain agents 4n,

monitor the population and perform appropriate actions, some agents enable different preference inputing ways

and some agents suggest different actions and different preference settings according to the results of the search,

scenario values and original designer's preferences. A closed loop between preferences and the results which

includes the designer, has been established. Monitoring the results of scenarios and objectives and putting them

back into the loop by the mean of suggested preference changes have been realised.

To the best of our knowledge, these methods and techniques are new or at least present a new applica-

tion/combination of certain methods.

The research in this thesis could be further developed in the following areas:

* More levels of importance (an easy extension of the method) as already indicated in section 5.4 on

page 59;

* More general interpretation function for preference levels;

* More details in parameter dependency between weighted Pareto front and the preferences;

* The integration of the two scenario methods developed in chapter 7, page 84;

4P Additional classes of agents for handling preferences and for handling search process;

* The use of multiple agents and communication and negotiation between them;

* Automatic analysis Of problems by agents and suggestions for changes and improvements;

* etc

This complete system with Graphical User Interface (GUI) is currently being developed In the PEDC (Parmee,

Cvetkovi6, Bonham & Mitchell 2000, Parmee, Cvetkovit, Bonham & Packham 2000).

114

The aim is the development of Interactive Engineering Design System (IEDS) (Parmee, Cvetkovi6, Watson

& Bonham 2000) graphically represented in Figure 9.1. It would include preference and agents methods

developed here but also information gathering methods such as COGAs (Cluster Oriented GAs) (Bonham &

Parmee, 1998) and co-evolutionary optin-ýsation methods (Parmee & Watson 1999).

On-line Database

Rule-Based
Preferences

Scenario
(B)

Evolution

Scenario
(A)

Evolution

Machine-Based
Agents

Information
gathering
processes

Scenario
(C)

Evolution

External Agents
(Design Team)

Figure 9.1. Schema of IEDS.

115

References

Aho, A. V., Sethi, R. & Ullman, J. D. (1987), COMPILERS Principles, Techniques and Tools, Addison-Wesley.

Anderson, A. R. &BeInap, Jr., N. D. (1975), Etailment. The LogicofRelevance andNecessity, Vol. L Princeton
University Press.

Arrow, K. J. (1950), 'A difficulty in the concept of social welfare', Journal of Political Economy 58, pp. 328-
346. Reprinted in (Arrow 1984, pp. 1-29).

Arrow, K. J. (195 1), Social Choice and Individual Values, John Wiley & Sons. 2nd edition 1963, published by
Yale University Press.

Arrow, K. J. (1952), 'The principle of rationality in collective decisions', Economie Appliquee 5, pp. 469-484.

Reprinted in (Arrow 1984, pp. 45-58).

Arrow, K. J. (1967), Values and collective decision making, in P. Laslett & W. G. Runciman, eds, 'Philosophy,

Politics and Society', Third Series, Basil Blackwell, Oxford, pp. 215-232. Reprinted in (Arrow 1984, pp.
59-77).

Arrow, K. J. (1969), 'Tullock and an existance theorem', Public Choice 6, pp. 105-12. Reprinted in (Arrow

1984, pp. 81-87).

Arrow, K. J. (1984), Social Choice and Justice, Vol. 1 of Collected Papers of KenethJ Arrow, Basil Blackwell,

Oxford.

Asenjo, F. G. & Tamburino, J. (1975), 'Logic of antinorrýies', Notre Dame Journal of Formal Logic 16, pp. 17-

44.

Asimov, 1. (1982), 1, robot, in 'St. Michael Great Science Fiction Stories', Octopus Books Lin-iited, London,

pp. 529-702.

Bdek, 1 (1993), Optimal mutation rates in genetic search, in Forrest (1993), pp. 2-8.

BAck, T. (1995a), Evolutionary Algorithms in Theory and Practice. Evolution Strategies, Evolutionary Pro-

gramming, Genetic Algorithms, Oxford University Press, NY.

Bdck, I (1995b), Generalized convergence models for tournament- and (Ap)-selection, in Eshelman (1995).

pp. 2-9.

116

Bkk, T. & Schwefel, H. -R (1993), 'An overview of evolutionary algorithms for parameter optimization',
Evolutionary Computation I(l), pp. 1-23.

Bahrami, A. & Dagli, C. H. (1994), Design science, in Dagli & KS, ak (1994), pp. 7-25.

Baker, J. E. (1985), Adaptive selection methods for genetic algorithms, in Grefenstette (1985), pp. 101-111.

Bana e Costa, C. A. (1990a), An aditive value function technique with a Aizzy outranking relation for dealing

with poor intercriteria preference information, in Bana e Costa (1990b), pp. 351-382.

Bana e Costa, C. A., ed. (1990b), Readings in Multiple Criteria Decision Aid, Springer-Verlag, Berlin.

Banzhaf, W., Daida, J. et al., eds (1999), GECCO-99: Proceedings of the Genetic and Evolutionary Computa-

tion Conference, Morgan Kaufmann, Orlando, Florida, USA.

Belew, R. K. & Nose, M. D., eds (1996), Foundations of Genetic Algorithms 4, Morgan Kaufmann, San Fran-

cisco, Califomia.

Ben-Tal, A. (1979), Characterisation of Pareto and lexicographic optimal solutions, in G. Fandel & T. Gal,

eds, 'Proceedings of the Third Conference on Multiple Criteria Decision Making Theory and Applica-

tion', number 177 in 'Lecture Notes in Economics and Mathematical Systems', Springer Verlag Berlin

Heidelberg, pp. 1-11.

Berker, 1. (1995), Conflicts and negotiations in single function agent based design systems, Master's thesis,

Worchester Polytechnic Institute, USA. http: //www. cs. wpi. edu/Research/aidg/SiFAJilan. htm].

Blickle, T. & Thiele, L. (1995), A mathematical analysis of tournament selection, in Eshelman (1995), pp. 9-

16.

Bonham, C. R. & Parmee, I. C. (1998), Cluster oriented genetic algorithms (COGAs) for the decomposition

of multi-dimensional engineering design spaces, in B. H. V. Topping, ed., 'Advances in Computational

Structures Technology', Civil-Comp Press, pp. 87-95.

Bonham, C. R. & Parmee, I. C. (1999), An investigation of exploration and exploitation within cluster oriented

genetic algonthms (COGAs), in Banzhaf, Daida et al. (1999)'PP 1491-1497.

Branke, J., Kauffler, T. & Schmeck, H. (2000), Guidance in evolutionary multi-objective optimization, Techn, -

cal report, AIFB, University of Karlruhe, Gennany.

Brans, J. & Mareschal, B. (1994), 'The PROMCALC & GAlA decision support system for multicriteria decj-

sion aid', Decision Support Systems 12(4/5), pp. 297-3 10.

Brenner, W., Zamekow, R. & Wittig, H. (1998), Intelligent Software Agents: Foundation and Applications,

Springer-Verlag Berlin Heidelberg.

117

Brown, D. C., Dunskus, B. V. et al. (1995), SINE: Support for single function agents, in 'Applications of Al in
Engineering AlENG'95', Udine, Italy.

