21,271 research outputs found

    Real-time quality visualization of medical models on commodity and mobile devices

    Get PDF
    This thesis concerns the specific field of visualization of medical models using commodity and mobile devices. Mechanisms for medical imaging acquisition such as MRI, CT, and micro-CT scanners are continuously evolving, up to the point of obtaining volume datasets of large resolutions (> 512^3). As these datasets grow in resolution, its treatment and visualization become more and more expensive due to their computational requirements. For this reason, special techniques such as data pre-processing (filtering, construction of multi-resolution structures, etc.) and sophisticated algorithms have to be introduced in different points of the visualization pipeline to achieve the best visual quality without compromising performance times. The problem of managing big datasets comes from the fact that we have limited computational resources. Not long ago, the only physicians that were rendering volumes were radiologists. Nowadays, the outcome of diagnosis is the data itself, and medical doctors need to render them in commodity PCs (even patients may want to render the data, and the DVDs are commonly accompanied with a DICOM viewer software). Furthermore, with the increasing use of technology in daily clinical tasks, small devices such as mobile phones and tablets can fit the needs of medical doctors in some specific areas. Visualizing diagnosis images of patients becomes more challenging when it comes to using these devices instead of desktop computers, as they generally have more restrictive hardware specifications. The goal of this Ph.D. thesis is the real-time, quality visualization of medium to large medical volume datasets (resolutions >= 512^3 voxels) on mobile phones and commodity devices. To address this problem, we use multiresolution techniques that apply downsampling techniques on the full resolution datasets to produce coarser representations which are easier to handle. We have focused our efforts on the application of Volume Visualization in the clinical practice, so we have a particular interest in creating solutions that require short pre-processing times that quickly provide the specialists with the data outcome, maximize the preservation of features and the visual quality of the final images, achieve high frame rates that allow interactive visualizations, and make efficient use of the computational resources. The contributions achieved during this thesis comprise improvements in several stages of the visualization pipeline. The techniques we propose are located in the stages of multi-resolution generation, transfer function design and the GPU ray casting algorithm itself.Esta tesis se centra en la visualización de modelos médicos de volumen en dispositivos móviles y de bajas prestaciones. Los sistemas médicos de captación tales como escáners MRI, CT y micro-CT, están en constante evolución, hasta el punto de obtener modelos de volumen de gran resolución (> 512^3). A medida que estos datos crecen en resolución, su manejo y visualización se vuelve más y más costoso debido a sus requisitos computacionales. Por este motivo, técnicas especiales como el pre-proceso de datos (filtrado, construcción de estructuras multiresolución, etc.) y algoritmos específicos se tienen que introducir en diferentes puntos de la pipeline de visualización para conseguir la mejor calidad visual posible sin comprometer el rendimiento. El problema que supone manejar grandes volumenes de datos es debido a que tenemos recursos computacionales limitados. Hace no mucho, las únicas personas en el ámbito médico que visualizaban datos de volumen eran los radiólogos. Hoy en día, el resultado de la diagnosis son los datos en sí, y los médicos necesitan renderizar estos datos en PCs de características modestas (incluso los pacientes pueden querer visualizar estos datos, pues los DVDs con los resultados suelen venir acompañados de un visor de imágenes DICOM). Además, con el reciente aumento del uso de las tecnologías en la clínica práctica habitual, dispositivos pequeños como teléfonos móviles o tablets son los más convenientes en algunos casos. La visualización de volumen es más difícil en este tipo de dispositivos que en equipos de sobremesa, pues las limitaciones de su hardware son superiores. El objetivo de esta tesis doctoral es la visualización de calidad en tiempo real de modelos grandes de volumen (resoluciones >= 512^3 voxels) en teléfonos móviles y dispositivos de bajas prestaciones. Para enfrentarnos a este problema, utilizamos técnicas multiresolución que aplican técnicas de reducción de datos a los modelos en resolución original, para así obtener modelos de menor resolución. Hemos centrado nuestros esfuerzos en la aplicación de la visualización de volumen en la práctica clínica, así que tenemos especial interés en diseñar soluciones que requieran cortos tiempos de pre-proceso para que los especialistas tengan rápidamente los resultados a su disposición. También, queremos maximizar la conservación de detalles de interés y la calidad de las imágenes finales, conseguir frame rates altos que faciliten visualizaciones interactivas y que hagan un uso eficiente de los recursos computacionales. Las contribuciones aportadas por esta tesis són mejoras en varias etapas de la pipeline de visualización. Las técnicas que proponemos se situan en las etapas de generación de la estructura multiresolución, el diseño de la función de transferencia y el algoritmo de ray casting en la GPU.Postprint (published version

