

Resource-aware business process management : analysis
and support
Citation for published version (APA):
Nakatumba, J. (2013). Resource-aware business process management : analysis and support. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR760115

DOI:
10.6100/IR760115

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR760115
https://doi.org/10.6100/IR760115
https://research.tue.nl/en/publications/e30f92ca-117e-491c-ab2e-01b5533cf80c

Resource-Aware Business Process
Management: Analysis and Support

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Nakatumba, Joyce

Resource-Aware Business Process Management: Analysis and Support / by
J. Nakatumba.
– Eindhoven : Technische Universiteit Eindhoven, 2013 – Proefschrift. –

A catalogue record is available from the Eindhoven University of Technology
Library

ISBN 978-90-386-3472-2
NUR 980
Keywords: Business Process Management/Simulation/Process Mining/Oper-
ational Support

The work presented in this thesis was carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.

SIKS Dissertation Series No. 2013-30

Research funding was from a second NUFFIC Uganda project (NPT-UGA-
238) for strengthening ICT training and research capacity in public univer-
sities in Uganda.

Cover Design: Irene Kiryowa

Copyright © 2013 by Joyce Nakatumba. All Rights Reserved.

Resource-Aware Business Process Management:
Analysis and Support

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen

op donderdag 7 november 2013 om 16.00 uur

door

Joyce Nakatumba

geboren te Kampala, Oeganda

Dit proefschrift is goedgekeurd door de promotoren:

promotor:
prof.dr.ir. W.M.P. van der Aalst

copromotoren:

dr. M. Westergaard
en
dr. J. A. Quinn

Contents

1 Introduction 1
1.1 Business Process Management . 2
1.2 Process Modeling . 3
1.3 Performance Analysis Using Process Mining and Simulation 4

1.3.1 Graduate Admission Process . 5
1.3.2 Business Process Performance Analysis 6
1.3.3 Analysis of a Graduate Admission Process 8

1.4 Problem Definition and Research Goals 13
1.5 Contributions . 14
1.6 Overview of the Thesis . 17

2 Limitations of Current Simulation Approaches 19
2.1 Traditional Simulation . 19
2.2 Problems with Current Simulation Approaches 21

2.2.1 Pitfall One: Focus on Design Rather than Operational Decision
Making . 23

2.2.2 Pitfall Two: Building Simulation Models from Scratch Rather Than
Using Existing Artifacts . 24

2.3 Incorrect Modeling of Resources . 25
2.3.1 People are Involved in Multiple Processes and Work Part-time . . 25
2.3.2 People Work in Batches . 26
2.3.3 People Prioritize Tasks Within a Process 27
2.3.4 Processes May Change Depending on Context 28
2.3.5 People Do Not Work at Constant Speeds 28

2.4 Related Work . 29

vi Contents

2.5 Conclusion . 31
2.5.1 Focus of Advanced Simulation . 31
2.5.2 Outlook . 33

3 Preliminaries 37
3.1 Notations . 37
3.2 Event Logs . 39
3.3 Representing Event Logs . 41
3.4 Process Modeling Formalisms . 45

3.4.1 Petri Nets . 45
3.4.2 Colored Petri Nets . 47
3.4.3 Declare . 49

3.5 Query Languages . 50
3.6 Tools . 51

3.6.1 ProM Framework . 51
3.6.2 Declare . 52
3.6.3 CPN Tools . 53
3.6.4 Access/CPN 2.0 . 54

3.7 Visualization of Results . 56
3.7.1 Error Bar Plot . 57
3.7.2 Box Plot . 57

4 Using Process Mining to Analyze Resource Availability 59
4.1 Introduction . 61
4.2 Assumptions about Resource Work Behavior 62
4.3 Preprocessing of Event Logs . 65

4.3.1 Obtaining Start Event Given a Complete Event 65
4.3.2 Obtaining Schedule Event Given a Complete Event 68
4.3.3 Experimental Validation . 69

4.4 Characterizing Resource Availability from Event Logs 73
4.4.1 Resource Availability Parameters 74
4.4.2 Approach Taken to Analyze Resource Availability 75
4.4.3 Resource Availability from Event Logs 83
4.4.4 Experimental Validation . 87

4.5 Related Work . 95
4.6 Conclusion . 96

5 Using Process Mining to Analyze Resource Busyness 99
5.1 Workload-dependent Processing Speeds 100
5.2 Characterizing Workload-Dependent Speeds from Event Logs 102

5.2.1 Approach Taken to Analyze Resource Busyness 103
5.2.2 Workload and Processing Speeds from Event Logs 109
5.2.3 Experimental Validation . 114

5.3 Related Work . 119
5.4 Conclusion . 120

Contents vii

6 Modeling Resource Behavior in Simulation Models 123
6.1 Business Process Simulation . 124
6.2 Modeling Resource Availability . 126

6.2.1 Availability Simulation Model Parameters 127
6.2.2 CPN Model . 131
6.2.3 Simulation Experiments . 135
6.2.4 Embedding Availability Parameters in a Workflow Model 140
6.2.5 CPN Model for the Workflow Model 143
6.2.6 Discussion . 148

6.3 Modeling Resource Busyness . 149
6.3.1 Workload-Dependent Simulation Model Parameters 150
6.3.2 CPN Model . 151
6.3.3 Simulation Experiments . 158

6.4 Conclusion . 162

7 Providing a Unified View of Event Logs 165
7.1 Bridging the Gap Between Simulation and Process Mining 166
7.2 Generating Synthetic Logs from Simulation Models 168
7.3 Conclusion . 171

8 Operational Support 173
8.1 Introduction . 174
8.2 Operational Support Architecture . 176
8.3 Running Example . 177
8.4 Operational Support Queries . 179

8.4.1 Simple Query . 181
8.4.2 Compare Query . 182
8.4.3 Predict Query . 186
8.4.4 Recommend Query . 188

8.5 Implementation Considerations of the Operational Support Service 191
8.5.1 Operational Support Service and Provider 191
8.5.2 Data Representation . 194
8.5.3 Simple Queries . 195
8.5.4 Advanced Queries . 197

8.6 Related Work . 201
8.7 Conclusion . 202

9 Testing Operational Support Algorithms 205
9.1 Evaluating Operational Support Algorithms 206
9.2 Running Example . 208
9.3 User Behaviour Modeling . 210

9.3.1 Top Page of the CPN Model . 210
9.3.2 User Page . 211
9.3.3 Pick Item Page . 213
9.3.4 User Behaviour Page . 217

9.4 Recommendation Algorithms . 223

viii Contents

9.4.1 Provider Model . 223
9.4.2 Log-based Recommender . 228

9.5 Experiments . 228
9.5.1 Random Recommender . 229
9.5.2 Batch Recommender . 230
9.5.3 Model-specific Recommender . 232
9.5.4 Log-based Recommender . 233

9.6 Conclusion . 236

10 Conclusions 239
10.1 Summary of Contributions . 239
10.2 Limitations and Directions for Future Work 242
10.3 Concluding Remarks . 245

Bibliography 247

Summary 261

Samenvatting 263

Acknowledgements 267

Curriculum Vitae 269

Index 271

SIKS Dissertations 273

Chapter 1

Introduction

Organizations increasingly use information systems to support, control and monitor their
business processes. Information systems provide different levels of support for business
processes. On the one hand, there are processes that force users to adhere to specific
ordering of tasks. Information systems supporting such processes restrict users to an
explicit ordering of tasks. For example, the tasks in an insurance claim have to be executed
in a specific way. On the other hand, it is possible to handle flexibility where the execution
of tasks does not necessarily follow a specific order. For example, health care processes
handle varying and specialized patient care flows. There are many treatment options that
can be executed depending on the patient that is being handled.

It is important that business processes supported by information systems are represented
correctly during the configuration of these systems. If an information system is configured
based on an incorrect process definition, this can lead to processes that perform poorly,
e.g., unbalanced utilization of resources, high costs or in the worst case death of people if
it is a health care process. Therefore, it is crucial to analyze the performance of processes
before they are put into production (to find design flaws), but also while they are running
(for diagnosis and decision support). Business processes are executed by resources which
can be either human or non-human. If human resources are involved in a business process,
then it is of particular importance that the performance of that business process is
analyzed before it is enacted. This is because in many business processes supported by
information systems, human resources are the limiting factor, for example, delays are
often caused by the unavailability or overloading of people. Understanding such delays
is vital before processes are enacted but also for process improvement.

Business process simulation can be used as one of the techniques for performance analysis
and improvement of business processes. However, it is important that the simulation
models capture and reflect reality. One approach to achieve this, is to accurately represent
the way resources work in simulation models. Secondly, since information systems are able
to generate event logs as they support business processes, process mining techniques can
also be used to analyze the performance of resources from event logs. Such information
can be used as input for simulation models in order to efficiently configure and enhance
these models.

In the remainder of this chapter, we introduce the concept of business process manage-

2 Chapter 1. Introduction

ment in Section 1.1. In Section 1.2 we discuss procedural and declarative approaches to
process modeling. We provide an overview of performance analysis of resource behavior
using process mining and simulation in Section 1.3. This thesis addresses a number of
problems which are introduced in Section 1.4. Section 1.5 discusses the contributions of
this thesis. Finally, Section 1.6 concludes the chapter with an overview of the thesis.

1.1 Business Process Management

We have discussed that information systems are used to support operational business
processes. A business process is defined as a set of tasks that are performed by resources
in coordination. Each task execution aims at the achievement of one or more business
goals. Typically, a business process describes some internal behavior within an organiza-
tion, however, the process may also interact with other organizations for accomplishing
particular goals or by providing information to these organizations. Traditionally busi-
ness processes were enacted manually, but now this has changed and organizations use
software systems for coordinating the activities involved in their business processes. The
current software systems that support business processes tend to be “process-aware”,
i.e., they need to know the information about the operational processes that they are
supporting. These software systems are also referred to as Process-Aware Information
Systems (PAISs). PAISs manage and execute operational business processes involving
people, applications, and/or information sources on the basis of process models [67]. In-
formation systems that support business processes including PAISs fall under a discipline
referred to as Business Process Management (BPM) [12, 15, 184].

Business Process Management includes all concepts, methods, software, and techniques
required to design, configure, enact and analyze operational business processes. Consider
Figure 1.1 that depicts the BPM life cycle. The BPM life cycle describes the various
phases in support of operational business processes [15, 184]. These phases are organized
in a cyclical structure, showing their logical dependencies. During the process design
phase, the business process is identified and represented as a process model. The resources
executing tasks are also identified and their interactions within the process model are
specified. During this phase, simulation techniques can be used to understand, analyze,
and quantify any business process improvement opportunities.

Once the business process model has been designed and verified, the process design is
implemented through the configuration of a PAIS. This is done in the process configu-
ration phase. After which the process is enacted in the process enactment phase. Here,
the PAIS actively supports the execution of the business process as defined in the pro-
cess model. During process execution, information about executed tasks is recorded by a
PAIS in an event log. Such information can, among other things, be used for diagnosis and
performance analysis. The business process may have to change over time for example,
to improve its performance. Therefore, the process diagnosis phase links the enactment
phase to any new design phase. During this phase, process mining is a powerful technique
that can be used for the analysis of event logs recorded in the enactment phase. Given a
running process, it is possible to identify and give ideas for process improvement. With

1.2 Process Modeling 3

process
enactment

process
configuration

process
(re)design

process
diagnosis

Process Mining

Simulation

Figure 1.1: BPM life cycle [67]. Simulation lies in the process design phase while process
mining lies in the process diagnosis phase.

process mining it is not only possible to do this for completed cases: we can also provide
support for cases that are still running in a PAIS. Any ideas proposed during the diag-
nosis stage can be incorporated back to change the business process in the design stage.
For example, any recommendations based on process mining (in the diagnosis phase) can
be evaluated using simulation (in the design phase).

1.2 Process Modeling
As discussed in the previous section, the design phase of the BPM life cycle mainly focuses
on process modeling. A process model basically says how things can or must be done.
During process modeling, the business process is represented in a graphical manner in
terms of the tasks that have to be executed. Although the main focus is on the ordering
of the tasks in the business process, during modeling other dimensions of the process
model are also explicitly specified and represented. For example, it is possible to define
roles, groups and permissions of resources that are allowed to execute each of the tasks
in the process model.

Procedural and Declarative Approaches to Process Modeling

In the introductory part of this chapter, we described two types of business processes, i.e.,
processes where users are forced to adhere to a specific ordering of tasks and processes
where some level of flexibility is allowed. This introduces two main approaches to process
modeling, i.e., procedural and declarative approaches as shown in Figure 1.2.