Carlsson, C. (1996), Active decision support systems, in '4th European Congress on Intelligent Techniques and
Soft Computing EUFIT'96', ELITE-Foundation, Aachen, pp. 1279-1288.

Carlsson, C. (1998), Soft computing and decision support system, in EUF (1998).

Cha (1997), 'Chambers & Associates software engineering web - glossary pages', Web page
http-//www. chambers. com. au/glossary/glossary. htm.

Chandler, S. (1999), 'Combat aircraft database', Web page http: //www. btintemet. com/-n-ýIitary. aircraft/.

Chang, C. -L. & Lee, R. C. -T. (197 1), Symbolic Logic and Mechanical Theorem Proving, Acaden-ft Press.

Chen, S. -J., Hwang, C. -L. & Hwang, F. P. (1992), Fuzzy Multiple Attfibute Decision Making, Springer-Verlag

Berlin Heidelberg.

Chiclana, F., Herrera, F. & Heffera-Viedma, E. (1998), 'Integrating three representation models in fuzzy rnul-

tipurpose decision making based on fuzzy preference relations', Fuzzy Sets and Systems 97, pp. 3 3-48.

Coello Coello, C. A. (1996), An Empirical Study of Evolutionary Techniques for Multiobjective Optimization

in Engineering Design, PhD thesis, Tulane University.

Coello Coello, C. A. (1999), 'A comprehensive survey of evolutionary-based multiobjective optimization tech-

niques', Knowledge and Information System. An International Journal 1(3), pp. 269-308.

Coello Coello, C. A. (2000), Handling preferences in evolutionary multiobjective optimization: A survey, in

'Congress on Evolutionary Computation (CEC'2000)', Vol. 1, IEEE Service Center, Piscataway, New

Jersey, pp. 30-37.

Come, D., Dorigo, M. & Glover, F., eds (1999), New Ideas in Optimization, MCGraw-Hil, London, UK.

Cvetkoviý, D. (1993), 'Schlagwort/Lexikon Beiträge: Genetische Algorithmen% KI - Künstliche Intelligenz

1)10
193.

Cvetkovid, D. & Miffilenbein, H. (1994), The optimal population size for uniform crossover and truncation

selection, Technical Report GMD-AS-TR-94-1 1, GMD, St. Augustin, Germany.

Cvetkovi6, D. & Parmee, I. C. (1998), Evolutionary design and multi-objective optimisation, in EUF (1998),

pp. 397-401.

Cvetkovi6, D. & Parmee, I. C. (1999a), Genetic algorithm-based multi-objective optimisation and conceptual

engineering design, in Proceedings of the 1999 Congress on Evolutionary Computation - CEC99', IEEE,

Washington D. C., USA, pp. 29-36.

118

Cvetkovid, D. & Parmee, I. C. (1999b), Genetic algorithms based systems for conceptual engineering design,

in Lindemann, Birkhofer, Meerkamm & Vajna (1999), pp. 1035-1038.

Cvetkovid, D. & Parmee, I. C. (1999c), Use of preferences for GA-based multi-objective optin-ýsation, ir

Banzhaf et a]. (1999), pp. 1504-1509.

Cvetkovid, D. & Parinee, I. C. (2000a), The application of genetic algorithms and preferences in engineering
design, Technical Report PEDC-0 1 -2000, PEDC, University of Plymouth, Plymouth, UK.

Cvetkovid, D. & Parmee, I. C. (2000b), Designer's preferences and multi-objective preliminary design pro-

cesses, in Parmee (2000), pp. 249-260.

Cvetkovi6, D., Parmee, I. C. &Webb, E. (1998), Multi-objectiveoptiniisation and preliminary airframe design,

in Parmee (1998b), pp. 255-267.

da Costa, N. C. A. (1974), 'On the theory of inconsistent formal systems', Notre Dame Joumal ofFormal Logic

15, pp. 497-510.

Dagh, C. H. & Kusiak, A., eds (1994), Intelligent Systems in Design and Manufacturing, ASME Press, New

York.

D'Ambrosio, J. G. (1996), ISMAUT tools: A software tool kit for rational tradeoffs among conflicting objec-

tives, Technical Report CSE-TR-289-96, University of Michigan.

de Jong, K. A. (1975), Analysis of the Behaviour of a Class of Genetic Adaptive Systems, PhD thesis, Depar-

ment of Computer and Communication Sciences, University of Michigan, Ann Arbor, Nn.

Deb, K. (1998), Non-linear goal programming using multi-objective genetic algorithms, Technical Report

60/98, Department of Computer Science/LS 11, University of Dortmund, Germany.

Deb, K. (1999a), Multi-objective evolutionary algorithms: Introducing bias among Pareto-optimal solutions,

KanGAL report 99002, Indian Institute of Technology, Kanpur, India.

Deb, K. (1999b), 'Multi-objective genetic algorithms: Problem difficulties and construction of test functions',

Evolutionary Computation 7(3), pp. 205-230.

Deb, K. & Agrawal, R. B. (1995), 'Simulated binary crossover for continuous search space', Complex System

9, pp. 115-148.

Deb, K., Agrawal, S., Pratap, A. & Meyarivan, T. (2000), A fast elitist non-donlinated sorting genetic algorithm

for multi-objective optimization: NSGA IL KanGAL report 200001, Indian Institute of Technology,

Kanpur, India.

Deb, K. & Beyer, H. -G. (1999), Self-adaptive genetic algorithms with simulated binary crossover, Technical

Report CI-61/99, Department of Computer Science, University of Dortmund4 Germany.

119

Deb, K. & Kumar, A. (1995), 'Real-coded genetic algorithms with simulated binary crossover: Studies on
multimodal and multiobjective problems', Complex Systems 9(6), pp. 431-454.

Dunn, J. M. (1986), Relevance logic and entailment, in Gabbay & Giinthner (1986), pp. 117-224.

Dym, C. L. (1994), Engineering Design: A Synthesis of Views, Cambridge University Press.

Eiben, A. E., Schoenauer, M. & Schwefel, H. -P., eds (1998), Parallel Problem Solvingfrom Nature - PPSN'98,
Springer, Amsterdam.

Eshelman, L. J. (1990), The CHC adaptive search algorithm: How to have safe search when engaging in
nontraditional genetic recombination, in Rawlins (1990), pp. 265-283.

Eshelman, L. J., ed. (1995), Proceedings of the Sixth International Conference on Genetic Algorithrns, Morgan

Kaufmann.

EUF (1998), 6th European Congress on Intelligent Techniques and Soft Computing EUFIT '98, ELITE-

F-Oundation, Aachen.

Finis, T., Weber, J. et al. (1993), Draft specification of the KQML agent-communication language, Technical

report, The DARPA Knowledge Sharing Initiative External Interfaces Working Group.

Fishburn, P. C. (1991), 'Nontransitive preferences in decision theory', Journal of Risk and Uncertainty 4,

pp. 113-134.