    Real-time quality visualization of medical models on commodity and mobile devices

    Get PDF
    This thesis concerns the specific field of visualization of medical models using commodity and mobile devices. Mechanisms for medical imaging acquisition such as MRI, CT, and micro-CT scanners are continuously evolving, up to the point of obtaining volume datasets of large resolutions (> 512^3). As these datasets grow in resolution, its treatment and visualization become more and more expensive due to their computational requirements. For this reason, special techniques such as data pre-processing (filtering, construction of multi-resolution structures, etc.) and sophisticated algorithms have to be introduced in different points of the visualization pipeline to achieve the best visual quality without compromising performance times. The problem of managing big datasets comes from the fact that we have limited computational resources. Not long ago, the only physicians that were rendering volumes were radiologists. Nowadays, the outcome of diagnosis is the data itself, and medical doctors need to render them in commodity PCs (even patients may want to render the data, and the DVDs are commonly accompanied with a DICOM viewer software). Furthermore, with the increasing use of technology in daily clinical tasks, small devices such as mobile phones and tablets can fit the needs of medical doctors in some specific areas. Visualizing diagnosis images of patients becomes more challenging when it comes to using these devices instead of desktop computers, as they generally have more restrictive hardware specifications. The goal of this Ph.D. thesis is the real-time, quality visualization of medium to large medical volume datasets (resolutions >= 512^3 voxels) on mobile phones and commodity devices. To address this problem, we use multiresolution techniques that apply downsampling techniques on the full resolution datasets to produce coarser representations which are easier to handle. We have focused our efforts on the application of Volume Visualization in the clinical practice, so we have a particular interest in creating solutions that require short pre-processing times that quickly provide the specialists with the data outcome, maximize the preservation of features and the visual quality of the final images, achieve high frame rates that allow interactive visualizations, and make efficient use of the computational resources. The contributions achieved during this thesis comprise improvements in several stages of the visualization pipeline. The techniques we propose are located in the stages of multi-resolution generation, transfer function design and the GPU ray casting algorithm itself.Esta tesis se centra en la visualización de modelos médicos de volumen en dispositivos móviles y de bajas prestaciones. Los sistemas médicos de captación tales como escáners MRI, CT y micro-CT, están en constante evolución, hasta el punto de obtener modelos de volumen de gran resolución (> 512^3). A medida que estos datos crecen en resolución, su manejo y visualización se vuelve más y más costoso debido a sus requisitos computacionales. Por este motivo, técnicas especiales como el pre-proceso de datos (filtrado, construcción de estructuras multiresolución, etc.) y algoritmos específicos se tienen que introducir en diferentes puntos de la pipeline de visualización para conseguir la mejor calidad visual posible sin comprometer el rendimiento. El problema que supone manejar grandes volumenes de datos es debido a que tenemos recursos computacionales limitados. Hace no mucho, las únicas personas en el ámbito médico que visualizaban datos de volumen eran los radiólogos. Hoy en día, el resultado de la diagnosis son los datos en sí, y los médicos necesitan renderizar estos datos en PCs de características modestas (incluso los pacientes pueden querer visualizar estos datos, pues los DVDs con los resultados suelen venir acompañados de un visor de imágenes DICOM). Además, con el reciente aumento del uso de las tecnologías en la clínica práctica habitual, dispositivos pequeños como teléfonos móviles o tablets son los más convenientes en algunos casos. La visualización de volumen es más difícil en este tipo de dispositivos que en equipos de sobremesa, pues las limitaciones de su hardware son superiores. El objetivo de esta tesis doctoral es la visualización de calidad en tiempo real de modelos grandes de volumen (resoluciones >= 512^3 voxels) en teléfonos móviles y dispositivos de bajas prestaciones. Para enfrentarnos a este problema, utilizamos técnicas multiresolución que aplican técnicas de reducción de datos a los modelos en resolución original, para así obtener modelos de menor resolución. Hemos centrado nuestros esfuerzos en la aplicación de la visualización de volumen en la práctica clínica, así que tenemos especial interés en diseñar soluciones que requieran cortos tiempos de pre-proceso para que los especialistas tengan rápidamente los resultados a su disposición. También, queremos maximizar la conservación de detalles de interés y la calidad de las imágenes finales, conseguir frame rates altos que faciliten visualizaciones interactivas y que hagan un uso eficiente de los recursos computacionales. Las contribuciones aportadas por esta tesis són mejoras en varias etapas de la pipeline de visualización. Las técnicas que proponemos se situan en las etapas de generación de la estructura multiresolución, el diseño de la función de transferencia y el algoritmo de ray casting en la GPU

