3 research outputs found

    Patterns of mobility in a smart city

    Get PDF
    Transportation data in smart cities is becoming increasingly available. This data allows building meaningful, intelligent solutions for city residents and city management authorities, the so-called Intelligent Transportation Systems. Our research focused on Lisbon mobility data, provided by Lisbon municipality. The main research objective was to address mobility problems, interdependence, and cascading effects solutions for the city of Lisbon. We developed a data-driven approach based on historical data with a strong focus on visualization methods and dashboard creation. Also, we applied a method based on time series to do prediction based on the traffic congestion data provided. A CRISP-DM approach was applied, integrating different data sources, using Python. Hence, understand traffic patterns, and help the city authorities in the decision-making process, namely more preparedness, adaptability, responsiveness to events.Os dados de transporte, no âmbito das cidades inteligentes, estão cada vez mais disponíveis. Estes dados permitem a construção de soluções inteligentes com impacto significativo na vida dos residentes e nos mecanismos das autoridades de gestão da cidade, os chamados Sistemas de Transporte Inteligentes. A nossa investigação incidiu sobre os dados de mobilidade urbana da cidade de Lisboa, disponibilizados pelo município. O principal objetivo da pesquisa foi abordar os problemas de mobilidade, interdependência e soluções de efeitos em cascata para a cidade de Lisboa. Para alcançar este objetivo foi desenvolvida uma metodologia baseada nos dados históricos do transito no centro urbano da cidade e principais acessos, com uma forte componente de visualização. Foi também aplicado um método baseado em series temporais para fazer a previsão das ocorrências de transito na cidade de Lisboa. Foi aplicada uma abordagem CRISP-DM, integrando diferentes fontes de dados, utilizando Python. Esta tese tem como objetivo identificar padrões de mobilidade urbana com análise e visualização de dados, de forma a auxiliar as autoridades municipais no processo de tomada de decisão, nomeadamente estar mais preparada, adaptada e responsiva

    A conceptual framework for developing dashboards for big mobility data

    Full text link
    Dashboards are an increasingly popular form of data visualization. Large, complex, and dynamic mobility data present a number of challenges in dashboard design. The overall aim for dashboard design is to improve information communication and decision making, though big mobility data in particular require considering privacy alongside size and complexity. Taking these issues into account, a gap remains between wrangling mobility data and developing meaningful dashboard output. Therefore, there is a need for a framework that bridges this gap to support the mobility dashboard development and design process. In this paper we outline a conceptual framework for mobility data dashboards that provides guidance for the development process while considering mobility data structure, volume, complexity, varied application contexts, and privacy constraints. We illustrate the proposed framework’s components and process using example mobility dashboards with varied inputs, end-users and objectives. Overall, the framework offers a basis for developers to understand how informational displays of big mobility data are determined by end-user needs as well as the types of data selection, transformation, and display available to particular mobility datasets

    Urban traffic flow prediction, a spatial-temporal approach

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesCurrent advances in computational technologies such as machine learning combined with traffic data availability are inspiring the development and growth of intelligent transport Systems (ITS). As urban authorities strive for efficient traffic systems, traffic forecasting is a vital element for effective control and management of traffic networks. Traffic forecasting methods have progressed from traditional statistical techniques to optimized data driven methods eulogised with artificial intelligence. Today, most techniques in traffic forecasting are mainly timeseries methods that ignore the spatial impact of traffic networks in traffic flow modelling. The consideration of both spatial and temporal dimensions in traffic forecasting efforts is key to achieving inclusive traffic forecasts. This research paper presents approaches to analyse spatial temporal patterns existing in networks and goes on to use a machine learning model that integrates both spatial and temporal dependency in traffic flow prediction. The application of the model to a traffic dataset for the city of Singapore shows that we can accurately predict traffic flow up to 15 minutes in advance and also accuracy results obtained outperform other classical traffic prediction methods
    corecore