Fishburn, P. C. (1996), Preference structures and their numerical representations, in 'A Conference on Order

and Decision-Making ORDAL: 96', Ottawa, Canada.

Fisher, H. & Thompson, G. L. (1963), Probabilistic learning combinations of local job-shop scheduling rules,

in J. F. Muth & G. L. Thompson, eds, 'Industrial Scheduling', Prentice-Hall, pp. 225-25 1.

Fodor, J. & Roubens, A (1994), Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer

Academic Publishers, Dordrecht, The Netherlands.

Fogel, L. J. (1962), 'Autonomous automata', Industrial Research 4, pp. 14-19.

Fogel, L. J. (1964), On the Opganization of Intelligent, PhD thesis, UCLA.

Fogel, L. J., Owens, A. J. & Walsh, M. J. (1966), Artificial Intelligence Through Simulated Evolution, John

Wiley, NY.

Fonseca, C. A& Fleming, P. J. (1995), 'An overview of evolutionary algorithms in multiobjective optimiza-

tion', Evolutionary Computation 3(l), pp. 1-16.

Forrest, S., ed. (1993), Proceedings of the Fifth international Conference on Genetic Algon'thms, Morgan

Kaufmann.

120

Fourman, A P. (1985), Compaction of symbolic layout using genetic algorithms, in Grefenstette (1985),

pp. 141-153.

Franzen, T, Ilaridi, S. & Janson, S. (1992), Overview of the Andorra Kernel Language, in 'Proceedings of the
2nd Workshop on Extensions to Logic Programming', Springer-Verlag.

French, S. (1986), Decision Theory: An Introduction to the Mathematics and Rationality, Mathematics and its

Applications, Ellis Horwood Limited.

Gabbay, D. & Giinthner, F., eds (1986), Handbook of Philosophical Logic : Alternatives to Classical Logic,

Vol. EEI, D. Reidel.

Gehrlein, W. V., ed. (1990), Intransitive Preferences, Vol. 23 of Annals of Operations Research, Baltzer Science

Publisher.

Gen, M. & Cheng, R. (1997), Genetic Algorithms & Engineering Design, Wiley Series in Engineering Design

and Automation, J. Wiley & Sons.

Genesereth, M. R. & Ketchpel, S. P. (1994), 'Software agents', Communications of the ACM 37(7), pp. 48-53,

147. Special issue on Intelligent Agents.

Gero, J. S. (1990), 'Design prototypes: A knowledge representation schema for design', AI Magazine 11(4),

pp. 26-36.

Glover, F. (1998), A template for scatter search and path relinking, in J. -K. Hao, E. Lutton, E. Ronald,

M. Schoenauer & D. Snyers, eds, 'Artificial Evolution', number 1363 in 'LNCS', Springer, pp. 13-54.

Glover, F. (1999), Scatter search and path relinking, in Come, Dorigo & Glover (1999), pp. 297-316.

Glover, F. & Laguna, M. (1997), Tabu Search, Kluwer Academic Publishers, Boston.

Glover, F. & Laguna, A (in press), Tabu search, in P. A Pardalos & M. G. C. Resende, eds, 'Handbook of

Applied Optimization', oxford Academic Press.

Goel, A. K. (1997), 'Design, analogy and creativity', IEEE Expert, Intelligent Systems & Their Applications

12(3), pp. 62-70.

Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley,

Reading, NIA.

Grdtzer, G. (1971), Lattice Theory: First Concepts and Distributive Lattices, W. H. Freeman, San Francisco,

CA.

Grdtzer, G. (1978), General Lattice Theory, Birkenhduser, Basel.

121

Greenwood, G. W., Hu, X. S. & D'Abrosio, J. G. (1996), Fitness functions for multiple objective optimization
problems: Combining preferences with Pareto ranking, in Belew & Vose (1996), pp. 437-455.

Grefenstette, J. J. (1986), 'Optimization of control parameters for genetic algorithms', IEEE Transaction on
Systems, Man and Cybernetics SMC-16(l), pp. 122-128.

Grefenstette, J. J., ed. (1985), Proceedings of the First International Conference on Genetic Algorithms,

Lawrence Erlbaum Associates.

Hannson, B. (1970), Preference Logic: Philosophical Foundations and Applications in the Philosophy of Sci -
ence, Lund.

Harik, G., Cant-6-Paz, E., Goldberg, D. E. & Miller, B. L. (1999), 'The gambler's ruin problem, genetic algo-

rithms, and the sizing of populations', Evolutionary Computation 7(3), pp. 231-253.

Hayes-Roth, B. (1985), 'A blackboard architecture for control', Artificial Intelligence 26, pp. 251-321.

Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor,

Michigan. 2nd edition 1992 by NUT Press.

Horn, J. & Nafpliotis, N. (1993), Multiobjective optimization using the niched Pareto genetic algorithm, Illi-

GAL Report 93005, Illinois Genetic Algorithm Laboratory.

Huberman, B. A. & Clearwater, S. (1995), A multi-agent system for controlling building environments, in

V. Lesser, ed., 'Proceedings of the First International Conference on Multi-Agent Systems, ICMAS'95',

AAAI Press/ MIT Press, pp. 171-176.

Huylenbroeck, G. v. (1995), 'The conflict analysis method: Bridging the gap between ELECTRE,

PROMETHEE and ORESTF, European Journal of Operational Research 82, pp. 490-502.

Hwang, C. -L. & Masud, A. S. M. (1979), Multiple Objective Decision Making - Methods and Applications,

number 164 in 'Lecture Notes in Economics and Mathematical Systems', Springer Verlag, Berlin.

Ingber, L. (1989), 'Very fast simulated anneahngWornalofMathematical Computer Modelling 12(8), pp. 967-

973.

Ingber, L. (1993), 'Simulated annealing: Practice versus theory', Jornal ofMathematical Computer Modelling

18(l 1), pp. 29-57.

Jane's Information Group (1999), Jane's All the World Aircraft, Jane's Information Group.

Janson, S. & Ilaridi, S. (1993), An introduction to AKL a multi-paradigm programming language, in 'NATO-

ASI Constraint Programming', Springer-Verlag.

gIng Jantsch, E. (1980), The Self-Organizing Universe: Scientific and Human implications of the Emer

Paradigm of Evolution, Pergamon Press, New York.

122

Jennings, N. R. & Wooldridge, M. J. (1995), 'Applying agent technology', Journal o Applied Artificial Intel- f

ligence 9(4), pp. 357-369. Special issue on Intelligent Agents and Multi-Agent Systems.

Johnson, S. C. (1975), YACC - yet another compiler compiler, Computing Science Technical Report 32,

AT&T Bell Laboratories, Murray Hill, NJ.

Keeney, R. L., Raifa, H. & Meyer, R. F. (1976), Decisions with Multiple Objectives: Preferences and Value

Tradeoffs, John Wiley & Sons.

Kocis, L. & Whiten, W. J. (1997), 'Computational investigations of low discrepancy sequences', ACM Trans-

actions on Mathematical Software 23(2), pp. 266-294.

Kung, H. T., Luccio, R& Preparata, F. P. (1975), 'On finding the maxima of a set of vectors', Journal of the

ACM 22(4), pp. 469-476.