The procedural approaches to process modeling concentrate on modeling the control-
flow perspective of processes (i.e., the ordering of tasks in the process model) as shown
in Figure 1.2. The process model will be executed explicitly as specified in the control-
flow. This modeling approach is especially appropriate for processes that follow a well-
structured or strict procedure. The drawback of this approach to process modeling is
that at run-time, users are limited in what they can do since they have to strictly follow
the process model defined. An example of a procedural modeling notation is Yet Another

4 Chapter 1. Introduction

control-flow

(a) (b)

Figure 1.2: Under the procedural approach shown in (a), the control-flow perspective
defines the ordering of tasks in the process model. In the constraint-based approach to
process modeling shown in (b), the constraints in the process model restrict the possible
behavior [127].

Workflow Language (YAWL). YAWL is a workflow language designed to support workflow
patterns [10, 14, 86].

Declarative or constraint-based approaches to process modeling make it possible to exe-
cute both allowed and optional alternatives in a process model [129]. In declarative ap-
proaches, instead of specifying the order of task execution the focus is on constraints or
rules that have to be followed during execution. This approach allows for a range of possi-
ble execution alternatives and thus provides support for flexibility. Declarative modeling
approaches are good for workflows with a lot of freedom or with dynamically changing
processes. An example of a declarative modeling language is Declare [127, 129, 131]. As
shown in Figure 1.2, the main focus of declarative languages is on constraints between
tasks in the process model instead of the ordering of such tasks.

1.3 Performance Analysis Using Process Mining and
Simulation

To introduce the general idea of performance analysis using process mining and simu-
lation, we first discuss an example of a graduate admission process model. This process
model is based on a common admission procedure of students to graduate schools at uni-
versities. In the remainder of this section, we describe the process model of a graduate
admission process in Section 1.3.1. Section 1.3.2 provides an overview of business process
performance analysis. In Section 1.3.3 we discuss performance analysis of the graduate
admission process using process mining and simulation.

1.3 Performance Analysis Using Process Mining and Simulation 5

1.3.1 Graduate Admission Process

Figure 1.3 shows a workflow model of a graduate admission process of a university. The
workflow is modeled using the YAWL notation [10]. An applicant interested in pursuing a
course at this university has to initially send all the necessary documents required to the
University Admissions Office. The documents can include: (a) a completed application
letter, (b) academic documents, (c) Graduate Record Examinations (GRE) results, (d)
TOEFL results, and (e) a research statement. The research statement indicates reasons
why the applicant is interested in the graduate program, it can also consist of projects,
internships undertaken, and any research publications.

Register
Application

Send
Acknowledgement

Classify
Application

Request More
Documents

Check
Documents

Unconditional
Offer

Conditional
Offer

Assess
Application

Send
Reply

Start

End

Check Research
Statement

AND-join

Reject
Application

Confirm Test
Results

Contact Language
Center

Verify Academic
Documents

Figure 1.3: Workflow model of a graduate admission process.

6 Chapter 1. Introduction

The process begins when the University Admissions Office receives a new application.
The application is registered and an acknowledgement is sent back to the applicant. An
employee in this office checks through all the documents that have been received. If
there are any missing documents, the employee requests for new documents from the
applicant otherwise the application is classified. Moreover, when the applicant sends
more documents within a specific time-frame, the documents are checked again and this
application is eventually classified.

Given that there are several graduate programs in the university, all the applications
received are classified according to the specific graduate program that has been applied
for. The application is now transferred from the University Admissions Office to the
Academic Department of each Graduate School (each of the graduate programs is under
a Graduate School). For example, the Business Information Systems and Software En-
gineering courses will be under the School of Computer Science. After the classification
of the document, it can either be sent for further processing or it can be rejected at
this point. If the admissions office has not received all the relevant documents in time
from the applicant, the application is rejected and a reply (or letter) is sent back to the
applicant explaining why the application has been rejected.

At each graduate school, there is a board of members in charge of the admissions known
as the Admissions Committee. When an application is received by the graduate school, it
is handled by one of the members of the admissions committee. This member checks the
research statement received with the application. After which two tasks are executed in
parallel. On the one hand, the academic documents of the applicant are verified while on
the other hand, the GRE test results are confirmed. After which, the language center is
contacted to check the TOEFL language test scores. This task is handled by an employee
in the Language Center .

After the completion of these tasks, the members of the admissions committee assess
the application. The decisions of the committee can either be one of these three options:
(a) to give an unconditional offer , (b) to give a conditional offer , or (c) to reject the
application. An unconditional offer is given if the application meets the necessary criteria
set by the graduate school. An applicant may be granted a conditional offer if one of their
examination results, i.e., the GRE or TOEFL language requirements are not satisfactory.
An application will be rejected if it does not meet the necessary criteria set by the
graduate. After which, the application is sent back to the University Admissions Office
which sends a reply to the applicant informing them the decision made about their
application.

1.3.2 Business Process Performance Analysis

A business process is commonly case-driven, i.e., tasks are executed for a specific case
[1]. For example, the admission process of a student described in the previous section
is a typical example of a case-driven process which can be supported by a workflow
system. The case-driven process, i.e., workflow, is typically defined using three different
dimensions: (a) the control-flow dimension, (b) the resource dimension, and (c) the case

1.3 Performance Analysis Using Process Mining and Simulation 7

dimension. The control-flow dimension is concerned with the ordering of tasks. For ex-
ample, the workflow model described earlier focuses on the control-flow dimension of the
graduate admission process. This model describes the tasks that have to be executed,
e.g., Register Application, Send Reply etc. Moreover, the routing of cases along these
tasks is also determined. The tasks that need to be executed for a particular case are
referred to as work items. An example of a work item is task “Register Application for
applicant Peter Leid”.

The resource dimension of any business process centers on the modeling of resources and
their interaction within a PAIS [160]. A resource is a generic name for a person, group of
persons, or machine that can perform particular tasks. Therefore, a resource can be clas-
sified as either human (e.g., an employee that registers applications) or non-human, i.e., a
resource that does not correspond to an actual person (e.g., equipment) [9]. In this thesis
we mainly focus on human resources. Resources in any business process play a major role
because often times, they initiate task executions. A human resource can be classified
by identifying roles (based on functional characteristics) and organizational units (based
on groups, departments) [9]. From the graduate admission process we described several
resources roles, for example, employee, Admissions Committee and various departments,
for example, University Admissions Office, Academic Department, and Language Cen-
ter . A work item executed by a resource is defined as an activity, e.g., a specific student
application registered by an employee of the University Admissions Office.

The graduate admission process described in the previous section is mainly driven by
resources. In such a business process, it is crucial to carry out performance analysis on
process and resource models in order to detect any bottlenecks, errors, and other perfor-
mance related issues within an organization. The performance of an organization can be
measured through a number of Key Performance Indicators (KPIs). These define a set
of values that can be used in assessing the performance of resources, organizations, pro-
cesses, etc. As discussed in [46], the performance of a workflow process can be evaluated
in terms of four performance metrics: (a) time dimension, (b) flexibility dimension, (c)
cost dimension, and (d) quality dimension.

Time has been described as an important measure of performance [120]. There are a set of
performance measures under the time dimension that have been defined particularly for
workflows [94, 120, 140, 174]. Examples of such measures can include: the case throughput
time which is defined as the time taken to handle a case, service time which defines the
time a resource spends executing an activity, the waiting time which refers to the time a
scheduled activity spends waiting for a resource to become available.

Flexibility can be defined in terms of business process execution as the degree of freedom
that users have to make decisions about how to execute their business processes [127]. A
number of flexibility performance measures have been defined that cover various aspects,
i.e., specific tasks, specific resources and the process as a whole [94]. For example, the
ability of resources to process different case types, the number of executable tasks that
a resource can execute, etc.

Under the quality dimension, there are two main areas from which the performance of a

8 Chapter 1. Introduction

workflow can be analyzed, i.e., from external and internal point of view [94]. The external
quality that is defined from a customer’s view point which can include the quality of the
product and the quality of the process. Internal quality can be analyzed as the quality
of a workflow process from the perspective of a resource. Several measures can be used
to quantify internal quality which include skill variety, task significance, autonomy and
task identity.

Finally, the cost dimension is concerned with the direct costs incurred with running
a particular process. This dimension can be related to the other three dimensions, for
example, low flexibility can result into a more costly process execution, long throughput
times can result in a more costly process. Costs can also be measured from a workflow
perspective which include: running costs, administration costs, resource utilization etc.

A business process can be analyzed in terms of these four performance metrics. This
analysis can focus on the control-flow perspective or the resource perspective. In this
thesis, we focus on the performance analysis of the resource perspective of a business
process. Such analysis can be carried out at either design-time or run-time [2]. Analysis
done at design-time mainly deals with models (i.e., process and resource). Here, built
models are evaluated using a number of performance measures, e.g., service times, waiting
times, throughput times, number of cases, resource utilization etc. One of the techniques
that can be used for performance analysis of models is simulation. The run-time analysis
of a business process can be done on the actual observed behavior recorded in data files. A
technique used to support such analysis is process mining. In the next section, we discuss
how performance analysis can be applied in terms of simulation and process mining.

1.3.3 Analysis of a Graduate Admission Process

Given the graduate admission process described in the Section 1.3.1, there are a number
of performance related questions that a business process analyst might be interested in.
These questions can be directly linked to the performance analysis of resources that are
involved in the execution of the process. Consider the interactions between the three de-
partments identified in the graduate admissions process as shown in Figure 1.4. Several
applications received at the University Admissions Office are sent to Academic Depart-
ment which contacts the Language Center . In the communication between departments,
there might be delays in sending the applications due to the performance of resources.
For example, it might be the situation that there are delays to process applications due
to the unavailability of resources, or due to high volumes of applications received.

Given a general image about interactions between resources in the different departments,
we summarize several questions that might be interesting about the performance of re-
sources.
• Where are the bottlenecks in the graduate admission process? and how are they
related to the resources that execute the process?

• Are resources available to work on the process all the time? and what is the effect
of their availability in terms of performance?

• When resources are available to work do they batch up work over specific periods?

1.3 Performance Analysis Using Process Mining and Simulation 9

employees

application
files

University
Admissions Office

Academic
Department

Language Center

employee

application
files

admissions
committee

delays due to
high volume of
applications

bottlenecks due
to unavailability
of the employee

Figure 1.4: The three departments from the graduate admission process. The thick-
ness of the lines connecting these departments gives an indication whether there are
delays in the flow of applications between them. For example, the thicker line connecting
the Language Center and Academic Department indicates that there are delays in the
Language Center which might be caused by the unavailability of the employee handling
applications in this department.

and how does this affect the time taken to handle the applications received?
• What is the effect of the varying number of applications received at the university
over different periods in the year, on the performance of people?

• How do resources perform if there is a pending deadline that has to be met?
• What effect does the utilization of resources have on performance?

Such questions can be answered based on running simulation experiments. However, we
can also use process mining techniques to analyze observed behavior and provide insights
into resource performance.

Process Mining

Figure 1.5 shows an overview of the two kinds of analysis, i.e., simulation and process
mining. At the top we have the “world” in which processes involving organizations, peo-
ple, machines, documents and services are executed. The information system supports
or controls different processes taking place in the real world. On the other hand, models
play an important role and can be used to model and analyze the “world” or a given sys-
tem. Examples of process models include Business Process Modeling Notation (BPMN)
diagrams, Petri nets, Event-driven Process Chains (EPCs), Unified Modeling Language
(UML) activity diagrams etc.

As (process-aware) information systems support business processes, they are also able
to sequentially record “footprints” of the process they are supporting in data stores,
i.e., event logs also known as audit trails or transaction logs [13]. Event logs contain
information about events such that each event refers to an activity (i.e., a well-defined

10 Chapter 1. Introduction

discovery

supports/controls

models
analyzes

configure
specify

implement

enhancement

design-time
analysis

performance
analysis

business
processes

machines

people
services

organizations
documents

“world”

records events,
e.g., messages

(process)
models event logs

software
system

conformance

Verification

Markov chain
analysis

Validation

run-time
analysis

Figure 1.5: The relationship between reality, process models, resource models and per-
formance analysis at design-time and run-time [2]. Process mining can be carried out at
run-time to generate useful information from event logs. Simulation can be carried out
at design-time for performance analysis of real-world processes.

step in the process) and is related to a particular case (i.e., a process instance). These
event logs also have more information about events, for example, the resource (i.e., person
or equipment) executing or initiating the activity, and the timestamp of the event [5, 8].
The goal of process mining is to extract (non-trivial) information about a particular
business process from a set of real executions of the information systems supporting the
business process. Process mining techniques can be categorized into three: (a) discovery,
(b) conformance, and (c) enhancement.

