15,019 research outputs found

    Contextual and Ethical Issues with Predictive Process Monitoring

    Get PDF
    This thesis addresses contextual and ethical issues in the predictive process monitoring framework and several related issues. Regarding contextual issues, even though the importance of case, process, social and external contextual factors in the predictive business process monitoring framework has been acknowledged, few studies have incorporated these into the framework or measured their impact. Regarding ethical issues, we examine how human agents make decisions with the assistance of process monitoring tools and provide recommendation to facilitate the design of tools which enables a user to recognise the presence of algorithmic discrimination in the predictions provided. First, a systematic literature review is undertaken to identify existing studies which adopt a clustering-based remaining-time predictive process monitoring approach, and a comparative analysis is performed to compare and benchmark the output of the identified studies using 5 real-life event logs. This curates the studies which have adopted this important family of predictive process monitoring approaches but also facilitates comparison as the various studies utilised different datasets, parameters, and evaluation measures. Subsequently, the next two chapter investigate the impact of social and spatial contextual factors in the predictive process monitoring framework. Social factors encompass the way humans and automated agents interact within a particular organisation to execute process-related activities. The impact of social contextual features in the predictive process monitoring framework is investigated utilising a survival analysis approach. The proposed approach is benchmarked against existing approaches using five real-life event logs and outperforms these approaches. Spatial context (a type of external context) is also shown to improve the predictive power of business process monitoring models. The penultimate chapter examines the nature of the relationship between workload (a process contextual factor) and stress (a social contextual factor) by utilising a simulation-based approach to investigate the diffusion of workload-induced stress in the workplace. In conclusion, the thesis examines how users utilise predictive process monitoring (and AI) tools to make decisions. Whilst these tools have delivered real benefits in terms of improved service quality and reduction in processing time, among others, they have also raised issues which have real-world ethical implications such as recommending different credit outcomes for individuals who have an identical financial profile but different characteristics (e.g., gender, race). This chapter amalgamates the literature in the fields of ethical decision making and explainable AI and proposes, but does not attempt to validate empirically, propositions and belief statements based on the synthesis of the existing literature, observation, logic, and empirical analogy

    HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges

    Full text link
    High Performance Computing (HPC) clouds are becoming an alternative to on-premise clusters for executing scientific applications and business analytics services. Most research efforts in HPC cloud aim to understand the cost-benefit of moving resource-intensive applications from on-premise environments to public cloud platforms. Industry trends show hybrid environments are the natural path to get the best of the on-premise and cloud resources---steady (and sensitive) workloads can run on on-premise resources and peak demand can leverage remote resources in a pay-as-you-go manner. Nevertheless, there are plenty of questions to be answered in HPC cloud, which range from how to extract the best performance of an unknown underlying platform to what services are essential to make its usage easier. Moreover, the discussion on the right pricing and contractual models to fit small and large users is relevant for the sustainability of HPC clouds. This paper brings a survey and taxonomy of efforts in HPC cloud and a vision on what we believe is ahead of us, including a set of research challenges that, once tackled, can help advance businesses and scientific discoveries. This becomes particularly relevant due to the fast increasing wave of new HPC applications coming from big data and artificial intelligence.Comment: 29 pages, 5 figures, Published in ACM Computing Surveys (CSUR

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    Resource-aware business process management : analysis and support