Laarhoven, P. J. M. v. (1988), Theoretical and Computational Aspects of Simulated Annealing, PhD thesis,

University of Roterdarn.

Laarhoven, P. J. M. v. & Aarts, E. H. L. (1987), Simulated Annealing: Theory and Applications, Kluwer

Acadernic Publishers, Dordrecht, The Netherlands.

Labrou, Y. & Finin, T. (1997), A proposal for a new KQML specification, Technical Report TR CS-97-03,

CSEE, University of Maryland Baltimore County.

Laguna, M. (in press), Scatter search, in P. M. Pardalos & M. G. C. Resende, eds, 'Handbook of Applied

Optimization', Oxford Academic Press.

Lai, YA. & Hwang, C. -L. (1996), Fuzzy Multiple Objective Decision Making, Springer-Verlag Berlin Heidel-

berg.

Lin, J. G. (1976), 'Maximal vectors and multi-objective optimization', Journal of Optimization Theory and

Application 18(l), pp. 41--64.

Lindemann, U., Birkhofer, H., Meerkamm, H. & Vajna, S., eds (1999), Proceedings of the 12th International

Conference on Engineering Design ICED'99, TU MiInchen, Minchen, Germany.

Lootsma, F. A. (1996), 'A model for the relative importance of the criteria in the multiplicative AHP and

SMART', European Journal of Operational Research 94(3), pp. 467-476.

Lootsma, F. A. (1997a), Fuzzy Logicfor Planning and Decision Making, Delft University of Technology, The

Netherlands. Lecture Notes a197.

Lootsma, F. A. (1997b), 'Multicriteria decision analysis in a decision tree', European Journal of Operational

Research 101, pp. 442-45 1.

123

Loveland, D. W. (1978), Automated Theorem Proving: A Logical Basis, North-Holland, Amsterdam.

Luce, R. D. & Raiffa, H. (1957), Games and Decisions: Introduction and Critical Survey, John Wiley & Sons.

Maes, P. (1994), 'Modelling adaptive autonomous agents', Artificial Life Journal 1(1&2).

Mahfoud, S. W. (1995), Niching Methods for Genetic Algorithms, PhD thesis, University of Illinois at Urbana-
Champaign.

Martin, R. M. (1963), Intension and Decision. A Philosophical Study, Prentice-Hal I Inc.

Matsumoto, M. & Nishimura, T. (1998), 'Mersenne twister: A 623-dimensionally equidistributed uniform
pseudorandom number generator', ACM Transactions on Modeling and Computer Simulations 8(l),

pp. 3-30. Special Issue on Uniform Random Number Generators.

May, K. 0. (1954), 'Intransitivity, utility and the aggregation of preference patterns', Econometrica 22, pp. 1-
13.

Michalewicz, Z. (1995), A survey of constraint handling techniques in evolutionary computation methods, in
'Proceedings of the 4th Annual Conference on Evolutionary Programming', MIT Press, pp. 135-155.

Miller, G. A. (1956), 'The magical number seven, plus or minus two: Some limits on our capacity for processing
information', The Psychological Review 63(2), pp. 81-97.

Moriarty, D. E., Schultz, A. C. & Grefenstette, J. J. (1999), 'Evolutionary algorithms for reinforcement leam-

ing', Journal ofArtificial Intelligence Research 11, pp. 241-276.

Mijhlenbein, H. & Schlierkamp-Voosen, D. (1993a), 'Analysis of selection, mutation and recombination in

genetic algorithms', Neural Network World 3, pp. 907-933.

Miffilenbein, H. & Schlierkamp-Voosen, D. (1993b), 'Predictive models for the breeder genetic algonthm I:

Continuous parameter optimization', Evolutionary Computations 1(1), pp. 25-49.

Milhlenbein, H. & Schlierkamp-Voosen, D. (1993c), Me science of breeding and its application to the breeder

genetic algorithm (BGA)', Evolutionary Computation 1(4), pp. 335-360.

Murata, T., Ishibuchi, H. & Gen, M. (1998), Random weights in multi-objective genetic algorithms, in '2nd

International Conference on Engineering Design and Automation (EDA! 98)', Maui, Hawaii.

Nisbett, R. E. & Wilson, T. D. (1977), 'Telling more then we can know: Verbal reports on mental processes',

Psychological Review 84(3), pp. 231-259.

Nwana, H. S., Lee, L. & Jennings, N. R. (1996), 'Co-ordination in software agent systems', BT Technical

Joumal 14(4), pp. 79-89.

124

Nwana, H. S. & Wooldridge, A J. (1996), 'Software agent technologies', BT Technical Journal 14(4), pp. 68-
79.

Osyczka, A. (1984), Multicriterion Optimization in Engineering with FORTRAN Programs, Ellis Horwood
Series in Engineering Science, Ellis Horwood Chichester, UK.

Pahl, G. & Beitz, W. (1996), Engineering Design: A Systematic Approach, 2 edn, Springer-Verlag, London.

Parmee, I. C. (1997), Strategies for the integration of evolutionary/adaptive search with the engineering desigm

process, in D. Dasgupta & Z. Michalewicz, eds, 'Evolutionary Algorithms in Engineering Applications',

Springer Verlag, pp. 453-477.

Parmee, I. C. (1998a), Exploring the design potential of evolutionary/adaptive search and other computational
intelligence technologies, in ACDM'98 (Parmee 1998b), pp. 27-42.

Pannee, I. C. & Bonham, C. R. (1998), Supporting innovative and creative design using interactive designer /

evolutionary computing strategies, in J. S. Gero & M. L. Laher, eds, 'Computation Models of Creative De-

sign Conference IT, University of Sydney, Key Centre of Design Computing and Cognition, University

of Sydney, Sydney, Australia, Heron Island, Australia.

Parmee, I. C., Cvetkovid, D., Bonham, C. R. & Mitchell, D. (2000), Towards interactive evolutionary design

systems for the satisfaction of multiple and changing objectives, in 'European Congress on Computational

Methods in Applied Sciences and Engineering (ECCOMAS 2000)', Barcelona, Spain.

Parmee, I. C., Cvetkovid, D., Bonham, C. R. & Packharn, I. S. (2000), Introducing prototype interactive evolu-

tionary systems for ill-defined multi-objective design environments, Technical report, PEDC, University

of Plymouth, Plymouth, UK. Submitted to 'Advances in Engineering Software'.

Parmee, I. C., Cvetkovid, D., Watson, A. H. & Bonham, C. R. (2000), 'Multi-objective satisfaction within an

interactive evolutionary design environment', Evolutionary Computation 8(2), pp. 197-222.

Parmee, I. C. & Denham, M. J. (1994), The integration of adaptive search techniques with current engineering

design practice, in I. C. Parmee, ed., 'Adaptive Computing in Engineering Design and Control '94',

Plymouth Engineering Design Centre, pp. 1-14.

