22,922 research outputs found

    Large Advanced Space Systems (LASS) computer-aided design program additions

    Get PDF
    The LSS preliminary and conceptual design requires extensive iteractive analysis because of the effects of structural, thermal, and control intercoupling. A computer aided design program that will permit integrating and interfacing of required large space system (LSS) analyses is discussed. The primary objective of this program is the implementation of modeling techniques and analysis algorithms that permit interactive design and tradeoff studies of LSS concepts. Eight software modules were added to the program. The existing rigid body controls module was modified to include solar pressure effects. The new model generator modules and appendage synthesizer module are integrated (interfaced) to permit interactive definition and generation of LSS concepts. The mass properties module permits interactive specification of discrete masses and their locations. The other modules permit interactive analysis of orbital transfer requirements, antenna primary beam n, and attitude control requirements

    Intersystem soft handover for converged DVB-H and UMTS networks

    Get PDF
    Digital video broadcasting for handhelds (DVB-H) is the standard for broadcasting Internet Protocol (IP) data services to mobile portable devices. To provide interactive services for DVB-H, the Universal Mobile Telecommunications System (UMTS) can be used as a terrestrial interaction channel for the unidirectional DVB-H network. The converged DVB-H and UMTS network can be used to address the congestion problems due to the limited multimedia channel accesses of the UMTS network. In the converged network, intersystem soft handover between DVB-H and UMTS is needed for an optimum radio resource allocation, which reduces network operation cost while providing the required quality of service. This paper deals with the intersystem soft handover between DVB-H and UMTS in such a converged network. The converged network structure is presented. A novel soft handover scheme is proposed and evaluated. After considering the network operation cost, the performance tradeoff between the network quality of service and the network operation cost for the intersystem soft handover in the converged network is modeled using a stochastic tree and analyzed using a numerical simulation. The results show that the proposed algorithm is feasible and has the potential to be used for implementation in the real environment

    FastDeepIoT: Towards Understanding and Optimizing Neural Network Execution Time on Mobile and Embedded Devices

    Full text link
    Deep neural networks show great potential as solutions to many sensing application problems, but their excessive resource demand slows down execution time, pausing a serious impediment to deployment on low-end devices. To address this challenge, recent literature focused on compressing neural network size to improve performance. We show that changing neural network size does not proportionally affect performance attributes of interest, such as execution time. Rather, extreme run-time nonlinearities exist over the network configuration space. Hence, we propose a novel framework, called FastDeepIoT, that uncovers the non-linear relation between neural network structure and execution time, then exploits that understanding to find network configurations that significantly improve the trade-off between execution time and accuracy on mobile and embedded devices. FastDeepIoT makes two key contributions. First, FastDeepIoT automatically learns an accurate and highly interpretable execution time model for deep neural networks on the target device. This is done without prior knowledge of either the hardware specifications or the detailed implementation of the used deep learning library. Second, FastDeepIoT informs a compression algorithm how to minimize execution time on the profiled device without impacting accuracy. We evaluate FastDeepIoT using three different sensing-related tasks on two mobile devices: Nexus 5 and Galaxy Nexus. FastDeepIoT further reduces the neural network execution time by 48%48\% to 78%78\% and energy consumption by 37%37\% to 69%69\% compared with the state-of-the-art compression algorithms.Comment: Accepted by SenSys '1

    Multicriteria VMAT optimization

    Full text link
    Purpose: To make the planning of volumetric modulated arc therapy (VMAT) faster and to explore the tradeoffs between planning objectives and delivery efficiency. Methods: A convex multicriteria dose optimization problem is solved for an angular grid of 180 equi-spaced beams. This allows the planner to navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus organ at risk sparing. The selected plan is then made VMAT deliverable by a fluence map merging and sequencing algorithm, which combines neighboring fluence maps based on a similarity score and then delivers the merged maps together, simplifying delivery. Successive merges are made as long as the dose distribution quality is maintained. The complete algorithm is called VMERGE. Results: VMERGE is applied to three cases: a prostate, a pancreas, and a brain. In each case, the selected Pareto-optimal plan is matched almost exactly with the VMAT merging routine, resulting in a high quality plan delivered with a single arc in less than five minutes on average. VMERGE offers significant improvements over existing VMAT algorithms. The first is the multicriteria planning aspect, which greatly speeds up planning time and allows the user to select the plan which represents the most desirable compromise between target coverage and organ at risk sparing. The second is the user-chosen epsilon-optimality guarantee of the final VMAT plan. Finally, the user can explore the tradeoff between delivery time and plan quality, which is a fundamental aspect of VMAT that cannot be easily investigated with current commercial planning systems
    corecore