    Get PDF

    Artificial intelligence driven anomaly detection for big data systems

    Get PDF
    The main goal of this thesis is to contribute to the research on automated performance anomaly detection and interference prediction by implementing Artificial Intelligence (AI) solutions for complex distributed systems, especially for Big Data platforms within cloud computing environments. The late detection and manual resolutions of performance anomalies and system interference in Big Data systems may lead to performance violations and financial penalties. Motivated by this issue, we propose AI-based methodologies for anomaly detection and interference prediction tailored to Big Data and containerized batch platforms to better analyze system performance and effectively utilize computing resources within cloud environments. Therefore, new precise and efficient performance management methods are the key to handling performance anomalies and interference impacts to improve the efficiency of data center resources. The first part of this thesis contributes to performance anomaly detection for in-memory Big Data platforms. We examine the performance of Big Data platforms and justify our choice of selecting the in-memory Apache Spark platform. An artificial neural network-driven methodology is proposed to detect and classify performance anomalies for batch workloads based on the RDD characteristics and operating system monitoring metrics. Our method is evaluated against other popular machine learning algorithms (ML), as well as against four different monitoring datasets. The results prove that our proposed method outperforms other ML methods, typically achieving 98–99% F-scores. Moreover, we prove that a random start instant, a random duration, and overlapped anomalies do not significantly impact the performance of our proposed methodology. The second contribution addresses the challenge of anomaly identification within an in-memory streaming Big Data platform by investigating agile hybrid learning techniques. We develop TRACK (neural neTwoRk Anomaly deteCtion in sparK) and TRACK-Plus, two methods to efficiently train a class of machine learning models for performance anomaly detection using a fixed number of experiments. Our model revolves around using artificial neural networks with Bayesian Optimization (BO) to find the optimal training dataset size and configuration parameters to efficiently train the anomaly detection model to achieve high accuracy. The objective is to accelerate the search process for finding the size of the training dataset, optimizing neural network configurations, and improving the performance of anomaly classification. A validation based on several datasets from a real Apache Spark Streaming system is performed, demonstrating that the proposed methodology can efficiently identify performance anomalies, near-optimal configuration parameters, and a near-optimal training dataset size while reducing the number of experiments up to 75% compared with naïve anomaly detection training. The last contribution overcomes the challenges of predicting completion time of containerized batch jobs and proactively avoiding performance interference by introducing an automated prediction solution to estimate interference among colocated batch jobs within the same computing environment. An AI-driven model is implemented to predict the interference among batch jobs before it occurs within system. Our interference detection model can alleviate and estimate the task slowdown affected by the interference. This model assists the system operators in making an accurate decision to optimize job placement. Our model is agnostic to the business logic internal to each job. Instead, it is learned from system performance data by applying artificial neural networks to establish the completion time prediction of batch jobs within the cloud environments. We compare our model with three other baseline models (queueing-theoretic model, operational analysis, and an empirical method) on historical measurements of job completion time and CPU run-queue size (i.e., the number of active threads in the system). The proposed model captures multithreading, operating system scheduling, sleeping time, and job priorities. A validation based on 4500 experiments based on the DaCapo benchmarking suite was carried out, confirming the predictive efficiency and capabilities of the proposed model by achieving up to 10% MAPE compared with the other models.Open Acces

    Query Interactions in Database Systems

    Get PDF
    The typical workload in a database system consists of a mix of multiple queries of different types, running concurrently and interacting with each other. The same query may have different performance in different mixes. Hence, optimizing performance requires reasoning about query mixes and their interactions, rather than considering individual queries or query types. In this dissertation, we demonstrate how queries affect each other when they are executing concurrently in different mixes. We show the significant impact that query interactions can have on the end-to-end workload performance. A major hurdle in the understanding of query interactions in database systems is that there is a large spectrum of possible causes of interactions. For example, query interactions can happen because of any of the resource-related, data-related or configuration-related dependencies that exist in the system. This variation in underlying causes makes it very difficult to come up with robust analytical performance models to capture and model query interactions. We present a new approach for modeling performance in the presence of interactions, based on conducting experiments to measure the effect of query interactions and fitting statistical models to the data collected in these experiments to capture the impact of query interactions. The experiments collect samples of the different possible query mixes, and measure the performance metrics of interest for the different queries in these sample mixes. Statistical models such as simple regression and instance-based learning techniques are used to train models from these sample mixes. This approach requires no prior assumptions about the internal workings of the database system or the nature or cause of the interactions, making it portable across systems. We demonstrate the potential of capturing, modeling, and exploiting query interactions by developing techniques to help in two database performance related tasks: workload scheduling and estimating the completion time of a workload. These are important workload management problems that database administrators have to deal with routinely. We consider the problem of scheduling a workload of report-generation queries. Our scheduling algorithms employ statistical performance models to schedule appropriate query mixes for the given workload. Our experimental evaluation demonstrates that our interaction-aware scheduling algorithms outperform scheduling policies that are typically used in database systems. The problem of estimating the completion time of a workload is an important problem, and the state of the art does not offer any systematic solution. Typically database administrators rely on heuristics or observations of past behavior to solve this problem. We propose a more rigorous solution to this problem, based on a workload simulator that employs performance models to simulate the execution of the different mixes that make up a workload. This mix-based simulator provides a systematic tool that can help database administrators in estimating workload completion time. Our experimental evaluation shows that our approach can estimate the workload completion times with a high degree of accuracy. Overall, this dissertation demonstrates that reasoning about query interactions holds significant potential for realizing performance improvements in database systems. The techniques developed in this work can be viewed as initial steps in this interesting area of research, with lots of potential for future work
    • …
    corecore