23,296 research outputs found

    Trade-Offs in Distributed Interactive Proofs

    Get PDF
    The study of interactive proofs in the context of distributed network computing is a novel topic, recently introduced by Kol, Oshman, and Saxena [PODC 2018]. In the spirit of sequential interactive proofs theory, we study the power of distributed interactive proofs. This is achieved via a series of results establishing trade-offs between various parameters impacting the power of interactive proofs, including the number of interactions, the certificate size, the communication complexity, and the form of randomness used. Our results also connect distributed interactive proofs with the established field of distributed verification. In general, our results contribute to providing structure to the landscape of distributed interactive proofs

    Tortoise: Interactive System Configuration Repair

    Full text link
    System configuration languages provide powerful abstractions that simplify managing large-scale, networked systems. Thousands of organizations now use configuration languages, such as Puppet. However, specifications written in configuration languages can have bugs and the shell remains the simplest way to debug a misconfigured system. Unfortunately, it is unsafe to use the shell to fix problems when a system configuration language is in use: a fix applied from the shell may cause the system to drift from the state specified by the configuration language. Thus, despite their advantages, configuration languages force system administrators to give up the simplicity and familiarity of the shell. This paper presents a synthesis-based technique that allows administrators to use configuration languages and the shell in harmony. Administrators can fix errors using the shell and the technique automatically repairs the higher-level specification written in the configuration language. The approach (1) produces repairs that are consistent with the fix made using the shell; (2) produces repairs that are maintainable by minimizing edits made to the original specification; (3) ranks and presents multiple repairs when relevant; and (4) supports all shells the administrator may wish to use. We implement our technique for Puppet, a widely used system configuration language, and evaluate it on a suite of benchmarks under 42 repair scenarios. The top-ranked repair is selected by humans 76% of the time and the human-equivalent repair is ranked 1.31 on average.Comment: Published version in proceedings of IEEE/ACM International Conference on Automated Software Engineering (ASE) 201

    Build your own clarithmetic I: Setup and completeness

    Full text link
    Clarithmetics are number theories based on computability logic (see http://www.csc.villanova.edu/~japaridz/CL/ ). Formulas of these theories represent interactive computational problems, and their "truth" is understood as existence of an algorithmic solution. Various complexity constraints on such solutions induce various versions of clarithmetic. The present paper introduces a parameterized/schematic version CLA11(P1,P2,P3,P4). By tuning the three parameters P1,P2,P3 in an essentially mechanical manner, one automatically obtains sound and complete theories with respect to a wide range of target tricomplexity classes, i.e. combinations of time (set by P3), space (set by P2) and so called amplitude (set by P1) complexities. Sound in the sense that every theorem T of the system represents an interactive number-theoretic computational problem with a solution from the given tricomplexity class and, furthermore, such a solution can be automatically extracted from a proof of T. And complete in the sense that every interactive number-theoretic problem with a solution from the given tricomplexity class is represented by some theorem of the system. Furthermore, through tuning the 4th parameter P4, at the cost of sacrificing recursive axiomatizability but not simplicity or elegance, the above extensional completeness can be strengthened to intensional completeness, according to which every formula representing a problem with a solution from the given tricomplexity class is a theorem of the system. This article is published in two parts. The present Part I introduces the system and proves its completeness, while Part II is devoted to proving soundness

    Onebox: Free-Text Interfaces as an Alternative to Complex Web Forms

    Get PDF
    This paper investigates the problem of translating free-text\ud queries into key-value pairs as an alternative means for searching `behind' web forms. We introduce a novel specication language for specifying free-text interfaces, and report the results of a user study where we evaluated our prototype in a travel planner scenario. Our results show that users prefer this free-text interface over the original web form and that they are about 9% faster on average at completing their search tasks

    FlashProfile: A Framework for Synthesizing Data Profiles

    Get PDF
    We address the problem of learning a syntactic profile for a collection of strings, i.e. a set of regex-like patterns that succinctly describe the syntactic variations in the strings. Real-world datasets, typically curated from multiple sources, often contain data in various syntactic formats. Thus, any data processing task is preceded by the critical step of data format identification. However, manual inspection of data to identify the different formats is infeasible in standard big-data scenarios. Prior techniques are restricted to a small set of pre-defined patterns (e.g. digits, letters, words, etc.), and provide no control over granularity of profiles. We define syntactic profiling as a problem of clustering strings based on syntactic similarity, followed by identifying patterns that succinctly describe each cluster. We present a technique for synthesizing such profiles over a given language of patterns, that also allows for interactive refinement by requesting a desired number of clusters. Using a state-of-the-art inductive synthesis framework, PROSE, we have implemented our technique as FlashProfile. Across 153153 tasks over 7575 large real datasets, we observe a median profiling time of only ∼ 0.7 \sim\,0.7\,s. Furthermore, we show that access to syntactic profiles may allow for more accurate synthesis of programs, i.e. using fewer examples, in programming-by-example (PBE) workflows such as FlashFill.Comment: 28 pages, SPLASH (OOPSLA) 201

    Automatic Deduction in Dynamic Geometry using Sage

    Full text link
    We present a symbolic tool that provides robust algebraic methods to handle automatic deduction tasks for a dynamic geometry construction. The main prototype has been developed as two different worksheets for the open source computer algebra system Sage, corresponding to two different ways of coding a geometric construction. In one worksheet, diagrams constructed with the open source dynamic geometry system GeoGebra are accepted. In this worksheet, Groebner bases are used to either compute the equation of a geometric locus in the case of a locus construction or to determine the truth of a general geometric statement included in the GeoGebra construction as a boolean variable. In the second worksheet, locus constructions coded using the common file format for dynamic geometry developed by the Intergeo project are accepted for computation. The prototype and several examples are provided for testing. Moreover, a third Sage worksheet is presented in which a novel algorithm to eliminate extraneous parts in symbolically computed loci has been implemented. The algorithm, based on a recent work on the Groebner cover of parametric systems, identifies degenerate components and extraneous adherence points in loci, both natural byproducts of general polynomial algebraic methods. Detailed examples are discussed.Comment: In Proceedings THedu'11, arXiv:1202.453
    • …
    corecore