3,674 research outputs found

    Design Concepts for Automating Maintenance Instructions

    Get PDF
    This research task was performed under the Technology for Readiness and Sustainment (TRS) contract (F33615-99-D-6001) for the Air Force Research Laboratory (AFRL), Sustainment Logistics Branch (HESS) at Wright-Patterson AFB, OH. The period of performance spanned one year starting 29 January 1999. The objective of this task was to develop and demonstrate a framework that can support the automated validation and verification of aircraft maintenance Technical Orders (TOs). The research team examined all stages ofTO generation to determine which tasks most warranted further research. From that investigation, validation and verification of appropriate, safe, and correct procedure steps emerged as the primary research target. This process would be based on available computer-aided design (CAD) data, procedure step ordering from existing sources, and human models. This determination was based on which tasks could yield the greatest impact on the authoring process and offer the greatest potential economic benefits. The team then developed a research roadmap and outlined specific technologies to be addressed in possible subsequent Air Force research tasks. To focus on the potential technology integration of the validation and verification component into existing or future TO generation procedures, we defined a demonstration scenario. Using the Front Uplock Hook assembly from an F/A-18 as the subject, we examined task procedure steps and failures that could be exposed by automated validation tools. These included hazards to personnel, damage to equipment, and incorrect disassembly order. Using the Parameterized Action Representation (PAR) developed on previous projects for actions and equipment behaviors, we characterized procedure steps and their positive and negative consequences. Finally, we illustrated a hypothetical user interface extension to a typical Interactive Electronic Technical Manual (IETM) authoring system to demonstrate how this process might appear to the TO author

    A virtual environment for the design and simulated construction of prefabricated buildings

    Get PDF
    The construction industry has acknowledged that its current working practices are in need of substantial improvements in quality and efficiency and has identified that computer modelling techniques and the use of prefabricated components can help reduce times, costs, and minimise defects and problems of on-site construction. This paper describes a virtual environment to support the design and construction processes of buildings from prefabricated components and the simulation of their construction sequence according to a project schedule. The design environment can import a library of 3-D models of prefabricated modules that can be used to interactively design a building. Using Microsoft Project, the construction schedule of the designed building can be altered, with this information feeding back to the construction simulation environment. Within this environment the order of construction can be visualised using virtual machines. Novel aspects of the system are that it provides a single 3-D environment where the user can construct their design with minimal user interaction through automatic constraint recognition and view the real-time simulation of the construction process within the environment. This takes this area of research a step forward from other systems that only allow the planner to view the construction at certain stages, and do not provide an animated view of the construction process

    New factory layout simulation and immersive VR-experience preview – case Logset Oy

    Get PDF
    The decision to build new manufacturing facility is one of the most important decisions for company as it requires a lot of resources. Uncertainty of the future will make the decision even harder for the management board. However, development in technology, regarding 3D-simulation software, Virtual reality applications and accessible computing power have made 3D modeling and simulation viable solution for factory planning. Therefore, 3D-simulation and Virtual reality are used in this research as methods to give valuable data and insight for the forest machines manufacturing case company’s decision makers. Visual Components 4.2-software is used in this research to model 3D-simulations. Results contain one assembly line simulation for harvester, one assembly line simulation for forwarder and two layouts to test partially combined assembly line performance. Assembly line simulations are made to build 3D-model of harvester and forwarder and assembly line simulation layouts are given to project researcher as a reference model as this thesis is part of a bigger research project. Harvester and forwarder are built from 3D-models provided by the case company following current assembly process steps. Two partially combined assembly line layouts are made to estimate performance metrics of the new factory, focusing on output volumes, cycle times and lead times of harvester and forwarder. 3D-simulation model for partially combined layout is run to estimate yearly production, showing output volume, mean cycle time and mean lead time for both machines in a different manufacturing scenarios. Results show basic performance metrics of the new factory and simulation can be viewed using Virtual reality-glasses by using Visual experience software, developed by Visual Components. First 3D-simulation model for partially combined assembly line revealed the problem areas and bottlenecks of the assembly lines. Second model is used to show how balancing assembly line and improvements in the manufacturing process can improve the performance of the factory. Results demonstrate that 3D modeling and simulation are advantageous methods for factory planning and Virtual reality can be used as a complementary method for visualization creating more immersive experience

    Agent-based modeling: a systematic assessment of use cases and requirements for enhancing pharmaceutical research and development productivity.

    Get PDF
    A crisis continues to brew within the pharmaceutical research and development (R&D) enterprise: productivity continues declining as costs rise, despite ongoing, often dramatic scientific and technical advances. To reverse this trend, we offer various suggestions for both the expansion and broader adoption of modeling and simulation (M&S) methods. We suggest strategies and scenarios intended to enable new M&S use cases that directly engage R&D knowledge generation and build actionable mechanistic insight, thereby opening the door to enhanced productivity. What M&S requirements must be satisfied to access and open the door, and begin reversing the productivity decline? Can current methods and tools fulfill the requirements, or are new methods necessary? We draw on the relevant, recent literature to provide and explore answers. In so doing, we identify essential, key roles for agent-based and other methods. We assemble a list of requirements necessary for M&S to meet the diverse needs distilled from a collection of research, review, and opinion articles. We argue that to realize its full potential, M&S should be actualized within a larger information technology framework--a dynamic knowledge repository--wherein models of various types execute, evolve, and increase in accuracy over time. We offer some details of the issues that must be addressed for such a repository to accrue the capabilities needed to reverse the productivity decline