Process discovery techniques are used for the discovery of models from event logs [13, 17,
21, 52, 57]. Such models can be described in terms of control-flow, (i.e., the process per-
spective), organizational aspects, (i.e., organizational/resource perspective), time aspects
(i.e., the time perspective), etc. The process perspective focuses on the control-flow, i.e.,
the ordering of activities from the log. The goal here is to find a good characterization
of all the possible paths, e.g., expressed in terms of a Petri net [17]. The organizational
perspective considers the resources that executed activities, i.e., which performers are
involved in the process model and how are they related [11, 172]. Moreover, these per-
spectives can also relate to the case perspective which focuses on properties of cases.
Cases can be characterized by their paths in the process model or by the values of the
corresponding data elements, e.g., if a case represents a purchase request it is interesting
to know the number of items requested for.

The techniques for conformance checking deal with comparing an a-priori model with
the actual behavior recorded in the log [32, 153, 154]. Conformance checking can be used
to detect deviations between a process model and the event log. Finally, enhancement

1.3 Performance Analysis Using Process Mining and Simulation 11

deals with the extending of a process model with additional perspectives based on an
event log [150, 157]. This is especially useful when considering the time perspective of a
process model. The time perspective plays a very important role in terms of performance
analysis. For example, the discovered process model can be annotated with performance
information showing bottlenecks and throughput times which can be used for simulation
purposes. Moreover, it is also possible to see how the values of data attributes affect the
routing of cases in a process model through decision mining [152].

Given the process model shown in Figure 1.3 it is possible to record when an application
is registered, the resource who registered this application, the date and time when the
registration of the application was started and completed etc. Example of such informa-
tion is shown in Table 1.1. Each row in the table represents an activity execution by a
resource. This information is linked to a specific applicant by the applicant’s name.

Table 1.1: An example of data recorded by a PAIS supporting the graduate admission
process shown in Figure 1.3. Each row corresponds to an activity execution for a specific
applicant.

Applicant
Name

Activity Resource Timestamp Event
Type

Comments ...

Peter Leid Register Ann 2011-01-01 Complete ...
Application 11:20:00

Paul Kain Send Mary 2011-01-01 Complete Application ...
Acknowledgment 11:55:00 Complete

Peter Leid Check Tony 2011-02-01 Complete Research ...
Documents 12:60:00 Statement

Missing

Jake Anden Classify Erika 2011-02-01 Complete ...
Application 13:50:00

...

Performance analysis using process mining can be done at run-time based on observed
behavior recorded in an event log. Currently there are several process mining techniques
that can be used for performance analysis. In [88], performance information is calculated
and projected onto a workflow net mined from an event log. Such information is obtained
by replaying an event log with timing information (i.e., activities with both start and
complete events) onto a mined Petri net model. It is also possible to project performance
analysis on models with different levels of abstraction [63]. The abstractions are based
on clusters of events built from an event log. The models obtained from the log built
on these clusters are known as Structural Precedence Diagrams (SPDs). During replay,
performance information is computed and projected onto the SPDs. Furthermore, a new
approach to performance analysis is discussed in [43]. In this work, performance indicators
are calculated based on process built from event logs with different levels of hierarchy
(also referred to as process maps). The results based on these three approaches, (i.e.,

12 Chapter 1. Introduction

Petri nets, Structural Precedence Diagrams, and process maps) are enriched with several
key performance indicator information, e.g., throughput times, service times, number of
executions etc. Such information can be used to identify bottlenecks in the process.

All these approaches described, abstract away from the resources that are executing ac-
tivities and focus on the control-flow perspective of an event log. However, using process
mining techniques performance analysis can also be carried out while focusing on the
resources in the log. This is only possible assuming that we have precise timing infor-
mation about resources, i.e., we know the dates and times when resources start and
complete the execution of activities. Such timing information can be used for a number
of resource performance measures: (a) calculate how long resources spend on the execu-
tion of activities, (i.e., the service times), (b) estimate resource availability for a specific
business process, (c) find relationships between the effect of varying workload on the ac-
tual performance of resources. Moreover, the performance information observed from the
control-flow perspective in terms of bottlenecks can be explained by the resources that
executed activities at such points. For example, it might be the case that the bottleneck
in a process model was caused by the unavailability of a resource since a resource can be
involved in several other processes or low utilization of resources.

Consider the interactions between the three departments in the graduate admissions
process model introduced in Figure 1.4. It can be that there are high waiting times
in the Language Center because the employee is only available to work once a week.
Additionally, it can be observed that there are delays from the University Admission
Office which can be explained by the high volume of applications. On one hand, it
is possible that resources can work faster to handle the high volumes of applications
received, however, it can also be that resource performance is low in such situations
because resources prefer to let work accumulate before they can start working. Such
correlations can be explored by considering the analysis of the performance of resources
in the log.

Therefore, process mining techniques can be used to understand and analyze resource
performance from an event log. Moreover, we can provide answers for many of the per-
formance related questions that were listed at the beginning of this section.

Simulation

Simulation is one of the approaches that can be used for performance analysis of built
models at design-time (i.e., before a business process is enacted) as shown in Figure 1.5.
Simulation is a powerful technique that can be used to understand, analyze, and im-
prove business processes before the process is actually implemented [35, 93]. However,
before any simulation process is done the business process has to first be mapped onto
a process model. The different activities in the process model are identified, resources
are also determined and assigned to activities. At this stage, it is crucial that resources
are represented correctly in a simulation model [3, 25]. Assuming that this is the case,
simulation can be used to answer “what if” questions, i.e., to look into the future of the
modeled process under different circumstances to support business process analysis.

1.4 Problem Definition and Research Goals 13

As shown in Figure 1.5, there are several analysis techniques that can be used to analyze
a process before it is enacted. Such techniques include:

- performance analysis that can be used for evaluation of several key performance
indicators, e.g., service levels, throughput times, and resource utilization.

- Validation which aims at testing whether the process behaves as expected.
- Verification that establishes the correctness of a process definition.
- Markov chain analysis that can used for performance evaluation of simulation mod-
els.

Therefore, simulation can be used for performance analysis to verify effects of changes in
the process and resource models on a number of performance parameters, e.g., resource
utilization, throughput times, costs etc. The problems or bottlenecks in the current pro-
cess can be identified using simulation thus providing ideas for process improvement.

Given the graduate admission process (cf. Figure 1.3), several answers can be given us-
ing simulation about the resource performance of this process. For example, the effect
of different resource availability parameters, or the effect of different resource utilization
values can be investigated using simulation. If the process model has fewer resources par-
ticipating in a business process, the effects of such redesign alternatives can be quantified
in terms of the effect on the throughput time or resource utilization. Furthermore, if the
number of cases arriving in the model is increased (i.e., increasing workload), such effects
on resource performance can be explored.

Therefore, simulation is a powerful technique that can be used to provide for performance
analysis of resources. However, this is only possible if the correctness of simulation models
is verified, for example, when resources are modeled accurately.

1.4 Problem Definition and Research Goals

Although PAISs typically support business processes and focus on the assignment of
resources for execution of tasks, often times they know very little about the way resources
actually work. For example, in a workflow system like TIBCO [36], a human resource
is completely specified by the work queues (s)he can see, i.e., no additional information
is available [161]. Therefore, users are always obliged to execute work offered to them
and many aspects about the way resources actually work are not considered, for example,
past executions of resources are not used as a source of information when allocating work
to them.

Furthermore, although simulation is considered as a relevant and highly applicable tech-
nique, in reality the use of simulation is limited [3, 25, 143]. In particular, for a business
process that involves human resources there are fundamental problems that arise when
mapping real-life business processes onto simulation models. In such models, the resource
perspective is often not modeled adequately. As a result, when simulation models are run
it is not uncommon that the simulated model predicts flow times of minutes or hours
while in reality flow times are weeks or even months.

Since PAISs are able to sequentially record information about the processes they support

14 Chapter 1. Introduction

in event logs, process mining can be used to analyze past executions from the logs. Over
the past years, several process mining techniques have focused on the mining of the
control-flow, data, and organizational perspective [11, 13, 17, 21, 52, 57, 154, 157, 172].
However, not much emphasis has been put in the area of performance analysis of resources
and on understanding the way resources actually work based on observed information.
Although process models can be enhanced with performance information highlighting
bottlenecks there is no link between the resources that execute such processes and the
discovered behavior in the process models. This leads to the three main research goals
addressed in this thesis:

1. To have a clear understanding of the way human resources actually work.
2. To capture essential resource performance characteristics based on the information

stored in event logs.
3. To provide a more accurate modeling of resources in simulation models.

As discussed earlier process mining techniques can be used to discover processes, to as-
sess conformance between a discovered process model and event log, and to extend or
modify a process model. Moreover, process mining techniques have also been used to
provide support for cases that are still running in a workflow system. Such analysis typ-
ically focuses on individual process instances that have not completed yet thus enabling
operational support [26, 164, 165]. Recent work in operational support focuses on either
predicting the future of a current process execution [28, 65] or on providing recommen-
dations to users about the next step to take [80, 164, 175, 178]. These predictions or
recommendations are typically very specialized and a user has to interact with different
systems in order to make use of different algorithms. However, this is not always efficient
when the number of users and algorithms increases. For example, if a new prediction or
recommendation algorithm is added all the users/clients that are currently interacting
with the workflow system have to be informed about it. Moreover, the users now have to
decide whether to communicate with this new algorithm or not. This leads to the fourth
research goal addressed in this thesis.

4. To provide a unified platform where different operational support algorithms can
interact.

1.5 Contributions

This thesis presents several contributions in the area of simulation and process mining
as shown in Figure 1.6.

Understanding Limitations of Simulation Approaches

This thesis provides an understanding of limitations of current simulation approaches. In
particular, we propose more advanced notions of simulation, i.e., “advanced simulation”
that mainly uses information in the event log, process model, resource models in a direct
manner. This provides for a better analysis of the resource perspective from event logs,
and a more accurate modeling of resources in simulation models. The work in this area

1.5 Contributions 15

d
e
s
i
g
n

e
n
a
c
t

d
i
a
g
n
o
s
e

e
v
e
n
t

l
o
g
s

c
o
n
t
a
i
n
i
n
g

i
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

a
c
t
i
v
i
t
i
e
s

a
n
d

r
e
s
o
u
r
c
e
s

p
r
o
c
e
s
s

m
o
d
e
l
s

a
l
s
o

m
o
d
e
l
i
n
g

r
e
s
o
u
r
c
e

a
v
a
i
l
a
b
i
l
i
t
y

a
n
d

b
u
s
y
n
e
s
s

s
i
m
u
l
a
t
i
o
n

r
e
s
u
l
t
s

f
o
c
u
s
i
n
g

o
n

r
e
s
o
u
r
c
e

b
e
h
a
v
i
o
r

i
n

p
r
o
c
e
s
s
e
s

i
n
f
o
r
m
a
t
i
o
n

s
y
s
t
e
m

p
r
o
c
e
s
s

m
i
n
i
n
g

p
r
e
d
i
c
t
i
v
e

a
n
d

d
e
s
c
r
i
p
t
i
v
e

m
o
d
e
l
s

o
p
e
r
a
t
i
o
n
a
l

s
u
p
p
o
r
t

p
r
e
d
i
c
t
i
o
n
s
,

r
e
c
o
m
m
e
n
d
a
t
i
o
n
s
,

e
t
c
.

p
r
o
c
e
s
s

m
i
n
i
n
g

r
e
s
u
l
t
s

f
o
c
u
s
i
n
g

o
n

r
e
s
o
u
r
c
e

b
e
h
a
v
i
o
r

b
u
s
i
n
e
s
s

p
r
o
c
e
s
s
e
s

m
a
c
h
i
n
e
s

p
e
o
p
l
e

s
e
r
v
i
c
e
s

o
r
g
a
n
i
z
a
t
i
o
n
s

d
o
c
u
m
e
n
t
s

“
w
o
r
l
d
”

s
i
m
u
l
a
t
i
o
n

F
ig
ur
e
1.
6:

O
ve
rv
ie
w

of
th
e
co
nt
rib

ut
io
ns

of
th
is

th
es
is.

16 Chapter 1. Introduction

is motivated by research reported in [143] where the effectiveness of workflow manage-
ment technology was analyzed by comparing the process performance before and after
introduction of a workflow management system. Several aspects about the limitations of
simulation models and in particular, the way human resources work are discussed in this
thesis.

