2,118 research outputs found

    Interactive time series analytics powered by ONEX

    Get PDF
    Modern applications in this digital age collect a staggering amount of time series data from economic growth rates to electrical household consumption habits. To make sense of it, domain analysts interactively sift through these time series collections in search of critical relationships between and recurring patterns within these time series. The ONEX (Online Exploration of Time Series) system supports effective exploratory analysis of time series collections composed of heterogeneous, variable-length and misaligned time series using robust alignment dynamic time warping (DTW) methods. To assure real-time responsiveness even for these complex and compute-intensive analytics, ONEX precomputes and then encodes time series relationships based on the inexpensive-to-compute Euclidean distance into the ONEX base. Thereafter, based on a solid formal foundation, ONEX uses DTW-enhanced analytics to correctly extract relevant time series matches on this Euclidean-prepared ONEX base. Our live interactive demonstration shows how our ONEX exploratory tool, supported by a rich array of visual interactions and expressive visualizations, enables efficient mining and interpretation of the MATTERS real data collection composed of economic, social, and education data trends across the fifty American states. © 2017 ACM

    KV-match: A Subsequence Matching Approach Supporting Normalization and Time Warping [Extended Version]

    Full text link
    The volume of time series data has exploded due to the popularity of new applications, such as data center management and IoT. Subsequence matching is a fundamental task in mining time series data. All index-based approaches only consider raw subsequence matching (RSM) and do not support subsequence normalization. UCR Suite can deal with normalized subsequence match problem (NSM), but it needs to scan full time series. In this paper, we propose a novel problem, named constrained normalized subsequence matching problem (cNSM), which adds some constraints to NSM problem. The cNSM problem provides a knob to flexibly control the degree of offset shifting and amplitude scaling, which enables users to build the index to process the query. We propose a new index structure, KV-index, and the matching algorithm, KV-match. With a single index, our approach can support both RSM and cNSM problems under either ED or DTW distance. KV-index is a key-value structure, which can be easily implemented on local files or HBase tables. To support the query of arbitrary lengths, we extend KV-match to KV-matchDP_{DP}, which utilizes multiple varied-length indexes to process the query. We conduct extensive experiments on synthetic and real-world datasets. The results verify the effectiveness and efficiency of our approach.Comment: 13 page

    Social Impact of Time Series Visualization

    Get PDF
    In this Interactive Qualifying Project we explore the social impact of supporting time series mining with visual technology. Based on literature research, we develop a visual analytics system for time series mining. Our system enables users to explore and interact with time series datasets, while also offering guidance for parameter tuning and for selecting similarity measures. Together the powerful interactions and the rich visual displays empower users to find insights in time series datasets. Built as a web service, the system increases accessibility to public datasets. Evaluation based on user studies with over 400 subjects as well as interviews with domain experts led to improvements in user experience and insight into the social impact of time series analysis

    Exploratory Search on Mobile Devices

    Get PDF
    The goal of this thesis is to provide a general framework (MobEx) for exploratory search especially on mobile devices. The central part is the design, implementation, and evaluation of several core modules for on-demand unsupervised information extraction well suited for exploratory search on mobile devices and creating the MobEx framework. These core processing elements, combined with a multitouch - able user interface specially designed for two families of mobile devices, i.e. smartphones and tablets, have been finally implemented in a research prototype. The initial information request, in form of a query topic description, is issued online by a user to the system. The system then retrieves web snippets by using standard search engines. These snippets are passed through a chain of NLP components which perform an ondemand or ad-hoc interactive Query Disambiguation, Named Entity Recognition, and Relation Extraction task. By on-demand or ad-hoc we mean the components are capable to perform their operations on an unrestricted open domain within special time constraints. The result of the whole process is a topic graph containing the detected associated topics as nodes and the extracted relation ships as labelled edges between the nodes. The Topic Graph is presented to the user in different ways depending on the size of the device she is using. Various evaluations have been conducted that help us to understand the potentials and limitations of the framework and the prototype

    Knowledge Modelling and Learning through Cognitive Networks

    Get PDF
    One of the most promising developments in modelling knowledge is cognitive network science, which aims to investigate cognitive phenomena driven by the networked, associative organization of knowledge. For example, investigating the structure of semantic memory via semantic networks has illuminated how memory recall patterns influence phenomena such as creativity, memory search, learning, and more generally, knowledge acquisition, exploration, and exploitation. In parallel, neural network models for artificial intelligence (AI) are also becoming more widespread as inferential models for understanding which features drive language-related phenomena such as meaning reconstruction, stance detection, and emotional profiling. Whereas cognitive networks map explicitly which entities engage in associative relationships, neural networks perform an implicit mapping of correlations in cognitive data as weights, obtained after training over labelled data and whose interpretation is not immediately evident to the experimenter. This book aims to bring together quantitative, innovative research that focuses on modelling knowledge through cognitive and neural networks to gain insight into mechanisms driving cognitive processes related to knowledge structuring, exploration, and learning. The book comprises a variety of publication types, including reviews and theoretical papers, empirical research, computational modelling, and big data analysis. All papers here share a commonality: they demonstrate how the application of network science and AI can extend and broaden cognitive science in ways that traditional approaches cannot

    Methodological challenges and analytic opportunities for modeling and interpreting Big Healthcare Data

    Full text link
    Abstract Managing, processing and understanding big healthcare data is challenging, costly and demanding. Without a robust fundamental theory for representation, analysis and inference, a roadmap for uniform handling and analyzing of such complex data remains elusive. In this article, we outline various big data challenges, opportunities, modeling methods and software techniques for blending complex healthcare data, advanced analytic tools, and distributed scientific computing. Using imaging, genetic and healthcare data we provide examples of processing heterogeneous datasets using distributed cloud services, automated and semi-automated classification techniques, and open-science protocols. Despite substantial advances, new innovative technologies need to be developed that enhance, scale and optimize the management and processing of large, complex and heterogeneous data. Stakeholder investments in data acquisition, research and development, computational infrastructure and education will be critical to realize the huge potential of big data, to reap the expected information benefits and to build lasting knowledge assets. Multi-faceted proprietary, open-source, and community developments will be essential to enable broad, reliable, sustainable and efficient data-driven discovery and analytics. Big data will affect every sector of the economy and their hallmark will be ‘team science’.http://deepblue.lib.umich.edu/bitstream/2027.42/134522/1/13742_2016_Article_117.pd
    corecore