6 research outputs found

    Verifying volume rendering using discretization error analysis

    Get PDF
    pre-printWe propose an approach for verification of volume rendering correctness based on an analysis of the volume rendering integral, the basis of most DVR algorithms. With respect to the most common discretization of this continuous model (Riemann summation), we make assumptions about the impact of parameter changes on the rendered results and derive convergence curves describing the expected behavior. Specifically, we progressively refine the number of samples along the ray, the grid size, and the pixel size, and evaluate how the errors observed during refinement compare against the expected approximation errors. We derive the theoretical foundations of our verification approach, explain how to realize it in practice, and discuss its limitations. We also report the errors identified by our approach when applied to two publicly available volume rendering packages

    Ubiquitous volume rendering in the web platform

    Get PDF
    176 p.The main thesis hypothesis is that ubiquitous volume rendering can be achieved using WebGL. The thesis enumerates the challenges that should be met to achieve that goal. The results allow web content developers the integration of interactive volume rendering within standard HTML5 web pages. Content developers only need to declare the X3D nodes that provide the rendering characteristics they desire. In contrast to the systems that provide specific GPU programs, the presented architecture creates automatically the GPU code required by the WebGL graphics pipeline. This code is generated directly from the X3D nodes declared in the virtual scene. Therefore, content developers do not need to know about the GPU.The thesis extends previous research on web compatible volume data structures for WebGL, ray-casting hybrid surface and volumetric rendering, progressive volume rendering and some specific problems related to the visualization of medical datasets. Finally, the thesis contributes to the X3D standard with some proposals to extend and improve the volume rendering component. The proposals are in an advance stage towards their acceptance by the Web3D Consortium

    Ubiquitous volume rendering in the web platform

    Get PDF
    176 p.The main thesis hypothesis is that ubiquitous volume rendering can be achieved using WebGL. The thesis enumerates the challenges that should be met to achieve that goal. The results allow web content developers the integration of interactive volume rendering within standard HTML5 web pages. Content developers only need to declare the X3D nodes that provide the rendering characteristics they desire. In contrast to the systems that provide specific GPU programs, the presented architecture creates automatically the GPU code required by the WebGL graphics pipeline. This code is generated directly from the X3D nodes declared in the virtual scene. Therefore, content developers do not need to know about the GPU.The thesis extends previous research on web compatible volume data structures for WebGL, ray-casting hybrid surface and volumetric rendering, progressive volume rendering and some specific problems related to the visualization of medical datasets. Finally, the thesis contributes to the X3D standard with some proposals to extend and improve the volume rendering component. The proposals are in an advance stage towards their acceptance by the Web3D Consortium

    Doctor of Philosophy

    Get PDF
    dissertationIn this dissertation, we advance the theory and practice of verifying visualization algorithms. We present techniques to assess visualization correctness through testing of important mathematical properties. Where applicable, these techniques allow us to distinguish whether anomalies in visualization features can be attributed to the underlying physical process or to artifacts from the implementation under verification. Such scientific scrutiny is at the heart of verifiable visualization - subjecting visualization algorithms to the same verification process that is used in other components of the scientific pipeline. The contributions of this dissertation are manifold. We derive the mathematical framework for the expected behavior of several visualization algorithms, and compare them to experimentally observed results in the selected codes. In the Computational Science & Engineering community CS&E, this technique is know as the Method of Manufactured Solution (MMS). We apply MMS to the verification of geometrical and topological properties of isosurface extraction algorithms, and direct volume rendering. We derive the convergence of geometrical properties of isosurface extraction techniques, such as function value and normals. For the verification of topological properties, we use stratified Morse theory and digital topology to design algorithms that verify topological invariants. In the case of volume rendering algorithms, we provide the expected discretization errors for three different error sources. The results of applying the MMS is another important contribution of this dissertation. We report unexpected behavior for almost all implementations tested. In some cases, we were able to find and fix bugs that prevented the correctness of the visualization algorithm. In particular, we address an almost 2 0 -year-old bug with the core disambiguation procedure of Marching Cubes 33, one of the first algorithms intended to preserve the topology of the trilinear interpolant. Finally, an important by-product of this work is a range of responses practitioners can expect to encounter with the visualization technique under verification