Mining Resource Behavior

In [3, 23, 25], we present several aspects about the way human resources work. Based on
this, we use process mining techniques to analyze the resource performance perspective of
event logs characterizing such aspects. Moreover, because human activity is increasingly
recorded by PAISs and due to the availability of process mining tools such as the ProM
framework, we can better characterize resource behavior based on event logs [116].

Given an event log, we discuss techniques to learn availability parameters of resources,
for example, the percentage of time a resource is available for a specific process, the
periods of time over which a resource works. Furthermore, we discuss how to analyze the
relationship between workload and the speeds of resources, also referred to as workload-
dependent working speeds.

Modeling Resource Behavior

In this thesis, we discuss an approach taken to model resources in simulation models. We
do this by representing essential characteristics of resources hence depicting the way re-
sources actually work. First, we provide an approach to approximate resource availability
for a given process based on a flexibility parameter called “chunk size”. Secondly, we also
discuss how to incorporate workload-dependent speeds in simulation models [23, 25, 118].
In this area, a number of simulation experiments are carried out to investigate the effects
of incorrectly modeling resources in simulation models.

Operational Support

This thesis presents a new approach to the use of process mining for operational sup-
port. This is a situation where process mining is used in an online setting. For example,
given a partially executed case it is possible to predict the remaining execution time
of the case based on historic information of similar cases. It is also possible to provide
recommendations about the next activity to be executed for a given running case. Such
recommendations can be given based on a specific goal, for example, to complete case
execution as fast as possible. In particular, we propose four main type of queries of op-
erational support: (a) simple, (b) compare, (c) predict, and (d) recommend queries that
can be handled by the operational support service in ProM [117].

The approach to operational support discussed in this thesis is based on a common
platform in ProM. Here, different operational support algorithms interact with various
operational support clients through the operational support service [187]. Furthermore,
based on the operational support service it is easier to add, modify and/or remove al-

1.6 Overview of the Thesis 17

gorithms without interfering with the communication between the operational support
clients and the different operational support algorithms.

In addition, this thesis also presents an abstract testing platform for operational support
algorithms [119]. In particular, we focus on the testing of the recommend query of op-
erational support. This is all based on the operational support service that it possible
to have an integrated view of all the operational support algorithms even though their
implementation details vary thus making it possible to evaluate different operational
support algorithms.

1.6 Overview of the Thesis
The remainder of this thesis is organized as follows:
• Chapter 2 discusses several limitations of current simulation models. This chapter

introduces the main problems with simulation tools that are addressed in this thesis.
• Chapter 3 introduces the necessary notations and concepts needed to discuss
process mining including event logs and a number of process modeling languages
and tools that are used in rest of the thesis.

• Chapter 4 discusses an approach to estimate when events are started based entirely
on the complete events recorded in an event log. Furthermore, this chapter discusses
an approach to analyze resource availability parameters from event logs.

• Chapter 5 discusses an approach taken to characterize workload-dependent work-
ing speeds from event logs.

• Chapter 6 focuses on a more accurate modeling of resources in simulation models.
This chapter discusses the modeling of resource availability parameters and the
incorporating of workload-dependent speeds in simulation models.

• Chapter 7 discusses how to provide a unified view of event logs obtained from
reality and the simulated environment.

• Chapter 8 discusses the four main operational support queries based on the oper-
ational support service implemented in the ProM framework.

• Chapter 9 discusses an infrastructure for the testing operational support algorithms
based on colored Petri nets.

• Chapter 10 summarizes the contributions of this thesis and provides directions
for future work.

Chapter 2

Limitations of Current Simulation Approaches

There is a continuous need for organizations to improve their business processes in order
to achieve, for example, better response times, better utilization rates of resources,and
higher service levels. Simulation is one of the techniques that organizations can use to
accomplish this. Although simulation is considered as a relevant and highly applicable
technique, in reality the use of simulation is limited. Many organizations have tried to
use simulation to analyze their business processes at some point. However, few are using
simulation in a structured and effective manner. This may be caused by a lack of training
and limitations of existing tools, however, in this chapter we argue that there are also
several additional and more fundamental problems. First of all, the focus of simulation
is mainly on design while managers would also like to use simulation for operational
decision making. Here, the focus is on solving the concrete problem at hand rather than
some abstract future problem. Second, there is limited support for using existing artifacts
such as event logs and workflow models. Third, the behavior of resources is modeled in
a rather naïve manner [3, 23, 25].

The remainder of this chapter is structured as follows. First, we provide an introduction to
traditional simulation in Section 2.1. We discuss limitations of current simulation models
in Section 2.2. In Section 2.3, we present current problems with modeling of resources
in simulation models. Section 2.4 discusses related work and Section 2.5 concludes this
chapter.

2.1 Traditional Simulation
Computer simulation is a technique that tries to model real-life or hypothetical situations
in order to study and see how systems work. During simulation, data is gathered and
used to parameterize hand-made models. The simulation model first reflects the current
process and can be modified according to a set of initial parameters to estimate the
eventual real effects of changes (e.g., redesign alternatives in the process). It is also
possible to answer “what-if” questions, i.e., examine the future of the modeled process
under specified assumptions. To introduce the concept of business process simulation,
consider the example given in Figure 2.1.

In the background we show a workflow specification using the YAWL notation [10]. The

20 Chapter 2. Limitations of Current Simulation Approaches

process model shown is a simplified version of the graduate admission process discussed in
Chapter 1 (cf. Figure 1.3 on page 5). It is important to see that a workflow model defines
the ordering of tasks, models time, choices etc. The arrow above a task (⇓) indicates that
the task requires a resource of a particular type, e.g., using the role concept resources
are linked to tasks. When there are choices, conditions are added to specify when to take
a particular route, etc. The YAWL model in Figure 2.1 can be used to configure a PAIS
(in this case the workflow management system YAWL) and thus enact the corresponding
business process.

Start

environmentenvironment

arrival
process

Send
Acknowledgement

Register
Application

Check
Documents

Reject
Application

Send
Reply

Request More
Documents

p1 p2 p3

p4

p7

Unconditional
offer

Conditional
offer

2

2

Classify
Application

3

2
2 3

p5

p6
End

1

probabilities
for choicesresources

subrun
settings

2

service
rates

Figure 2.1: Information required for a traditional simulation.

Figure 2.1 shows the information needed to complete a simulation model. First of all, an
environment needs to be added. While in a PAIS the real environment interacts directly
with the model, in a simulation tool the behavioral characteristics of the environment
need to be specified. For example, the arrival of new cases can be specified (see box
arrival process in Figure 2.1). using a Poisson distribution and the analyst needs
to indicate the average arrival rate. Secondly, the service time, also called the process-
ing time, of tasks needs to be specified. For example, one can assume that the service
time is described by a Beta distribution with a minimum, a maximum, an average and
the most likely value. Note that the simulation model needs to abstract from the actual
implementation of tasks and replace the detailed behavior by stochastic distributions.
Similarly, choices can be modeled as either data attributes or probability distributions
[152]. Finally, the workflow model needs to be complemented by information about re-

2.2 Problems with Current Simulation Approaches 21

sources (e.g., the number of people allowed to execute each task). In order to conduct
experiments one also has to specify the number of subruns, the length of each subrun, etc.
Based on all this information, simulation tools can provide information about expected
flow times, service levels (e.g., percentage of cases handled within two weeks), resource
utilization etc.

Figure 2.1 presents a rather classical view on business process simulation. This is the
type of simulation supported by hundreds, if not thousands, of commercial simulation
packages. Some vendors provide a dedicated simulation tool, e.g., Arena [99], Extend
[147], Lanner [102] while others embed the simulation aspect in a workflow management
system, e.g., TIBCO [36], COSA [169], FileNet [70], IBM’s WebSphere [89] or a business
process modeling tool, e.g., BPM|one [45], ARIS [90], Progress Savvion [137], Intalio
[91], PegaSystems [126]. All of these tools more or less use the information presented in
Figure 2.1 to calculate various performance indicators. We refer to this as “traditional
simulation”. As we will discuss in the next section, “traditional simulation” suffers from a
number of problems that affect the validity of results obtained (for example, the average
execution times).

2.2 Problems with Current Simulation Approaches
In Section 2.1, we highlighted the mainstream approach to simulation supported by
existing tools which we referred to as “traditional simulation”. However, there is a need
to move beyond traditional simulation approaches as shown in Figure 2.2. The left-hand-
side of Figure 2.2 shows the role of a PAIS (e.g., a workflow engine as well as also other
types of process-aware information systems) in supporting operational business processes.
The PAIS supports, controls, and monitors operational processes. The resources within
the organization perform tasks in such processes and also interact with the PAIS. The
PAIS can only do meaningful things if it has information about the process, i.e., the
resources within the organization and the current state of active cases. Moreover, a PAIS
often records historical information which can be used for auditing and performance
analysis.

The four ellipses in the middle of Figure 2.2 show four types of data: (1) event log, (2)
process state, (3) process model, and (4) resource model.
• The event log contains historical information about “When, How, and byWhom?”
in the form of recorded events.

• The process state represents all information that is related to running cases
in the PAIS, e.g., the application belonging to applicant “Peter Leid” has been in
the state “Assess Application” since Wednesday.

• The process model describes the ordering of tasks, routing conditions, etc. (cf.
the workflow model in Figure 2.1).

• The resource model holds information about people, roles, departments, etc.

22 Chapter 2. Limitations of Current Simulation Approaches

describe
configure

interact

record
use

event log

analysisenactment

process
state

process
model

resource
model

PAIS

operational process

organization
/resources

advanced simulation
(transient and steady state,
refined view of resources,
use of historic and state

information)

traditional simulation
(steady state, naive view of
resources, only indirect use

of historic information)

Figure 2.2: Overview of the relationship between enactment and simulation and the
different data sources.

Clearly, the process state, process model, and resource model are needed to enact the
process using a PAIS. The event log merely records the process as it is actually enacted.
The right-hand-side of Figure 2.2 links the four types of data to simulation. For traditional
simulation (i.e., in the sense of Figure 2.1) a process model is needed. This model can be
derived from or is similar to the model used by the PAIS. Moreover, information about
resources, arrival rates, processing times, etc. is added.

The arcs between the box indicated as traditional simulation and the three types
of data (event log, process model, and resource model) are curved to illustrate that the
relationship between the data used by the PAIS and the simulation tool is typically rather
indirect. For example, the analyst cannot use the process model directly, but needs to
transform it to another language or notation. The resource model used for simulation
is typically very simple. Each activity has a single role and for each role there are a
fixed number of resources available. Moreover, it is assumed that these resources are
available on a full-time basis. The event logs are also not used directly. At best, they
are used to estimate the parameters for some of the probability distributions. Hence,
“traditional simulation” can be characterized as having a weak link with the actual PAIS
and historical data and a rather naive view of resources. Moreover, the current state
in the process model is rarely used. As such, current simulation approaches focus on
steady-state behavior and cannot be used for operational decision making.

In this chapter, we move beyond “traditional simulation” and advocate the use of more
advanced notions of simulation. In particular, we propose for a close coupling with the
data used by the PAIS together with the extensive use of event logs and process state
information. This is illustrated by the box advanced simulation in Figure 2.2. Here
we see that the arrows to the box advanced simulation are thicker which implies
that “advanced simulation” uses all the four types of data, i.e., event log, process state,
process model and resource model in a direct manner. We now discuss pitfalls of current
simulation models in more detail.

2.2 Problems with Current Simulation Approaches 23

2.2.1 Pitfall One: Focus on Design Rather than Operational De-
cision Making

Simulation is widely used as a tool for analyzing business processes but it mostly focuses
on examining rather abstract steady-state situations. Such analyzes are helpful for the
initial design of a business process but are less suitable for operational decision making
and continuous improvement. To explain this we first elaborate on the difference between
transient analysis and steady-state analysis. The key idea of simulation is to execute a
model repeatedly to understand and quantify its behavior. The reason for doing the
experiments repeatedly, is to not come up with just a single value (e.g., “the average
response time is 22.54 minutes”) but to provide confidence intervals (e.g., “the average
response time is with 95 percent certainty between 21 and 23 minutes”). This is why it
is insufficient to use a single simulation run, but multiple subruns are needed. Figure 2.3
shows two sets of four subruns. Typically, dozens of subruns are used to calculate con-
fidence intervals and, in the case of steady-state analysis, subruns can also be obtained
by partitioning one long run into smaller runs [100, 149]. In the four subruns depicted in
Figure 2.3(a) the focus is on the initial part of the process, i.e., starting from the initial
state the “near future” is explored.