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Gaussian transfer functions for multi-field volume visualization

    Get PDF
    Journal ArticleVolume rendering is a flexible technique for visualizing dense 3D volumetric datasets. A central element of volume rendering is the conversion between data values and observable quantities such as color and opacity. This process is usually realized through the use of transfer functions that are precomputed and stored in lookup tables. For multidimensional transfer functions applied to multivariate data, these lookup tables become prohibitively large. We propose the direct evaluation of a particular type of transfer functions based on a sum of Gaussians. Because of their simple form (in terms of number of parameters), these functions and their analytic integrals along line segments can be evaluated efficiently on current graphics hardware, obviating the need for precomputed lookup tables. We have adopted these transfer functions because they are well suited for classification based on a unique combination of multiple data values that localize features in the transfer function domain. We apply this technique to the visualization of several multivariate datasets (CT, cryosection) that are difficult to classify and render accurately at interactive rates using traditional approaches

    Design of a multimodal rendering system

    Get PDF
    This paper addresses the rendering of aligned regular multimodal datasets. It presents a general framework of multimodal data fusion that includes several data merging methods. We also analyze the requirements of a rendering system able to provide these different fusion methods. On the basis of these requirements, we propose a novel design for a multimodal rendering system. The design has been implemented and proved showing to be efficient and flexible.Postprint (published version

    Volume rendering with multidimensional peak finding

    Get PDF
    Journal ArticlePeak finding provides more accurate classification for direct volume rendering by sampling directly at local maxima in a transfer function, allowing for better reproduction of high-frequency features. However, the 1D peak finding technique does not extend to higherdimensional classification. In this work, we develop a new method for peak finding with multidimensional transfer functions, which looks for peaks along the image of the ray. We use piecewise approximations to dynamically sample in transfer function space between world-space samples. As with unidimensional peak finding, this approach is useful for specifying transfer functions with greater precision, and for accurately rendering noisy volume data at lower sampling rates. Multidimensional peak finding produces comparable image quality with order-of-magnitude better performance, and can reproduce features omitted entirely by standard classification. With no precomputation or storage requirements, it is an attractive alternative to preintegration for multidimensional transfer functions

    Sketchy rendering for information visualization

    Get PDF
    We present and evaluate a framework for constructing sketchy style information visualizations that mimic data graphics drawn by hand. We provide an alternative renderer for the Processing graphics environment that redefines core drawing primitives including line, polygon and ellipse rendering. These primitives allow higher-level graphical features such as bar charts, line charts, treemaps and node-link diagrams to be drawn in a sketchy style with a specified degree of sketchiness. The framework is designed to be easily integrated into existing visualization implementations with minimal programming modification or design effort. We show examples of use for statistical graphics, conveying spatial imprecision and for enhancing aesthetic and narrative qualities of visual- ization. We evaluate user perception of sketchiness of areal features through a series of stimulus-response tests in order to assess users’ ability to place sketchiness on a ratio scale, and to estimate area. Results suggest relative area judgment is compromised by sketchy rendering and that its influence is dependent on the shape being rendered. They show that degree of sketchiness may be judged on an ordinal scale but that its judgement varies strongly between individuals. We evaluate higher-level impacts of sketchiness through user testing of scenarios that encourage user engagement with data visualization and willingness to critique visualization de- sign. Results suggest that where a visualization is clearly sketchy, engagement may be increased and that attitudes to participating in visualization annotation are more positive. The results of our work have implications for effective information visualization design that go beyond the traditional role of sketching as a tool for prototyping or its use for an indication of general uncertainty
    corecore