    Real-time GPU-accelerated Out-of-Core Rendering and Light-field Display Visualization for Improved Massive Volume Understanding

    Get PDF
    Nowadays huge digital models are becoming increasingly available for a number of different applications ranging from CAD, industrial design to medicine and natural sciences. Particularly, in the field of medicine, data acquisition devices such as MRI or CT scanners routinely produce huge volumetric datasets. Currently, these datasets can easily reach dimensions of 1024^3 voxels and datasets larger than that are not uncommon. This thesis focuses on efficient methods for the interactive exploration of such large volumes using direct volume visualization techniques on commodity platforms. To reach this goal specialized multi-resolution structures and algorithms, which are able to directly render volumes of potentially unlimited size are introduced. The developed techniques are output sensitive and their rendering costs depend only on the complexity of the generated images and not on the complexity of the input datasets. The advanced characteristics of modern GPGPU architectures are exploited and combined with an out-of-core framework in order to provide a more flexible, scalable and efficient implementation of these algorithms and data structures on single GPUs and GPU clusters. To improve visual perception and understanding, the use of novel 3D display technology based on a light-field approach is introduced. This kind of device allows multiple naked-eye users to perceive virtual objects floating inside the display workspace, exploiting the stereo and horizontal parallax. A set of specialized and interactive illustrative techniques capable of providing different contextual information in different areas of the display, as well as an out-of-core CUDA based ray-casting engine with a number of improvements over current GPU volume ray-casters are both reported. The possibilities of the system are demonstrated by the multi-user interactive exploration of 64-GVoxel datasets on a 35-MPixel light-field display driven by a cluster of PCs. ------------------------------------------------------------------------------------------------------ Negli ultimi anni si sta verificando una proliferazione sempre più consistente di modelli digitali di notevoli dimensioni in campi applicativi che variano dal CAD e la progettazione industriale alla medicina e le scienze naturali. In modo particolare, nel settore della medicina, le apparecchiature di acquisizione dei dati come RM o TAC producono comunemente dei dataset volumetrici di grosse dimensioni. Questi dataset possono facilmente raggiungere taglie dell’ordine di 10243 voxels e dataset di dimensioni maggiori possono essere frequenti. Questa tesi si focalizza su metodi efficienti per l’esplorazione di tali grossi volumi utilizzando tecniche di visualizzazione diretta su piattaforme HW di diffusione di massa. Per raggiungere tale obiettivo si introducono strutture specializzate multi-risoluzione e algoritmi in grado di visualizzare volumi di dimensioni potenzialmente infinite. Le tecniche sviluppate sono “ouput sensitive” e la loro complessità di rendering dipende soltanto dalle dimensioni delle immagini generate e non dalle dimensioni dei dataset di input. Le caratteristiche avanzate delle architetture moderne GPGPU vengono inoltre sfruttate e combinate con un framework “out-of-core” in modo da offrire una implementazione di questi algoritmi e strutture dati più flessibile, scalabile ed efficiente su singole GPU o cluster di GPU. Per migliorare la percezione visiva e la comprensione dei dati, viene introdotto inoltre l’uso di tecnologie di display 3D di nuova generazione basate su un approccio di tipo light-field. Questi tipi di dispositivi consentono a diversi utenti di percepire ad occhio nudo oggetti che galleggiano all’interno dello spazio di lavoro del display, sfruttando lo stereo e la parallasse orizzontale. Si descrivono infine un insieme di tecniche illustrative interattive in grado di fornire diverse informazioni contestuali in diverse zone del display, così come un motore di “ray-casting out-of-core” basato su CUDA e contenente una serie di miglioramenti rispetto agli attuali metodi GPU di “ray-casting” di volumi. Le possibilità del sistema sono dimostrate attraverso l’esplorazione interattiva di dataset di 64-GVoxel su un display di tipo light-field da 35-MPixel pilotato da un cluster di PC
    corecore