20,995 research outputs found

    Interactive shadow editing from single images

    Get PDF
    We present a system for interactive shadow editing from single images which includes the manipulations of shape, distribution, sharpness and darkness of shadows according to the features of existing shadows. We first obtain a shadow-free image, shadow boundary and its registered sparse shadow scales using an existing shadow removal method. The modifiable features of the shadow are synthesised from the sparse shadow scales. According to the user-specified shadow-shape and its attributes, our system generates a new shadow matte and composites it into the original image, while also allowing editing of existing shadows. We share our executable for open comparison in community

    DepthCut: Improved Depth Edge Estimation Using Multiple Unreliable Channels

    Get PDF
    In the context of scene understanding, a variety of methods exists to estimate different information channels from mono or stereo images, including disparity, depth, and normals. Although several advances have been reported in the recent years for these tasks, the estimated information is often imprecise particularly near depth discontinuities or creases. Studies have however shown that precisely such depth edges carry critical cues for the perception of shape, and play important roles in tasks like depth-based segmentation or foreground selection. Unfortunately, the currently extracted channels often carry conflicting signals, making it difficult for subsequent applications to effectively use them. In this paper, we focus on the problem of obtaining high-precision depth edges (i.e., depth contours and creases) by jointly analyzing such unreliable information channels. We propose DepthCut, a data-driven fusion of the channels using a convolutional neural network trained on a large dataset with known depth. The resulting depth edges can be used for segmentation, decomposing a scene into depth layers with relatively flat depth, or improving the accuracy of the depth estimate near depth edges by constraining its gradients to agree with these edges. Quantitatively, we compare against 15 variants of baselines and demonstrate that our depth edges result in an improved segmentation performance and an improved depth estimate near depth edges compared to data-agnostic channel fusion. Qualitatively, we demonstrate that the depth edges result in superior segmentation and depth orderings.Comment: 12 page

    ROAM: a Rich Object Appearance Model with Application to Rotoscoping

    Get PDF
    Rotoscoping, the detailed delineation of scene elements through a video shot, is a painstaking task of tremendous importance in professional post-production pipelines. While pixel-wise segmentation techniques can help for this task, professional rotoscoping tools rely on parametric curves that offer the artists a much better interactive control on the definition, editing and manipulation of the segments of interest. Sticking to this prevalent rotoscoping paradigm, we propose a novel framework to capture and track the visual aspect of an arbitrary object in a scene, given a first closed outline of this object. This model combines a collection of local foreground/background appearance models spread along the outline, a global appearance model of the enclosed object and a set of distinctive foreground landmarks. The structure of this rich appearance model allows simple initialization, efficient iterative optimization with exact minimization at each step, and on-line adaptation in videos. We demonstrate qualitatively and quantitatively the merit of this framework through comparisons with tools based on either dynamic segmentation with a closed curve or pixel-wise binary labelling

    Comparison of different methods for estimating snowcover in forested, mountainous basins using LANDSAT (ERTS) images

    Get PDF
    Snow-covered areas on LANDSAT (ERTS) images of the Santiam River basin, Oregon, and other basins in Washington were measured using several operators and methods. Seven methods were used: (1) Snowline tracing followed by measurement with planimeter, (2) mean snowline altitudes determined from many locations, (3) estimates in 2.5 x 2.5 km boxes of snow-covered area with reference to snow-free images, (4) single radiance-threshold level for entire basin, (5) radiance-threshold setting locally edited by reference to altitude contours and other images, (6) two-band color-sensitive extraction locally edited as in (5), and (7) digital (spectral) pattern recognition techniques. The seven methods are compared in regard to speed of measurement, precision, the ability to recognize snow in deep shadow or in trees, relative cost, and whether useful supplemental data are produced

    Static scene illumination estimation from video with applications

    Get PDF
    We present a system that automatically recovers scene geometry and illumination from a video, providing a basis for various applications. Previous image based illumination estimation methods require either user interaction or external information in the form of a database. We adopt structure-from-motion and multi-view stereo for initial scene reconstruction, and then estimate an environment map represented by spherical harmonics (as these perform better than other bases). We also demonstrate several video editing applications that exploit the recovered geometry and illumination, including object insertion (e.g., for augmented reality), shadow detection, and video relighting
    • 

    corecore