Parmee, I. C., ed. (1998b), Adaptive Computing in Design and Manufacture: The Integration of Evolurionary

and Adaptive Computing Technologies with ProdualSystem Design and Realisation. Proceedings of the 0

3rd Conference on Adaptive Computing in Design and Manufacture (ACDM98), Springer-Verlag.

Pannee, I. C., ed. (2000), Evolutionary Design and Manufacture: Selected Papers from ACDM'00, PEDC,

University of Plymouth, Springer, London, Plymouth.

125

Parmee, I. C., Johnson, M. & Burt, S. (1994), Techniques to aid global search in engineering design, in F. D.
Anger, R. V. Rodrigez & M. Ali, eds, 'Industrial and Engineering Applications of Artificial Intelligence

and Expert Systems IAEIAIE '94', Gordon and Breach Science Publishers, Austin, Texas.

Parmee, I. C. & Purchase, G. (1997), Integrating computational intelligence technologies with design and man-

ufacturing tearn practice, in 'Proceedings of Intelligent Design in Engineering Applications Symposium

(IDEA: 97)', Aachen, Germany, pp. 95-99. I-

Parmee, I. C. & Watson, A. H. (1999), Preliminary airframe design using co-evolutionary multiobjective ge-

netic algorithms, in Banzhaf et al. (1999), pp. 1657-1665.

Peace, G. S. (1993), Taguchi Methods: A Hands-On Approach, Addison-Wesley, Reading, MA.

Phadke, M. S. (1989), Quality Engineering Using Robust Design, Prentice-Hall International.

Price, K. (1999), An introduction to differential evolution, in Come et a]. (1999), pp. 79-108.

Priest, G., Routley, R. & Norman, J., eds (1989), Paraconsistent Logic. Essays on the Inconsistent, Phi losophia

Verlag, München, Germany.

Pronzato, L., Wynn, H. P. & Zhigljavsky, A. A. (2000), Dynamic Search: Applications of Dynamical Systems

in Search and Optimization, Chapman &Hall/CRC, Boca Raton, Florida, USA.

Quagliarella, D., Pdriaux, J., Poloni, C. & Winter, G., eds (1997), Genetic Algorithms and Evolution Strategy

in Engineering and Computer Science. Recent Advances and Industrial Applications, John Wiley& Sons.

Rawlins, G. J. E., ed. (1990), Foundations of Genetic Algorithms 1, Morgan Kaufmann.

Rechenberg, 1. (1973), Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen

Evolution, Fromman-Holzboog, Stuttgart.

Rechenberg, 1. (1994), Evolutionsstrategie '94, Fromman-Holzboog, Stuttgart.

Richardson, J. T., Palmer, M. R., Liepins, G. & Hilliard, A (1989), Some guidelines for genetic algorithms with

penalty functions, in J. D. Schaffer, ed., 'Proceedings of the Third International Conference on Genetic

Algorithm', pp. 191-197.

Roy, B. (1990a), Decision-aid and decision-making, in Bana e Costa (1990b), pp. 17-35.

Roy, B. (1990b), The outranking approach and the foundation of ELECTRE method, in Bana e Costa (1990b),

pp. 156-183.

Schaffer, J. D. (1984), Some Experiments in Machine Learning using Vector Evaluated Genetic Algorithm, PhD

thesis, Deparment of Electrical Engineering, Vanderbilt University, Nashville. TCGA file No. 00314.

126

Schaffer, J. D. (1985), Multiple objective optimization with vector evaluated genetic algorithms, in Grefenstette

(1985), pp. 93-100.

Schaffer, J. D., Caruana, R. A., Eshelman, L. J. & Das, R. (1989), A study of control parameters affecting

online performance of genetic algorithms for function optimization, in Schaffer (1989), pp. 51-60.

Schaffer, J. D., ed. (1989), Proceedings of the Third International Conference on Genetic Algorithms, Moqgan

Kaufmann.

Schwefel, H. -P. (1977), Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie,

Birkhäuser Verlag, Basel.

Schwefel, H. -P. & Bdck, T. (1997), Artificial evolution: How and why?, in Quagliarella, Pdriaux, Poloni &

Winter (1997), pp. 1-19.

Scott, M. J. & Antonsson, E. K. (1999), 'Arrow's theorem and engineering design decision making', Research

in Engineering Design 11(4), pp. 218-228.

Sen, P. & Yang, J. -B. (1998), Multiple Criteria Decision Support in Engineering Design, Spnnger-Verlag,

London.

Sharpe, M. (1999), Attack and Interceptor Jets, Dempsey-Parr Book.

Shen, W. & BartMs, J. -P. A. (1996), Computer supported cooperative environments for engineering design:

A review, Technical Report 96-122, CNRS UMR Heudiasyc Universitý de Technologie de Compi6gne,

France.

Shen, W. & Norrie, D. H. (1999), 'Agent-based systems for intelligent manufacturing: A state-of-

the-art survey', Knowledge and Information System. An International Journal 1(2), pp. 129-156.

http: //sem. cpsc. ucalgary. ca/CAG/publications/abm. htm.

Slovic, P. & Lichtenstein, S. (1971), 'Comparison of Bayesian and regression approaches to the study of infor-

mation processes in judgement', Organizational Behavior and Human Performance 6, pp. 649-744.

Srinivas, N. & Deb, K. (1995), 'Multiobjective optimization using nondominated sorting in genetic algorithms',

Evolutionary Computation 2(3), pp. 221-248.

Stenmark, D. (1999), 'Evaluation of intelligent software agents', Web page

http: //w3. infonnatik. gu. se/-dixi/agent/agent. htm.

Storn, R. & Price, K. (1995), Differential evolution -a simple and efficient adaptive scheme for global opti-

nitization over continuous spaces, Technical Report TR-95-012, ICSI, University of Berkeley.

Suh, N. P. (1990), The Principles of Design, number 7 in 'Oxford Series on Advanced Manufacturing', Oxford

University Press, New York.

127

Sutton, R. S. & Barto, A. G. (1998), Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA,
USA.

Sycara, K. (1991), Cooperative negotiation in concurrent engineering design, in D. Sriram, R. Logcher
S- Fukuda, eds, 'Computer-Aided Cooperative Product Development', Springer Verlag.

Sycara, K., Decker, K. et al. (1996), 'Distributed intelligent agent', IEEE Expert, Intelligent Systems & Their

Applications 11(6), pp. 36-46.

Syswerda, G. (1989), Uniform crossover in genetic algorithms, in Schaffer (1989), pp. 2-9.

Syswerda, G. (1990), A study of reproduction in generational and steady-state genetic algorithms, in Rawlins

(1990), pp. 94-101.

Tanner, M. A. (1993), Toolsfor Statistical Inference: Methodsfor the Exploration of Posterior Distributions

and Likelihood Functions, Springer Series in Statistics, second edn, Springer Verlag, New York.

Tversky, A. (1969), 'btransitivity of preferences', Psychological Review 76, pp. 31-48.

Urquhart, A. (1986), Many-valued logic, in Gabbay & GOnthner (1986), pp. 71-116.