(a) transient analysis

(b) steady-state analysis

Figure 2.3: For transient analysis the initial state is vital while for
steady-state analysis the choice of initial state should have no effect on the sim-
ulation result. Each graph shows one simulation run. The X-axis denotes time while the
Y-axis represents the system state. The first four graphs in (a) illustrate the importance
of the initial state and the focus of transient simulation on the initial part. The other
four graphs in (b) show the focus on the steady-state behavior.

In the four subruns depicted in Figure 2.3(b) the initial part is discarded and only the later
behavior is of interest. Note that for steady-state analysis the initial state is irrelevant.
Typically, the simulation is started “empty” (i.e., without any cases in progress) and only
when the system is filled with cases the measurements start. Figure 2.3(a) clearly shows
that for transient analysis the initial state is very important. If the simulation starts in
a state with long queues of work, then in the near future flow times will be long and it

24 Chapter 2. Limitations of Current Simulation Approaches

may take some time to get rid of the backlog as shown in the diagram.

Despite the abundance of simulation tools, simulation is rarely used for operational de-
cision making. One of the reasons is the inability of traditional tools to capture the real
process (see above). However, another perhaps more important reason is that existing
simulation tools aim at strategic or tactical decisions. Contemporary tools tend to sup-
port simulations that start in an arbitrary initial state (without any cases in the pipeline)
and then simulate the process for a long period to make statements about the steady-
state behavior. However, this steady-state behavior does not exist (the environment of
the process changes continuously) and is thus considered irrelevant by the manager.
Moreover, the really interesting questions are related to the near future. Therefore, it
seems vital to also support transient analysis, often referred to as short-term simulation
[142, 150, 156, 157, 192]. The ‘fast-forward button’ provided by short-term simulation
is a useful option, however, it requires the use of the current process state. Fortunately,
when using a PAIS it is relatively easy to obtain the current state and load this into the
simulation model.

2.2.2 Pitfall Two: Building Simulation Models from Scratch Rather
Than Using Existing Artifacts

In practice, it is time consuming to construct a good simulation model and to determine
its input parameters. One of the problems with the current simulation approaches is that
existing artifacts (for example, models, logs, data etc.) are not used in a direct manner. If
a PAIS is used, there are often models that are used to configure the system (e.g., workflow
schemas). Today, these models are typically disconnected from the simulation models and
created separately. Sometimes a business process modeling tool is used to make an initial
process design. This design can be used for simulation purposes when using a tool like
BPM|one or ARIS. When the designed process is implemented and another system is
used, the connection between the implementation model and the design model is lost.
It may be that at a later stage, when the process needs to be analyzed, a simulation
model is built from scratch. Moreover, the PAIS contains most of the information that
can be required for building a simulation model. As a result the process is “reinvented”
again and again, thus introducing errors and unnecessary work. The lack of reuse also
applies to other sources of information. For example, the PAIS may provide detailed
event logs. Therefore, there is no need to “invent” processing times, arrival times, and
routing probabilities, etc. Note that all the additional information shown in Figure 2.1
can be derived from event logs. In [150, 155] it is discussed how complete simulation
models can be extracted from event logs.

As indicated in Figure 2.2, simulation could use all four types of data provided by the
PAIS, i.e., not just the event log and process model but also the process state and resource
model. The process state can be used to enable short-term simulation (as described in
[150, 159]) and the resource model may be used to more accurately describe resources. In
most simulation tools, only the number of resources per class is given. However, a PAIS
holds detailed information about authorizations, delegations, working times, working
patterns etc. By using this information directly, more realistic models can be constructed.

2.3 Incorrect Modeling of Resources 25

In this section, we have discussed two pitfalls of current simulation models. However, a
more fundamental problem of business simulation approaches is that human resources
are modeled in a very naive manner. In the next section, we discuss some of the main
problems encountered when modeling resources in current simulation tools.

2.3 Incorrect Modeling of Resources

In many simulation models, the resource perspective is often not modeled adequately.
Although it is easy to represent the different roles and groups to which resources belong,
it is particularly difficult to represent the way resources actually work in simulation
models. In the rest of this section, we discuss several problems encountered when modeling
resources in simulation tools. The first problem is that people are involved in multiple
processes and also part-time which is discussed in Section 2.3.1. Secondly, people tend to
work in batches as discussed in Section 2.3.2. Thirdly, resources prioritize tasks within a
process which is discussed in Section 2.3.3. Fourth, processes that resources are involved
in, may change depending on context as discussed in Section 2.3.4. Finally, resources do
not work at constant speeds as discussed in Section 2.3.5.

2.3.1 People are Involved in Multiple Processes and Work Part-
time

In practice there are few people that only perform tasks for a single process [3, 25,
143]. Often, people are involved in many different processes, e.g., a manager, doctor, or
specialist may perform tasks in a wide range of processes. Human resources often need to
“juggle” different tasks at once [167, 168]. Moreover, as resources are working they may
be interrupted or they may switch to/from different tasks. However, such multi-tasking
of resources is usually not sufficiently incorporated in simulation models [167]. Moreover,
simulation models often focus only on a single process and do not cover all the other
processes that a resource may be involved in.

Consider the graduate admission process discussed in Chapter 1, the Admissions

Committee consists of a number of members that are in charge of making the admis-
sion decisions. As shown in Figure 2.4, this committee can be made up of five members
(committee member 1..5). For some of these members, we can also indicate certain
days of the week when they are available. For example, committee member 2 is avail-
able only on Tuesday, while committee member 4 is available only on Thursday

morning.

Suppose committee member 4 is involved in 5 other different processes and spends
about 20 percent of his time on the graduate admission process process. In most simu-
lation tools it is impossible to model that a resource is only available 20 percent of the
time. Hence, one needs to assume that the committee member is available all the time
but has a very low utilization. As a result the simulation results are too optimistic. In
the more advanced simulation tools, one can indicate that resources are there at certain
times in the week (e.g., committee member 2 is available only on Tuesday). This is

26 Chapter 2. Limitations of Current Simulation Approaches

Tuesday

Wednesday
afternoon

Admissions
Committee

committee
member

committee
member 1

committee
member 2

committee
member 3

committee
member 5

committee
member 4

Thursday
morning

Figure 2.4: The Admissions committee consists of five members, i.e., committee
member 1..5. For some members, we specify a day of the week when they are avail-
able. For example, committee member 3 is only available to work on Wednesday
afternoon.

also an incorrect abstraction as the committee member may distribute his work over the
various processes based on priorities and workload.

Moreover, it could be assumed that the committee member 1..5 from Figure 2.4 can
be replaced by a single committee member. Suppose that these 5 committee members
are all working 20 percent of their time on the graduate admission process. One could
think that these 5 committee members could be replaced by a single committee member
(5*20%=1*100%). This does not need to be the case as there may be times that all 5
committee members are available and there may be times that none of them are available.
Each part-time committee member may work on a fixed day of the week. Moreover, it
may also be the case that one committee member is called in only when there is a specific
application that has to be handled or only when the number of applications are many, for
example, committee member 3 can be available only on Wednesday afternoon.
In this case, this committee member only works part-time on the graduate admission
process.

2.3.2 People Work in Batches

As indicated earlier, people may be involved in different processes. In addition to their
limited availabilities, people have a tendency to work in batches. For example, among
the resource patterns defined in [160, 162], there is specified a Resource Pattern 38
called Piled Execution. This pattern defines the scenario where resources take work items
corresponding to a similar task sequentially (i.e., one after the other). Once a work item
is completed, the resource will check whether a similar work item is present in their work
queue. If this work item is present, then its execution will immediately be started. In
any operational process, the same task typically needs to be executed for many different

2.3 Incorrect Modeling of Resources 27

cases (process instances).

Consider the graduate admission process discussed in Chapter 1, the tasks of register-
ing applications and checking the documents are executed for all the applications (i.e.,
cases) that are received at the University Admission Office. As shown in Figure 2.5, task
register application has to be executed for cases 1,3,4,5. Often people prefer
to let work items related to the same task accumulate, and then process all of these in
one batch. For example, an employee shown in Figure 2.5 will let all the work items
belonging to register application task accumulate, and process these together.
Hence, priority will be given to the execution of the work item belonging to the check
documents task.

employee

check
documents(2)

employee

busyready worklist

- register application(1)
- check documents(2)
- register application(3)
- register application(4)
- register application(5)

Figure 2.5: An employee in the ready state interacts with her worklist. She will let all
work items belonging to the same task (register application for cases 1,3,4,5)
accumulate and only then start the execution of check documents (for case 2).

However, in most simulation tools a resource is either available or not. If the resource is
available according to the model, then it is assumed that a resource is eagerly waiting
for work and immediately reacts to any work item that arrives. Clearly, this does not do
justice to the way people work in reality. Consider for example, the way people answer
emails, some people handle e-mails one-by-one when they arrive while others process
their e-mail at fixed times in batch.

Related is also the fact that calenders and shifts are also typically missing in simulation
tools. While holidays, lunch breaks, etc. can heavily impact the performance of a process,
they are typically also not incorporated in simulation models.

2.3.3 People Prioritize Tasks Within a Process

As indicated above, people are involved in multiple processes and even within a single
process different activities and cases may compete for resources. One process may be more
important than another and get priority. Another phenomenon is that in some processes
cases that are delayed get priority while in other processes late cases are “sacrificed” to
finish other cases in time. People need to continuously choose between work items and
set priorities. Moreover, there are a number of task prioritization polices that people can
use [194].

A typical example is work distribution in the emergency center of a hospital, where pri-

28 Chapter 2. Limitations of Current Simulation Approaches

ority can be given to patient admission and treatment depending on the severity of their
condition. This is also especially important in resource constrained situations. Although
important, priorities are difficult to model in simulation models and such scenarios are
typically not captured by simulation models.

2.3.4 Processes May Change Depending on Context

Another problem is that most simulation tools assume a stable process and organization
and that neither of them change over time. However, if the flow times become too long
and work is accumulating, resources may decide to skip certain activities or additional
resources may be mobilized. Depending on the context, processes may be configured
differently and resources may be deployed differently. In [22] it is shown that such “second
order dynamics” heavily influence performance.

Using process mining, it is possible to detect process changes within a business processes,
also known as “concept drift” [44]. Here, it is possible to identify different time periods
when changes occur in a given process. The changes in the process model may also affect
the way resources work. For example, the organization may decide to lay-off some people
due to a cost cutting measure. In such situations, it may be the case that the number of
part-time resources is reduced. This can imply that the workload for the more available
resources in the organization is increased.

2.3.5 People Do Not Work at Constant Speeds

Often times, people work at different speeds depending on their workload, i.e., it is not
just the distribution of attention over various processes, but also their absolute working
speed that determines their capacity for a particular process. There are various stud-
ies that suggest a relation between workload and performance of people [42, 124]. A
well-known example in psychological literature is the so-called “Yerkes-Dodson Law of
Arousal” [190, 193]. This law models the relationship between arousal, such as, work
pressure, anxiety, unhappiness, boredom and human performance as an inverse U-shaped
curve as depicted in Figure 2.6.

This implies that for a given individual and a given type of tasks, there exists an optimal
arousal level (i.e., the ideal stress/pressure level). This is the level where the performance
has its maximal value. Thus work pressure is productive, up to a certain point, beyond
which performance collapses. Although this phenomenon can be easily observed in daily
life, today’s business process simulation tools do not support the modeling of workload
dependent processing times [3, 143]. When building a simulation model, the processing
speeds of resources are simply sampled from a probability distribution and are indepen-
dent from the contextual factors within the organization, for example, stress, and varying
workload [25, 116, 118].

The pitfalls mentioned above illustrate that simulation techniques and tools build on a
very naive view of business processes. As a result, the simulation results may deviate
dramatically from the real-life process that is modeled. One response could be to make
more detailed and complex models that capture all the resource characteristics men-

2.4 Related Work 29

PRESSURE

Low

P
E
R
F
O
R
M
A
N
C
E

High

High stress
Anxiety

Optimum
stress

Low pressure
Boredom

Medium High

Figure 2.6: Yerkes-Dodson Law of Arousal modeled as an inverse U-shaped Curve
(adapted from [84]). When the stress level is low, resource performance is also low. This
increases as the stress levels also increase up to a certain optimal level beyond which the
performance drops.

tioned. This is not the best solution. The simulation model should have the right level
of detail and adding further detail does not always solve the problem. Another approach
can be to use the data already present in a PAIS more effectively. Moreover, it is vital to
characterize resources at a high abstraction level. Clearly, it is not wise to model a person
as a full-time resource always available and eager to work, but also it is not beneficial to
make a very detailed model of human behavior.