    Computational Tools and Facilities for the Next-Generation Analysis and Design Environment

    Get PDF
    This document contains presentations from the joint UVA/NASA Workshop on Computational Tools and Facilities for the Next-Generation Analysis and Design Environment held at the Virginia Consortium of Engineering and Science Universities in Hampton, Virginia on September 17-18, 1996. The presentations focused on the computational tools and facilities for analysis and design of engineering systems, including, real-time simulations, immersive systems, collaborative engineering environment, Web-based tools and interactive media for technical training. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the level of maturity of a number of computational tools and facilities and their potential for application to the next-generation integrated design environment

    Design and Development of an Architecture for Demonstrating the Interplay of Emerging SISO Standards

    Get PDF
    Simulation Interoperability Standards Organization (SISO) SIW Conference PaperThe Simulation Interoperability Standards Organization (SISO) focuses on facilitating simulation interoperability across government and non-government applications worldwide. A number of standards are emerging that will individually have great impact on the development and operation of simulation systems, as well as interoperation across simulation systems and command and control systems. Taken together, however, the emerging standards represent a set of capabilities and technologies which can revolutionize the simulation industry, radically improving the way we develop and deliver interoperable systems

    Evaluating different strategies to achieve the highest geometric quality in self-adjusting smart assembly lines

    Get PDF
    Digital twin-driven productions have opened great opportunities to increase the efficiency and quality of production processes. Smart assembly lines are one of these opportunities in which the effects of geometric variations of the mating parts on the assemblies can be minimized. These assembly lines utilize different techniques, including selective assembly and locator adjustments, to improve the geometric quality. This paper signifies that the achievable improvements through these techniques are highly dependent on the utilized fixture layout for the assembly process. Hence, different design methods and productions that can be followed in a smart assembly line are discussed. Furthermore, different scenarios are applied to two industrial sample cases from the automotive industry. The aptest design strategy for each improvement technique is determined. Moreover, the strategy that can result in the highest geometric quality of assemblies through a smart assembly line is defined

    Towards a Cyber-Physical Manufacturing Cloud through Operable Digital Twins and Virtual Production Lines

    Get PDF
    In last decade, the paradigm of Cyber-Physical Systems (CPS) has integrated industrial manufacturing systems with Cloud Computing technologies for Cloud Manufacturing. Up to 2015, there were many CPS-based manufacturing systems that collected real-time machining data to perform remote monitoring, prognostics and health management, and predictive maintenance. However, these CPS-integrated and network ready machines were not directly connected to the elements of Cloud Manufacturing and required human-in-the-loop. Addressing this gap, we introduced a new paradigm of Cyber-Physical Manufacturing Cloud (CPMC) that bridges a gap between physical machines and virtual space in 2017. CPMC virtualizes machine tools in cloud through web services for direct monitoring and operations through Internet. Fundamentally, CPMC differs with contemporary modern manufacturing paradigms. For instance, CPMC virtualizes machining tools in cloud using remote services and establish direct Internet-based communication, which is overlooked in existing Cloud Manufacturing systems. Another contemporary, namely cyber-physical production systems enable networked access to machining tools. Nevertheless, CPMC virtualizes manufacturing resources in cloud and monitor and operate them over the Internet. This dissertation defines the fundamental concepts of CPMC and expands its horizon in different aspects of cloud-based virtual manufacturing such as Digital Twins and Virtual Production Lines. Digital Twin (DT) is another evolving concept since 2002 that creates as-is replicas of machining tools in cyber space. Up to 2018, many researchers proposed state-of-the-art DTs, which only focused on monitoring production lifecycle management through simulations and data driven analytics. But they overlooked executing manufacturing processes through DTs from virtual space. This dissertation identifies that DTs can be made more productive if they engage directly in direct execution of manufacturing operations besides monitoring. Towards this novel approach, this dissertation proposes a new operable DT model of CPMC that inherits the features of direct monitoring and operations from cloud. This research envisages and opens the door for future manufacturing systems where resources are developed as cloud-based DTs for remote and distributed manufacturing. Proposed concepts and visions of DTs have spawned the following fundamental researches. This dissertation proposes a novel concept of DT based Virtual Production Lines (VPL) in CPMC in 2019. It presents a design of a service-oriented architecture of DTs that virtualizes physical manufacturing resources in CPMC. Proposed DT architecture offers a more compact and integral service-oriented virtual representations of manufacturing resources. To re-configure a VPL, one requirement is to establish DT-to-DT collaborations in manufacturing clouds, which replicates to concurrent resource-to-resource collaborations in shop floors. Satisfying the above requirements, this research designs a novel framework to easily re-configure, monitor and operate VPLs using DTs of CPMC. CPMC publishes individual web services for machining tools, which is a traditional approach in the domain of service computing. But this approach overcrowds service registry databases. This dissertation introduces a novel fundamental service publication and discovery approach in 2020, OpenDT, which publishes DTs with collections of services. Experimental results show easier discovery and remote access of DTs while re-configuring VPLs. Proposed researches in this dissertation have received numerous citations both from industry and academia, clearly proving impacts of research contributions
    corecore