Valenzuela-Rend6n, M. & Uresti-Chare, E. (1997), A non-generational genetic algorithm for multiobjective

optimization, in T. Bdek, ed., 'Proceedings of the Seventh International Conference on Genetic Algo-

rithms', Morgan Kaufmann, pp. 658-665.

Veldhuizen, D. A. V. (1999), Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New

Innovations, PhD thesis, Air Force Institute of Technology, Wright-Paterson AFB.

Veldhuizen, D. A. V. & Lamont, G. B. (1998), Multiobjective evolutionary algorithm research: A history and

analysis, Technical Report TR-98-03, Air Force lnstitute of Technology, Wright-Paterson AFB.

Vincke, P. (1990), Basic concepts of preference modelling, in Bana e Costa (1990b), pp. 101-118.

Voigt, H. -M., MOhlenbein, H. & Cvetkovi6, D. (1995), Fuzzy recombination for the breeder genetic algorithm,

in Eshelman (1995), pp. 104-111.

von Wright, G. H. (1963), 'The logic of preference. An essay', Edinburgh.

von Wright, G. H. (1972), 'The logic of preference reconsidered', Theory and Decision 3, pp. 140-167.

Reprinted in (von Wright 1984).

von Wright, G. H. (1984), Philosophical Logic: Philosophical Papers, Cornell University Press, Ithaca, NY.

Warshall, S. (1962), 'A theorem on Boolean matrices', Journal of the ACM 9(1), pp. 11-12.

Watt, S. N. K. (1996), Artificial societies and psychological agents', BT Technical Journal 14(4), pp. 89-97.

128

Webb, E. (1997), MMNICAPS -a simplified version of CAPS for use as a research tool, Unclassified Report
BAe-WOA-RP-GEN- 11313, British Aerospace.

Whitley, D. (1989), The genitor algorithm and selection presssure: Why rank-based allocation of reproductive
tasks is best, in Schaffer (1989), pp. 116-121.

Whitley, D. (1993), A genetic algorithm tutorial, Technical Report CS-93-103, Colorado State University.

Whitley, D. &Kauth, J. (1988), Genitor: A different genetic algorithm, Technical Report CS-88-101, Colorado

State University.

Wolpert, D. H. & Macready, W. G. (1997), 'No free lunch theorems for optimization', IEEE Transactions on
Evolutionary Computation I(l), pp. 67-82.

Wooldridge, M. J. & Jennings, N. R. (1995), 'Intelligent agents: Theory and practice', Knowledge Engineering

Review 10(2), pp. 115-152.

Ygge, F. & Akkermans, H. (1999), 'Decentralized markets versus central control: A comparative study', Jour-

nal ofArtificial Intelligence Research 11, pp. 301-333.

Zadeh, L. A. (1973), 'Outline of a new approach to the analysis of complex systems and decision processes',

IEEE Transaction on Systems, Man and Cybernetics SMC-2, pp. 28-44.

Zadeh, L. A. (1975), 'The concept of linguistic variable and its application to approximate reasoning', Infor-

mation Sciences . Part I in volume 8, pp. 199-249; Part II in volume 8, pp. 301-357; Part HI in volume 9,

pp. 43-80.

Zitzler, E. (1999), Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, PhD

thesis, ETH Ziifich, Switzerland. TIK-Schriftenreihe Nr. 30.

Zitzler, E., Deb, K. & Thiele, L. (2000), 'Comparison of multiobjective evolutionary algorithms: Empirical

results', Evolutionary Computation 8(2), pp. 173-195.

Zitzler, E. & Thiele, L. (1999), 'Multiobjective evolutionary algorithms: A comparative case study and the

strength Pareto approach', IEEE Transactions on Evolutionary Computation 3(4), pp. 257-27 1.

129

APPENDIX A

Definability of orders

It can be noted that our definition of Pareto front (definition 3.9 section 3.5.1 on page 33) uses non-strict partial

order > (defined by (A. 1)) instead of (more usual) strict partial order > defined by (A. 2):

Definition A. 1 We say that (in object space) the vector x= (xi,
..., xk) is non-dominated by vector y=

yk), denoted x >- y, if xi > yj for all 1<i<k.

The following quotation from (Lin 1976) gives some form of justification:

A relation :1 is a partial order in a set S of elements (and S is partially ordered by succ) if :1 is
transitive, antisymmetric and reflexive in S; a partial order ji is a total order in S (and S is totally
ordered by succ) if, for every pair of elements x and y in S, either x :1y or y :1 X_ A relation :1 is a
strict partial order in a set S if it is transitive and antireflexive in S. A relation :1 is transitive in S
ifx :iy andy :1 zfor elements x, y and z of S, then x :1z; it is antisymmetric ifx :1y and y :1 xfor
elements x and y of S, then x=y: it is reflexive ifx :1 xfor every element x of S; it is antireflexive
if, for no element x of S, does x :1x hold.

A relation is asymmetric in S if, for no elements x and y of S, do x :1y and y :: 1 x hold simulta-
neously. If :1 is an asymmetric transitive relation in S and if x :1y is defined to mean that either
x :1y or x=y, then :1 is a partial order in S. Conversely, if x :: 1 y is a partial order in S and
if xfy is defined to mean that x :1y and x :Ay, then f is an asymmetric transitive relation in
S. It is shown that a transitive relation is asymmetric iff it is antireflexive. Hence, an asymmetric
transitive relation is a strict partial order and vice versa. Consequently, a given strict partial order
in a set defines a partial order in the set, and conversely. In other words, the ordering of a set by a
strict partial order is equivalent to the ordering by a partial order if both relations are definable by

each other (in the above manner) ...

Lin (1976) also distinguish between 3 orders on k-dimensional vectors:

> if and only if (Vi < k) (xi ý: yi) (A. 1)

>y if and only if (Vi < k) (xi > yi) (A. 2)

xýzy ifandonlyif (x>y)A(3j: ýk)(xj>yj) (A-3)

This quotation gives the explanation why Lin only considers strict orders (A. 2) and (A. 3). However, since

and ýý are definable in terms of each other in above sense (i. e. x ý; y iff x>y and x0 y), we can use the

order > with the same effect.

130

APPENDIX B

C code for preferences

The code give bellow compute weight factors associated with preferences. It is enough to call the function

ComputeWeights(nobj, weights), where nobj is the number of objectives and weighzýs is the vector which

returns the weights of the objectives according to the user preferences.

Ask the user about the preferences, compute preference order and weights.