2.4 Related Work
Simulation has been used for the analysis of business processes since the seventies [166].
In fact, the simulation language SIMULA was developed in the sixties and influenced the
development of general purpose programming languages [56]. While the initial focus was
on programming languages extended with simulation capabilities, gradually more and
more simulation packages became available that offered some graphical environment to
design business processes. These languages provide simulation building blocks that can
be composed graphically (e.g. Arena [99], Extend [147], Lanner [102]). Many business
process modeling tools today, provide some form of simulation, for example, BPM|one
[45], ARIS [90], Progress Savvion [137], Intalio [91], PegaSystems [126]. Moreover, the
more mature workflow management systems also provide simulation capabilities [93]. Ex-
amples include TIBCO [36], COSA [169], FileNet [70], BPM|one [45], IBM’s WebSphere
[89]. In parallel with the development of simulation tools and embedding of simulation
capabilities in larger systems, the analysis of simulation data and the setting up of exper-
iments was investigated in detail [100, 103, 135, 149, 166]. In some cases it is possible to
use analytical models [49], however, in most cases one needs to resort to simulation. The
use of simulation was also triggered by management approaches such as Business Process
Reengineering [58, 81], Business Process Improvement [83], Business Process Intelligence
[73], etc. When reengineering a process from scratch or when improving an existing pro-
cess design, simulation can be very valuable [35]. Despite the interest in simulation and
the potential applicability of simulation, its actual use by end-users is limited.

30 Chapter 2. Limitations of Current Simulation Approaches

The core contribution of this chapter is to provide an overview of the pitfalls of simu-
lation. This complements earlier work on “short-term simulation”, i.e., the analysis of
transient behavior using the actual state as a starting point. The idea of doing short-
term simulation was raised in [142] using a setting involving Protos (modeling), ExSpect
(simulation), and COSA (workflow management). A similar approach was presented in
[192], but not implemented. Recently, the approach has been implemented using ProM
[20], YAWL [16], and CPN Tools [96, 156, 157, 159]. Processes are modeled and enacted
using the YAWL system. The system is able to provide the four types of data, i.e., pro-
cess models, resource models, process states and event logs. This information is taken by
ProM to create a refined simulation model that includes information about control-flow,
data-flow, and resources. Moreover, temporal information is extracted from the log to fit
probability distributions. ProM generates a colored Petri net that can be simulated by
CPN Tools. Moreover, CPN Tools can load the current state to allow for transient analy-
sis. Interestingly, both the real behavior and the simulated behavior can be analyzed and
visualized using ProM. This is crucial in trying to bridge the gap between simulation and
process mining. This means that decision makers view the real process and the simulated
processes using the same type of dashboard. This further supports operational decision
making [157, 159].

The approach presented in [157, 159] heavily relies on process mining techniques devel-
oped in the context of ProM [20]. Of particular importance is the work presented in [155]
where simulation models are extracted from event logs. The authors use a combination
of process mining techniques to discover multiple perspectives (namely, the control-flow,
data, performance, and resource perspective) of the process from historical data, and
integrate them into a comprehensive simulation model that can be analyzed using CPN
Tools. In [155], the process characteristics extracted from the simulation logs are com-
pared with the characteristics obtained from the original process logs. The comparison
is used to validate the approach. In [111] a similar approach is presented that shows how
to redesign a business process and predict its future performance based on simulation.
However, the modeling of human resources presented in these approaches is rather naive
and suffers from the problems mentioned in this chapter.

When discussing the factors influencing the speed at which people work, the Yerkes-
Dodson law [190] is mentioned. Some authors have been trying to operationalize this
“law” using mathematical models or simulation models. For example, in [42] both em-
pirical data and simulation are used to explore the relationship between workload and
shop performance. Also related is the work presented in [168] where the authors present a
different view on business processes, namely describing work as a practice, a collection of
psychologically and socially situated collaborative activities of the members of a group.
In their view, people are concurrently involved in multiple processes and activities. How-
ever, this approach aims at describing collaboration rather than focusing on performance
analysis.

Finally, the work in this thesis is motivated by what was reported in [143] where the
effectiveness of workflow management technology was analyzed by comparing the pro-
cess performance before and after introduction of a workflow management system. In

2.5 Conclusion 31

this study sixteen business processes from six Dutch organizations were investigated. In-
terestingly, the processes before and after were analyzed using both empirical data and
simulated data. This study illustrates how difficult it is to calibrate business process
simulation models such that models and reality match.

2.5 Conclusion
Although simulation is an established way of analyzing processes and one of the oldest
applications of computing (cf. SIMULA was already used in the 1960s), the practical
relevance of business process simulation is limited. The reason is that it is time-consuming
to construct and maintain simulation models and that often the simulation results do
not match with reality. Hence, simulation is expensive and cannot be trusted. In this
chapter, we discussed limitations of current simulation approaches. In Section 2.5.1, we
summarize what the main focus of advanced simulation should be. In Section 2.5.2, we
discuss how the problems identified in this chapter map onto the work presented in the
rest of the chapters in this thesis.

2.5.1 Focus of Advanced Simulation

Figure 2.7 shows an overview of input needed for advanced simulation. The focus of
advanced simulation should be on: (a) operational decision making, (b) using existing
artifacts during modeling, and (c) providing for accurate modeling of resource behavior.

Advanced
simulation

resourcesorganizational models

Focus on accurate modeling of resources

resources

simulated
process

Focus on operational decision making

partial traces

Use existing artifacts during modeling

data
state

information
event
 logs

workflow
models

event
 logs

process &
resource model

process
state

Figure 2.7: Advanced simulation requires advances in three key areas: (a) operational
decision making, (b) use of existing artifacts during modeling, and (c) accurate modeling
of resources in simulation models.

32 Chapter 2. Limitations of Current Simulation Approaches

Focus One: Operational Decision Making

In Section 2.2.1, we discussed the first pitfall of traditional simulation models. Business
process simulation is mainly used for steady-state analysis and not much emphasis is put
on operational decision making using transient analysis. To support operational decision
making, we can use the information in process state, event logs, partial traces, process and
resource models as shown in Figure 2.7. The data in event logs (referred to as historic data
in the following) can be used to discover new models and/or enhance existing models.
The learned models can be combined with the current data, i.e., states of cases and
partial execution traces to provide operational support [26, 117, 119, 159].

Focus Two: Use of Existing Artifacts During Modeling

The second pitfall of simulation models discussed in Section 2.2.2 is that existing artifacts
are not used when modeling. It is our belief that vital information remains unused in cur-
rent simulation approaches. Moreover, we advocate for the use of existing artifacts such
as event logs, workflow models, data, state information, during modeling. For example,
in [116] it is shown how event logs can be used to learn about the behavior of people.
Through process mining we can find empirical evidence for the “Yerkes-Dodson law of
Arousal” [190] and use this information to parameterize simulation models. Therefore,
we can use process mining for obtaining resource performance characteristics from event
logs.

Focus Three: Accurate Modeling of Resources

As discussed in Section 2.3, the most important problem when modeling simulation
models is that resources are modeled in a way that does not reflect the true behavior
of people. It is unrealistic to assume that people are always available. For example, the
working speed of resources may depend on the utilization of people, or the workload
existing in the system. Moreover, people may prefer to work in batches. As illustrated
in Figure 2.7, we can use the information in organizational models as input for modeling
resources in simulation models. Organization models contain the definition of human
resources that are involved in the execution of tasks in a business process [115]. An
organizational model can comprise of the following components.
• Roles and groups to which resources belong, for example, organizational units.
• Resource authorizations, i.e., who is expected to do what.
• Resource delegations, for example, reallocation of work items.
• Priorities of resources among tasks.
• Working times of resources, for example, times and days when resources are avail-
able.

• Resource working patterns, for example, whether resources work in batches or not.
A detailed modeling of resource availability and the effect of workload on processing
speeds of resources has been discussed in [25] and [118]. We show that many assumptions
about resources do not hold, and using concrete simulation models, we prove that the
effects of these assumptions can be dramatic. As a result, simulation models including

2.5 Conclusion 33

resources may indicate that the average flow time values are around one hour while in
reality the average flow time values are actually more than one month. Therefore, it is
important to provide an accurate modeling of resource behavior in simulation models.

2.5.2 Outlook

Based on the discussion in Section 2.5.1, we identify three main themes that we focus on
in the rest of this thesis:

1. process mining of resource behavior,
2. modeling of resource behavior, and
3. operational support.

Given the central role of resources, we need to specify what “resource behavior” is in the
context of this thesis. From the limitations of modeling resources in simulation models
discussed in Section 2.3, we conclude that there are two major key characteristics of
resources that can be captured in simulation models. The first characteristic is resource
availability which covers various phenomena as discussed in Section 2.3, for example,
people working in multiple processes, people working part-time and the tendency of
people to work in batches. The second characteristic is resource busyness which refers to
the fact that people do not work at constant speeds and their processing speeds can be
dependent on workload.

We discuss these two characteristics from a mining and modeling point of view. First,
we describe techniques to characterize resource availability and resource busyness from
event logs and secondly describe how to capture and represent resource availability and
busyness in simulation models. Moreover, the results from using process mining to analyze
resource behavior characteristics can be used as input for the simulation models both
developed or even mined from event logs [158]. Under operational support, we provide
concrete queries that are restricted to running cases in a workflow system.

In Figure 2.8, we illustrate how these issues map and relate to the other chapters in
this thesis. The figure shows the three major areas of concern (i.e., resource availability,
resource busyness, and operational support) identified in this chapter.

Inline with the main themes that have discussed in this chapter, we discuss the remainder
of this thesis in detail based on Section 1.6.
• Chapter 4 describes the approach taken to analyze resource availability charac-
teristics from event logs (cf. Mining Resource Availability from Figure 2.8). In this
chapter, we analyze the resource availability parameters, for example, the horizon
size, the availability and chunk size values from event logs. We also discuss the
application of ProM plug-ins implemented in this chapter on real life case studies.
As shown in Figure 2.8, the input to this chapter is historic data. Historic data
refers to information recorded in event logs.

• Chapter 5 characterizes resource busyness from event logs and provides empirical
evidence for the “Yerkes-Dodson law” (cf. Mining Resource Busyness from Fig-
ure 2.8). We also discuss the application of ProM plug-ins implemented in this
chapter on real life case studies. The input to this chapter is historic data.

34 Chapter 2. Limitations of Current Simulation Approaches

Chapter 2

Testing Operational
Support Algorithms

Chapter 9

Mining Resource
Availability

Chapter 4

Mining Resource
Busyness

Chapter 5

Operational Support

Chapter 8

Modeling Resource
Behavior

Chapter 6

Providing a Unified
View of Event Logs

Chapter 7

Resource
Availability

Resource
Busyness

Operational
Support

historic
data

current
data

Conclusion

Chapter 10

Figure 2.8: Relationship between the contents of this chapter and the other chapters
in this thesis. There are three main themes identified in Chapter 2 shown as Resource
Availability, Resource Busyness, Operational Support. The mining of re-
source availability is discussed in Chapter 4. The mining of resource busyness is dis-
cussed in Chapter 5. The modeling of both resource availability and resource busyness
is discussed in Chapter 6. Chapter 7 provides a bridge between mining and modeling
of resource behavior. Chapter 8 discusses operational support and Chapter 9 discusses
the testing of operational support algorithms.Chapter 10 provides the conclusions in
this thesis. The mining of resource behavior and operational support chapters require
historic data (which refers to event logs). The operational support chapters also
current data (which refers to a partial execution trace).

• Chapter 6 discusses how to model resource behavior in simulation models (cf.
Modeling Resource Behavior in Figure 2.8). In this chapter, we provide a more
realistic modeling of resources based on resource availability and resource busyness
parameters discussed in Chapters 4 and 5.

2.5 Conclusion 35

• Chapter 7 discusses an approach taken to view reality and the simulated environ-
ment in the same way. This is based on the analysis of event logs obtained from
real world processes and simulated processes, using process mining techniques (cf.
Providing a Unified View of Event Logs from Figure 2.8). This chapter is based on
work discussed in Chapters 4, 5 and 6.

• Chapter 8 discusses four main operational support queries (cf. Operational support
in Figure 2.8). We discuss an architecture for operational support and also discuss
implementation considerations of the queries in Declare and ProM framework. As
input for this work discussed in this chapter, we require both historic data (event
logs) and current data (which is information recorded in a partial execution trace).

• Chapter 9 introduces a general setting for testing recommendations based on the
operational support service discussed in Chapter 8 (cf. Testing Operational Support
Algorithms from Figure 2.8). In this chapter, we provide a number of user behavior
models and as such we also model the effect of workload on the processing speeds
of resources so the work discussed in Chapter 4 is also used in this chapter. As
input for this chapter, we require both historic data and current data.