#include <stdio. h>
#include <stdlib. h>
#include <string. h>
#include <ctype. h>
#def ine SEP ", "

A for much more important down to much less important
#def ine MAU 1.9 A much more important
#define NH 1.3 A more important */
#define EI 1.0 A equally important
#def ine LJ 0.7 A less important */
#de f ine MLI 0.1 A much less important
#def ine NCMP EI A not comparable - the same as equally important
#def ine NN-MAX 4A number of comparisons */

#def ine RUM 2 /* much more important for Ra
#define RNE 1 /* more important for Ra */

struct OBJECTIVE ý
int *equ; A list of objectives equally important:

binary mask - position j is I if objective j is equally
important as the current one, 0 otherwise */

double score; A entering score computed as Sc(a) = sum-f b ! =a) R(a, b)
double weight; A weight that is assigned to it at the end

1;

A allocate size x size matrix S of type type and named T
#def ine AflocMatrix(S, type, size, T)
f\

int ii;
if ((S (type* *)maIJoc((size)*s; izeof(type*))) == NULL)

nomemory(T); \

131

fOr(fi=O; fi<(size); fi++) I\
if ((S[fil = (type*)calioc((size-t)size, sizeof(type))) == NULL)

nomemory(T);

II\

static int idcmp(int *pl, int *p2) A sorting integers in decreasing order I
int tmp = *pI - *p2;
if (tmp <0)

return -1;
else if (tmp == 0)

return 0;
else

return 1;
}
A gets a line from a file but ignores it if it is a comment i. e. a line starting with #
static char *Fgets(char* 1, int len, FILE *f)
f

do I
if (fgets(l, len, f) == NULL)

return NULL;
else if (1 [0] :A W)

return 1;
while (1 [01 == W);

return 1;
I

static void MWarshall(int **A, int N) A computes transitive closure of a relations A
f

int k, i, j;

for(k=O; k<N; k++)
foro=O, j<N, j++)

for(i=O; i<N; i++)
A[i]U] = Min(2, Max(A[i]U], A[i](k]*A[k]U]));

I

A checks if x is in vector v of length n and returns I or 0
static int InVector(int x, int *v, int n)

int found = 0, i=O;

while (i<n &&! found)
found = (x == v[i++]);

return found;

}
static void GetNonImportant(int *nonimp, int *nl, int N)
f

char *t, Line[801;
int 1, nn, ff, j;

printf("Do you have any ADDITIONAL nonimportant c-jectives? \r");

printf("Enter them all in one line separated by %s. \r", SEP);

printf("Empty line means all are important\n");

printf("Enter non-important objectives: ");

if ((Fgets(Line, 79, stdin) -- NULL) (strlen(Line)

retum;

132

I

else
I strIen(Line);
if (Line[I-1] == '\n')

Line[1-1]='\O'; A discard new line character
t= strtok(Line, SEP);
while ((*n I <N) && (t 0 NULQ)

nn = atoi(0-1;
if ((nn > 0) && (nn <N))

ff = 0;
foro--O; j<*nl && ff==Oj++) f

if (nonimpUl--nn) A already there?
ff = 1;

I

I

if (ff == 0) A not found yet
nonimp[*nl] = nn;
(*nl)++;

I
t= strtok(NULL, SEP); A get the next one */

A sort. in increasing order
qsort((void *)nonimp, (unsigned)(*n 1), sizeof(int),

(int (*)(const void*, const void *))(idcmp));
I

static void GetEquallyImportant(struct OBJECTTVE *0, int N)
I

char Line[80), *t;
int j, i, m, 1, nn;
int *tmpv;

if ((tmpv = (int*)calloc((sizeA)N, sizeof(int))) == NULL)
nomemory("tmpv");

printf("Please enter list of equally important objectives\n");
printf(nEnter a list per line separated with %s. SEP);
printf("Empty line ends. \n");

printf("Please enter per line ALL equally important object ives\n");

while ((Fgets(Line, 79, stdin): A NULL) && (strien(Li-ne): A 1)) fA no empty line yet */
j=0;
I= strIen(Line);
if (Line[]-11 '\n')

Line[1-1]='\O'; A discard new line character
t= strtok(Line, SEP);
while (0 <N) && (t: A NULL))

nn = atoi(0-1;
if On > 0) && (nn <N)) A insert it into the list of equivalent

tmpvU++] = nn;
t= strtok(NULL, SEP);

1

for(i=O, i<i; i++)
for(m=O; rn<j; rn++)

O[trnpv[i]]. equ[trnpv[rnll
for(i=O; i<N, i++)

tmpv[i] = 0;

133

static int AskPreference(int i 1, int i2)
f

int nn = 0;

printf(" Considering objectives %d and %d, is: \n"j1+Ij2+1);
Printff" -Enter 1 if %d is much more impor--an- then %d\n" i1+1 i2+1)
printf(" Enter 2 if %d is more imporý: ant then %d\n"

, , ;

,
i1+1, i2+1);

printf(" Enter 3 if %d is less imporzant then %d\n" j1+Ij2+1);
printf(" Enter 4 if %d is m-ac'n less important then %dj\n% i1+1, i2+1);

while (nn < 111 nn > NN-MAX) I
printf("\n Please enter nuirber between I and %d NN-MAX);
scanf("-O. d", &nn);

I
return nn;

I

static void SetPreference(int i 1, int i2, int p, double * *P, int * *Pa)

switch (P)
case 1: A much more important

P[i II D21 = NM;
P[i2][i 1] = MLI,
Pa[i 1] [i2] = RNM;
break;

case 2: A more important
P[ilffi2] = NU;
P[i2][i 1] = LI;
Pab II D21 = FM;
break;

case 3: A less important
P[ifl[i2] = LI;
P[i2][i 1] = Nfl;
PaNffill = RAE;
break;

case 4: A much less important
P[i 1] [i2] = MLI;
P[i2][il] = NDM;
Pa(i2ffill = RMNH;
break;

case 5: A not comparable
P[i I] [i2] = NCNT;
P[i2][ill = NCMP;
Pa(i 1][i2j = Pa[i2][i 1] = 1;
break;

I

A Compute Weightso asks questions about pairwise preferences and compute
weights etc accordingly. */

int ComPuteWeights(int nobj, double *PWeights)
I

int i, j, nn, k, N, no, n, found, Ne;
double **R, ts;
int **Ra, *C; A adj. matrix for R, I if in relationship, 0 if not
int *obj, *imp, *nonimp;
struct OBJECTIVE *o;

nobi;

if ((o = (struct OBJECTIVE*)malloc(N*Sizeof(struCt OBJECTTVE))) == NULL)

134

nomemory(n OBJECTIVE");

for(i=O; i<N; i++) I
o[fl. weight 1;
if ((o[fl. equ (int*)caIIoc((sizeA)N, sizeoffint))) == NULL)

nomemory("o 0);
o[i]. equ[i] = 1; A it is equally important as itself

I

if ((obj = (int*)malloc(N*sizeof(int))) == NULL)
nomemory("ob j

else f
for(i=O; i<N; i++)

obj[il = i;
I

if ((nonimp = (int*)calloc((size-t)N, sizeof(int))) = NULL)
nomemory(Ononimp");

if ((iMP = (int*)calloc((size-t)N, sizeof(int))) = NULL)
nomemory(Il imp 0);

j=0;
printf("Objectives are numbered from 1 to %d\n", N);
printf("Nonimportant objectives are (according to the mask)
for0=O; i<N; i++)

if (USe[il==O) I
printf("%d ", i+l);
nonimpo++]=i;

printf(ll\n");

no = i;
GetNonImportant(nonimp, &no, N);
n= N-no; An is the number of important objectives, no of nonimportant