Chapter 3

Preliminaries

This chapter introduces the necessary notations and concepts used in the remainder of
this thesis. First we introduce basic set theory notations in Section 3.1. Then, we formally
describe event logs in Section 3.2. Section 3.3 discusses the XES event log format used for
storing and representing event logs. Section 3.4 describes the process modeling languages
used in this thesis. In Section 3.5, we discuss the XQuery language used for querying and
manipulating event logs. Section 3.6 discusses tools used in the remainder of the thesis.
Finally, Section 3.7 introduces graphs used to visualize results in this thesis.

3.1 Notations
In this section, we formally define the notion of sets of elements, functions and sequences.

Definition 3.1 (Set notations) A set is a collection of distinct objects.
• Given an element s contained in a set S, then s ∈ S means that s is a member
of S. For example, given that S = {a, b, c} then a is a member of set S.
• The number of elements contained in a set S are represented as |S|. For example,
given that S = {a, b, c} then |S|= 3.
• If every element of the set S is also an element of the set S1, then S is a subset
of S1 and is expressed as S ⊆ S1. For example, given that S = {a, b, c} and
S1 = {a, b, c, d, e}, then S ⊆ S1.
• The set S is a proper subset of S1 denoted by S ⊂ S1 if and only if S (S1 and
S 6= S1.
• The union of two sets is denoted as S = S1 ∪S2, i.e., S contains all the elements
in sets S1 and S2. For example, given that S1 = {a, b, d} and S2 = {c, d, e}, then
S1 ∪ S2 = {a, b, c, d, e}.
• The intersection of two sets is denoted as S = S1 ∩ S2, i.e., S contains only the
elements that are members of both sets S1 and S2. For example, the given that
S1 = {a, b, d} and S2 = {c, d, e}, then S1 ∩ S2 = {d}.
• TheCartesian product of two sets is given as S = S1×S2, i.e., S = {(s1, s2)|s1 ∈
S1 ∧ s2 ∈ S2}. For example, the Cartesian product of two sets S1 = {a, b, c} and
S2 = {1, 2}, is {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}.
• The empty set is denoted as ∅, i.e., the set without any elements.

38 Chapter 3. Preliminaries

• The power set is defined as a set of all possible subsets of a set. For example,
given set S we define a power set operation as: ℘(S) = {S ′|S ′ ⊆ S}.

Definition 3.2 (Function) Given two sets, S1 and S2, a function f from S1 to S2
denoted by f : S1 → S2 means that f maps the elements of S1 onto S2. Hence for all
s ∈ S1 it holds that f(s) ∈ S2. The application of the function f to the element s is
denoted by f(s). For a function f : S1 → S2, we define dom(f)=S1 as the domain of f
and rng(f)= {f(s)|s ∈ dom(f)} ⊆ S2.

A partial function associates each element from the first set, i.e., S1 to at most one element
from the second set, i.e., S2. This implies that not every element from the domain S1 has
to be associated with an element from the range S2.

Definition 3.3 (Partial Function) Given two sets S1 and S2, a partial function f

from S1 to S2 denoted by f : S1 9 S2 is a function that is defined for a subset of S1,
i.e., dom(f) ⊆ S1.

Given that it is possible to assign natural numbers to the members of a set, we can create
a multi-set. This is a set that contains elements of the same type and it can be used to
represent, for example, a state of a Petri net or an event log where the same trace may
appear multiple times.

Definition 3.4 (Multiset) A multiset or bag is an unordered collection of objects
with repetitions allowed. A multiset X on the set S can be defined as a function X : S →
N mapping the elements of S to natural numbers. We use square brackets to denote the
enumeration of elements of the multiset. Given a multiset m ∈ X , m(x) denotes the
number of times element x ∈ X appears in m. Examples include: m1 = [], m2 = [a, b, c],
m3 = [b, c, c], m4 = [a, b2, c3], m5 = [a, b, c, b, c, c] which are multisets over X = {a, b, c}
where m1 is the empty multiset, m2 and m3 both have three elements and m4 = m5.

The standard set notation in Definition 3.1 can also be extended to multisets, e.g., a ∈ m2
(a is an element ofm2). The sum of two multisets is given asm2]m3 = m5, the difference
of two multisets is given as m5−m2 = m3, and the size of a multiset is given as |m4| = 6.

The elements in a multiset can be sorted and arranged in sequences defined here.

Definition 3.5 (Sequence) Let S be a set of elements. A sequence of elements in S
is a mapping τ : {1, 2, ..., n} → S that assigns an element of S to each position in the
sequence.

• A sequence is represented by an ordered list of zero or more elements of S, i.e.,
τ = 〈s1, s2, ..., sn〉 for a sequence τ : {1, 2, ..., n} → S, for i ∈ {1, 2, ..., n} such that
τ(i) = si.
• An element at index i in the sequence τ can be denoted by τ(i) where 1 ≤ i ≤ n.
• The length of a sequence τ : {1, 2, ..., n} → S is given by |τ | = n.
• We introduce a function to obtain the last element from a sequence τ as: last(τ)
= τ(|τ | − 1).

3.2 Event Logs 39

• Given that τ1 = 〈s1, s2, ..., sn〉 is a sequence over S and τ2 = 〈t1, t2, ..., tn〉 is a
sequence over T . The concatenation of τ1 and τ2 is denoted as τ = τ1τ2, |τ | =
|τ1|+|τ2|, τ(i) = τ1(i) for 1 ≤ i ≤ |τ1|, τ(i+|τ1|) = τ2(i) for 1 ≤ i ≤ |τ2|. Therefore
τ =〈s1, s2, ..., sn, t1, t2, ..., tn〉 is a sequence over S ∪ T .
• S∗ is the set of all sequences over S and an empty sequence ε : ∅ → K is a sequence
of length 0, i.e., |ε| = 0.
• The set representation of a sequence set : S∗ → 2S is a function that transforms
a sequence over S to a set of S, i.e., set(τ) = {s|s ∈ τ}. For example, if τ =
〈s1, s2, s3, s1, s2〉 is a trace over {s1, s2, s3, s4} then set(τ) = {s1, s2, s3}.

3.2 Event Logs
This section formally defines an event log describing an event, event properties and traces.
An example of an event log characterizing events and their properties is also presented.

Definition 3.6 (Event, Property) Let E be the event universe, i.e., the set of all
possible event identifiers, A be a set of all possible activity names, R be a set of all
possible resource names, and T be the time domain. An event e ∈ E has a number of
properties and we can define functions assigning properties to events:

• act ∈ E → A assigning activities to events,
• type ∈ E → {schedule, assign, start, suspend, resume, abort_activity, complete}
assigning event types to the events,
• time ∈ E → T assigning timestamps to events, and
• res ∈ E → R assigning resources to events.

An event e is described by some unique identifier and can have several properties. An
event log is a set of events. Each event in the log is linked to a particular trace which
represents a process instance and is globally unique, i.e., the same event cannot occur
twice in a log.

Definition 3.7 (Trace, Event Log) A trace is a defined as a sequence of events σ =
〈e1, e2, ..., en〉 ∈ E∗ such that each event appears only once and time is non-decreasing,
i.e., for 1 ≤ i < j ≤ |σ| : σ(i) 6= σ(j) and time(σ(i)) ≤ time(σ(j)). C is the set of all possible
traces. An event log is a set of completed traces L ⊆ C such that each event appears at
most once in the entire log, i.e., for any two traces σ1, σ2 ∈ L: set(σ1) ∩ set(σ2) = ∅ or
σ1 = σ2.

Note that time(σ(i)) ≤ time(σ(j)) means that time is non-decreasing within these two
traces if i occurs before j. The last requirement in the definition states that σ1 and σ2
should not have any overlapping events. This is done to ensure that events are globally
unique and that the same event does not appear in multiple traces.

An example of an event log is shown in Figure 3.1 which is from the graduate admission
process discussed in Chapter 1 (cf. Figure 1.3 on page 5). An event log is the starting
point for any process mining technique. Each row in Figure 3.1 corresponds to one event.
Each event can be characterized by a number of properties which are shown as columns

40 Chapter 3. Preliminaries

in the table. An example of an event e is shown by the first row in Figure 3.1. The event
has a number of properties: act(e) = Register Application, res(e) = Ann, time(e) =
2011-01-01 10:20:00, and type(e) = complete.

Case Id Event Properties
Activity Resource Timestamp Event

Type
Service
Time ...

Case 1 Register Application Ann 2011-01-01 10:20:00 Complete 80 ...
Send Acknowledgment Mary 2011-01-01 11:00:00 Complete 15 ...
Check Documents Tony 2011-01-01 12:00:00 Complete 50 ...
Classify Application Erika 2011-01-01 12:50:00 Complete 25 ...
Unconditional Offer Peter 2011-01-01 13:58:00 Complete 58 ...

...
Case 2 Register Application Ann 2011-01-02 12:10:00 Complete 16 ...

Send Acknowledgment Mary 2011-01-02 12:50:00 Complete 20 ...
Check Documents Tony 2011-01-02 13:45:00 Complete 45 ...
Classify Application Erika 2011-01-02 14:45:00 Complete 25 ...
Check Research Statement Mary 2011-01-02 16:19:00 Complete 90 ...
Verify Academic Documents Peter 2011-01-02 18:48:00 Complete 18 ...
Confirm Test Results Andy 2011-01-03 09:15:00 Complete 32 ...
Contact Language Center Ann 2011-01-03 10:19:00 Complete 13 ...
Assess Application Erika 2011-01-03 13:47:00 Complete 29 ...
Conditional Offer Peter 2011-01-03 15:20:00 Complete 30 ...
Send Reply Ann 2011-01-03 15:48:00 Complete 18 ...

Case 3 Register Application Ann 2011-01-04 15:25:00 Complete 55 ...
Send Acknowledgment Mary 2011-01-04 16:00:00 Complete 15 ...
Check Documents Tony 2011-01-04 16:40:00 Complete 20 ...
Classify Application Peter 2011-01-04 17:00:00 Complete 10 ...
Reject Application Andy 2011-01-04 17:30:00 Complete 20 ...
Send Reply Ann 2011-01-04 18:20:00 Complete 25 ...

...

Figure 3.1: An example of an event log in tabular form. Each row corresponds to one
event and the events within each case occurred in the given order.

From Definition 3.6, res is defined as partial function and this means that in some
event logs resources executing activities are not explicitly recorded in the log. Moreover,
some process mining techniques can abstract away from the resource and timestamp
information. However, in the context of this thesis resources and timestamps are of utmost
importance.

An event log contains events recorded for the execution of a particular business process.
For any given case (i.e. process instance) handled, a number of tasks can be executed.
However, it is important to note that a task is not specific to a particular case and the
same task may be executed for a number of cases that are handled in the business process.
For each case, we can define a work item which as a combination of a case and a task
that is ready to be carried out. At the point when a work item is being worked on, it
is transformed into an activity. Hence, a work item and activity are linked to a specific
case unlike a task.

3.3 Representing Event Logs 41

A work item is enabled for execution if the preceding activities of a case to which this
work item belongs have been completed (if any). For example, consider Case 1 shown
in Figure 3.2 the work item belonging to activity check documents will be enabled
for execution if the work items belonging to activities register application and
send acknowledgment are completed. When a work item is enabled, a resource may
start working on it. The same resource completes the work item after some time. It might
be the case that a work item can be started and then suspended or a work item can be
started and then canceled [130].

send
acknowledgment

register
application

check
documents

Case 1

Figure 3.2: Timeline showing three work items belonging to Case 1. The work item
belonging to activity check documents can only be enabled if the preceding activities
of Case 1 are completed.

Therefore, a work item transitions from one state to another during its execution as shown
in Figure 3.3 as a state transition diagram. The circles represent the various states that
a work item undergoes.
The work item life cycle consists of a number of transitions from one state to another.
• schedule: Initially a work item is scheduled to be executed. At this point in time
it is not assigned to any resource.

• assign: A work item is now assigned to a single resource. The resource can start
the execution of the work item.

• start: When a work item has been assigned to a particular resource, (s)he can
start the execution of this work item.

• suspend: During the execution, a resource can decide to stop working on the work
item and suspend it for a while.

• resume: Once a work item has been suspended, its execution can be resumed.
• complete: A resource can start and eventually complete a work item.
• abort_activity: When a resource has started the execution of a work item, the

resource can decide to abort/cancel the execution.

Given an event log, the events indicate when activities are started and completed. In
the context of this thesis, we assume the work item life cycle shown in Figure 3.3 in the
simulation of business process and the analysis of event logs.