A assign weights of nonimportant objectives to 0
for(i--O; i<no; i++)

o[nonimp[iflmeight = 0;
j=0;

A OK, find the important elements
for(i=O; i<N; i++) I

if (! InVector(i, nonimp, no))
iMPu++1 = i;

I

printf(O Important objectives are:
for(i--O; i<n; i++)

printf('l%d%s", iMP[il+l, SEP);

printf("\n Nonimportant objectives are:
for0=O; i<no; i++)

printf("%d%s", nonimp[i]+l, SEP);

printf("\n");

GetF, quallyImportant(o, N);

" OK, now we have important objectives in imp[] vector
" Put elements in classes, Nc will be number of classes
if ((C = (int*)caIIoc((sizeA)n, sizeof(int))) == NULL)

135

nomemory("C");

k--O;
for(i=O; i<n; i++) An is the number of important elements found = 0;

forO=O, j<i && ! foundj++)
found = (o[irnp[i11. equ[irnpU11

if ffound)
C[k++] = imp[i];

I
Ne = k;

if (Ne == 1) fA there is only one class, not very exciting
o[C[O]]. weight = 1;

else A ask for preferences, compute weights etc A allocate matrices R and Ra of size Nc*Nc
AllocMatrix(R, double, Nc, "RII);
AllocMatrix(Ra, int, Nc, "Ra");

A asign them to unity matrix
for(i=O; i<Nc; i++) f

foro--O, j<Nc; j++)
R[flo] = 0;
Ra[flo] = 0;

I
R[ifffl=l;
Ra[i][i] = 1;

A ok for everything else, ask a question */
printf("Now you have to answer some questions: \n");
for(i=O; i<Nc; i++) f

foro--O, j<Nc; j++)
if (Ra[i]U] + RaUffil = 0)

nn = AskPreference(C[fl, CUI);
ff (nn=O) f

fprintf(stdeff, "Wrong preference %d between %d=C[%dl and %d=c, %dl ! \r",
nn, C[i], i, CUIJ);

exit(l);
I
SetPreference(i, j, nn, R, Ra);
MWarshall(Ra, NO;

I

I

A Compute matrix R
for(i=O; i<Nc; i++)

foro=O, j<Nc, j++)
if (i==j)

R[flo] = EI;
else if ((Ra[i]Ul == 0) && (RaU][i] RlýU))

R[i]U] = LI; RUI[il = NU;

else if ((Ra[i]U] = 0) && (RaUffil FJvM))
R[i]U] = MLJ; RUI[ij = NM;

else if ((Ra[i]U] ý RNU) && (RaUlfil = 0))
R(i]Ul = NE; RU][i] = LI;

1* 1>i *1

1* j»i *1

/*

136

else if ((Ra[i]Ul == RNDQ && (RaUffi] = 0)) f /* j << i */
R[i]Ul = UM; RUI[il = MLI;

I
else

fprintf(stderr, "Wrong pa:. r Ra [%dj '%dl =-Ood, Ra [%, J] [%d'=%d\n",
i, j, Ra[ilol, j, i, Raoffi]);

}
A Compute weights of the classes */
ts = 0;
for(i=O; i<Nc; i++) I

o[C[i]]. score = 0;
foro--O; j <Ncj++)

if 00i)
o[Qifl. score += R[i]U];

ts += o[Qifl. score;

for(i--O; i<Nc; i++)
o[Qifl. weight = o[Qifl. scorefts;

A end of the long else part */

A now assign the same values to all other in the same class
for(i--O; i<Nc; i++)

foro=O, j<N, j++)
if (o[Qill. equol == 1)

ool. weight = o[Qill. weight;

A normalise and output weights */
ts = 0;
for(i=O; i<N; i++)

ts +F o[flmeight;

for(i=O; i<N; i++) f
o[i]. weight /= ts;
PWeights[i) = o[i]. weight;

return 0;
I

137

APPENDIX C

Scenario examples

Here are some hirther examples of scenarios targeted towards certain aircraft types. All data is from (Sharpe

1999, Chandler 1999):

constraints for B-2 Spirit Stealth Bomber
file expr. b2
yll <=52.43 # wing span
x4 <=464.5 # Wing plan area
y9 >=8167 # Ferry range
YIO >= 170550 # take-off mass
X3 >= 0.8 # cruising speed 980km/h

constraints for SR-71 Blackbird Recon
#file expr. blackbird

yll<=16.94 # wing span
x4 <=149.10 # Wing plan area
Y9 >=5230 # Ferry range
ylO >= 78017 # take-off mass
x3 >= 3.35 # max cruise speed 41OCkm/h

yl <= 1646 # take-off run

constraints for F-111 Aardvark Bomber
file expr. f1ll

yll >= 9.74 & yll<=19.20 # wing span

x4 <=61.07 & x4 >=48.77 # Wing plan area

y9 >=4707 # Ferry range

y1O >= 45360 # take-off mass

x3 >= 0.75 # max cruise speed 91-9km/h

yl <= 951 # take-of-f run

constraints for -7-117A Szeal-: h Fighter

Le expr. f-117 # 'i-
yll <=13.20 # wing span
x4 <=105.9 # Wing plan area
y9 >=2327 # Ferry range estimated as combat radius * 2.7

Y10 >= 24894 # take-off mass

lyl <= 1-890 # take-cff run

138

constraints for McDonnell Douglas F-15j Eagle
file expr. fl5j
yll <= 13.05 # Wing span
& <=56.48 # Wing plan area
y9 >= 5745 # Ferry range
yIO >=30844 # zake-off mass

4 constraints for General Dynmics F-16A
Me expr. fl6a
yll <= 9.45 # Wing span
A <=27.87 # Wing plan area
y9 >= 925 # Ferry range
Y10 >= 16057 # take-off mass

4 constraints for Mikoyan-Gurevich MiG-29M
file expr. mig29m
yll <= 11.36 # Wing span
x4 <=35.2 # Wing plan area
y9 >= 1500 # Ferry range
Y10 >=18500 # take-off mass

constraints for Dassault Mirage 2000H
file expr. mirage2000h
yll <= 9.2 # Wing span
x4 <=42 # Wing plan area
Y9 >= 1480 # Ferry range
Y10 >=17000 # take-off mass

constraints for Grumman F-14D Tomcat
file expr. tomcat
y1l >= 11.65 & yll
x4 <=52.49
Y9 >=3200
ylO >= 33724

x3 >= 0.83

yl <= 427

<= 19.55 # Wing span
Wing plan area
Ferry range
take-off mass
max cruise speed 1019km/h
take-of' run

i ronstraints for Tornado GR. Mkl Bomber

file expr. tornado
yll >= 8.60 & yll
x4 <=26.60
y9 >=3890
ylO >= 27951

yl <= 900

<= 13.91 # Wing span
Wing plan area
Ferry range
take-off mass
take-off run

constraints for Eurofighter ED-20CO : yphocn

file expr. typhoon

yll <= 10.5 # Wing span
A <=53 # Wing plan area

y9 >= 600 # Ferry range

, ylO >= 21000 # take-off mass

139