3.3 Representing Event Logs

Event logs can come from different organizations and systems and they can be stored
in various formats, for example, databases, transaction logs, audit trails, etc. The tar-

42 Chapter 3. Preliminaries

assign

start complete

suspend

resume

abort_activity

schedule

Figure 3.3: Life cycle model of a work item.

get formats of event logs supported by ProM are MXML (M ining eXtensible Markup
Language) [61] and XES (eXtensible Event Stream). XES was selected by the IEEE
Task Force on Process Mining as the standard format for logging events [75]. In this
section, we discuss the XES event log format which overcomes several limitations of the
MXML format1.

XES Event Log Format

The XES format is an XML-based standard for event logs and has a reference imple-
mentation named as OpenXES [75]. Figure 3.4 shows a UML class diagram of the XES
format. The XES core standard mainly defines the structure of an event log. The basic
hierarchy of an XES file (i.e., XML file) is that it consists of one log object (XLog) at
the top that contains all the event information related to a specific process (e.g., the
university admission process). The log contains a number of trace objects (XTrace),
each trace describing the execution of one specific instance (case or execution) of the
logged process (e.g., a specific student application). A trace contains a number of event
objects (XEvent) and each event corresponds to an activity in the business process (e.g.,
Register application, Send acknowledgement).

The actual information contained in the event logs is stored in attributes (XAttri-
butes). Attributes can be attached to any element of the meta model. Every attribute is
identified by a string based key that is unique for the attributes attached to an element.
The semantics for attributes are described in extensions (XExtension) of the XES
standard. Figure 3.5 shows an example of a partial trace in the XES format. The partial
trace is part of the event log shown in Figure 3.1.

XES defines four main standard extensions:
• The Concept extension is defined for traces and events and it represents their
name. For traces it represents the name of the trace, i.e., Case id and for an event
it stores the name of the executed activity represented by the event. For example,

1In [76], the limitations of the MXML event log format are discussed fully.

3.3 Representing Event Logs 43

 Log

 Trace

 Event

name

prefix

URI

<contains>

<contains>

<contains>

<contains>

<declares>

<defines> <defines>

<defines>
<trace-global>

<event-global>

Attribute

Extension

String

Date

Int

Float

Boolean

Classifier

Key

Value

Figure 3.4: UML Schema of the main interface components of the XES standard [75].

in Figure 3.5 the first trace object is annotated by concept:name and the value of
this attribute is Case 1 while the name of the first event executed is Register
application. The name of the activity corresponds to act(e) for e ∈ E from
Definition 3.6.

• The Lifecycle extension is defined for events and it captures the lifecycle tran-
sition they represent in a transactional model (cf. Figure 3.3) of their generat-
ing activity. For example, in Figure 3.5 the first event object is annotated by
lifecycle:transition and the value of this attribute is complete. This cor-
responds to type(e) for e ∈ E .

• The Time extension is defined for events and it represent their timestamps, i.e.,
exact dates and times at which events occurred. For example, in Figure 3.5 the first
event object is annotated by time:timestamp and the value of this attribute is
2011-01-01T12:00:00. This corresponds to time(e) for e ∈ E .

• The Organizational extension is defined for events and it represents the organiza-
tional perspective of the process. It specifies three attributes for events identifying
the resource that executed the event, role (capabilities) of the resource, and the
position of resources in the organizational structure. For example, in Figure 3.5,
the org:resource describes the resource that executed the first event, i.e., Ann.
This corresponds to res(e) for e ∈ E .

Furthermore, XES supports the semantic extension that handles any enhancements pro-

44 Chapter 3. Preliminaries

<log xes.version="1.0" xmlns="http://www.xes-standard.org">
<extension name="Organizational" prefix="org" uri="http://.../org.xesext"/>
<extension name="Time" prefix="time" uri="http://.../time.xesext"/>
<extension name="Concept" prefix="concept" uri="http://.../concept.xesext"/>
<extension name="Lifecycle" prefix="lifecycle" uri="http://...lifecycle.xesext"/>
<global scope="trace">
<string key="concept:name" value="name"/>
</global>
<global scope="event">
<string key="concept:name" value="name"/>
<string key="org:resource" value="resource"/>

<date key="time:timestamp" value="2011-01-01T09:00:00.000+01:00"/>
</global>
<trace>
<string key="concept:name" value="1"/>
<event>
<string key="org:resource" value="Ann"/>
<string key="lifecycle:transition" value="complete"/>
<date key="time:timestamp" value="2011-01-01T12:00:00.000+01:00"/>
<string key="concept:name" value="Register Application"/>

</event>
<event>
<string key="org:resource" value="Mary"/>
<string key="lifecycle:transition" value="complete"/>
<date key="time:timestamp" value="2011-01-02T15:20:00.000+01:00"/>
<string key="concept:name" value="Send Acknowledgment"/>

</event>
<event>
<string key="org:resource" value="Jane"/>
<string key="lifecycle:transition" value="complete"/>
<date key="time:timestamp" value="2011-01-02T17:18:00.000+01:00"/>
<string key="concept:name" value="Check Documents"/>

</event>
<event>
<string key="org:resource" value="Andy"/>
<string key="lifecycle:transition" value="complete"/>
<date key="time:timestamp" value="2011-02-02T08:10:00.000+01:00"/>
<string key="concept:name" value="Check Research Statement"/>

</event>
...
</trace>
<trace>
<string key="concept:name" value="2"/>
<event>
<string key="org:resource" value="Ann"/>
<string key="lifecycle:transition" value="complete"/>
<date key="time:timestamp" value="2011-01-01T21:00:00.000+01:00"/>
<string key="concept:name" value="Register Application"/>

</event>
...
</trace>
...

</log>

Figure 3.5: Part of an event log expressed in XES format.

3.4 Process Modeling Formalisms 45

posed in SA-MXML. The references in the log point to concepts in an ontology. It defines
the modelReference attribute for all the elements in the event log [75].

3.4 Process Modeling Formalisms

In Chapter 1 we introduced a running example of a process model represented using the
YAWL notation (cf. Figure 1.3 page 5). However, there several other process modeling
languages that exist. Examples are BPMN (Business Process Modeling Notation), EPCs
(Event-driven Process Chains), Petri nets, UML activity diagrams etc. All these lan-
guages vary with respect to their formal semantics and expressive power. In this section
we briefly discuss four process modeling formalism that appear in the next chapters. Note
that we only provide a partial formalization for these modeling languages, i.e., we only
discuss the sections needed in the rest of this thesis.

The remainder of this section is structured as follows. First, we introduce Petri nets in
Section 3.4.1 used for modeling the running example used in this thesis (cf. Chapters 4
and 5). We also discuss colored Petri Nets in Section 3.4.2 which is used for representing
process models in CPN Tools (cf. Chapters 4, 7, and 9). Since we are interested in
declarative processes we also discuss Declare models in Section 3.4.3 which are used for
modeling a user interacting with a workflow management system Declare (cf. Chapters 8
and 9).

3.4.1 Petri Nets

A (classical) Petri net is a directed bipartite graph with two types of nodes called places
and transitions [134]. The places and transitions are connected to each other with directed
arcs. Arcs connecting two nodes of the same type to each other are forbidden. In a
Petri net, places are graphically represented by circles and transitions are represented by
rectangles. The elements of places and transitions are referred to as nodes. A node is an
input node of a second node if and only if an arc connects this node to the second node.
Likewise, a node is an output node of a second node if and only if an arc connects the
second node to this node. Figure 3.6 depicts an example of a Petri net which is a part of
the graduate admission process discussed in Chapter 1.

The Petri net model contains one start place which initially has one token (indicated
by the black dot) and one end place which has no outgoing arcs. Given a Petri net, the
set of input nodes of a given node in the net is defined as its preset, while the set of
output nodes of a given node is defined as postset [144]. For example, given transition
Register Application shown in Figure 3.6, its preset contains place start and its
postset contains place p1. Each place in the net holds zero or more tokens represented as
black dots. The state of a Petri net (also referred to as a marking), is the distribution of
tokens over places. For example, [p0, p1, p1] is a state with one token in place p0 and two
tokens in place p1. The state of a Petri net may change if a transition in the net fires.
The firing of a transition can take place if and only if:

1. A transition t is enabled in the current marking if and only if every place in the

46 Chapter 3. Preliminaries

Register
Application

Send
Acknowledgement

Classify
Application

Request More
Documents

Check
Documents

Unconditional
Offer

Conditional
Offer

Send
Reply

Start

End

Reject
Application

p1

p2

p3

p4

p5

Figure 3.6: An example of a Petri net.

preset of t contains at least one token. For example, given the Petri net shown in
Figure 3.6 the transition that is enabled in the net is Register Application.

2. An enabled transition may fire. If a transition t fires, it consumes a token from each
of the places in its preset and produces one token for every place in its postset. When
Register Application fires, it will consume one token from place Start and
produce one token in place p1.

3.4 Process Modeling Formalisms 47

We also define a subclass of Petri nets that are typically used to model business processes,
known as WorkFlow-nets (WF-nets) [1, 9]. The focus of WF -nets is on the control-flow
dimension of workflows. The transitions in a WF -net correspond to tasks in the business
process represented by the net. Places correspond to pre and post-conditions of these
tasks. All the nodes in a WF -net should be on a directed path from the start place to
the end place. A WF -net is a Petri net that has: (a) a single start place, (b) a single
end place, and (c) every node in the net is on a path from the start to the end. A
WF -net therefore has one input place and one output place because any case handled
by it, is created when it enters the workflow system and is deleted once it is completely
handled by the system. The WF -net specifies the life-cycle of a given case. The Petri
net in Figure 3.6 is also a WF -net because it has a single Start place at the top with
no incoming arcs and this place contains a token. Moreover, there is a single End place
at the end with no outgoing arcs and there is a path from the Start place to the End
place.

3.4.2 Colored Petri Nets

Colored Petri nets (CPNs) provide a modeling language that combines Petri nets with
the functional programming language Standard ML [12, 30, 95, 96]. Petri nets model
the basic behavior of a process while the programming language caters for the definition
and manipulation of data values. In a CPN model all the tokens are distinguishable
by assigning to each token a certain value, referred to as a color . Figure 3.7 shows a
fragment of a CPN model which models the graduate admission process discussed in the
previous chapter. The circles in the model indicate the places in a Petri net and the boxes
indicate the transitions in the net. Each place in a colored Petri net has a certain type,
for example, each created case in Figure 3.7 is of type CASEID. Moreover, each created
case is added to a place of type QUEUE.

Moreover, places can have types that are a combination of two different types, e.g., place
Waiting is of type CASEIDxTIME which is a product of the case id (CASEID) and a
number (TIME). The place Waiting has 3 tokens which correspond to the three cases
that have been created and each token has a value equivalent to the case id and the time
of creation. Tokens in places also have timestamps indicating when they can be consumed.
For example, the token on place Start which is of value 4 can only be consumed at time
30. When producing a token, it may be given a delay which may be sampled from some
probability distribution.

The firing of transitions in a colored Petri net changes the number of tokens over the
places. Moreover, the values (or colors) of tokens may also be changed which is made
possible by arc inspirations. For each transition in a CPNmodel it is necessary to specify a
binding for it. A binding is simply an association of a value with a variable that is declared
in the CPN model. For example, in Figure 3.7 both places Waiting and Completed Case
are input places for the transition Add. Therefore, tokens from both places for the variable
cid need to be bound to the same value. Since place Waiting and place Completed Case
both have tokens of value 2 (i.e., case id), then it is possible for transition Add to fire
and consume these tokens. When transition Add fires, it creates a new token on place

48 Chapter 3. Preliminaries

q q^^[(cid,Dur())] (cid,t)

(cid,Mtime()-t)

(cid,t)

cid

(cid,Mtime())

cid+1@+IAT()

cid

Academic
Department

Academic Department

University
Admissions Office

University Admissions Office

Measure
Flow time

Add

P_HIGH

Generate
Cases

[cid<4]

Cases
List

[]

QUEUE

Queue

[]

QUEUE

Case

CASEIDxTIME

Waiting

CASEIDxTIME

Completed
Case

CASEID

Start

1

CASEID

University Admissions Office Academic Department

1 1`[(2,32)]

1 1`[(3,5)]

3

1`(1,0)@0+++
1`(2,1)@1+++
1`(3,4)@4

1
1`4@30

priority

guard

substitution
transition

marking

color set

Figure 3.7: An example of a colored Petri net model.

Case.

Transitions can therefore consume and produce new tokens for their output places. Place
Case will hold a token equivalent to the difference between the time it was produced on
place Completed Case and the time when it was created and added to place Waiting. It
is also possible to have transitions enabled with certain values of tokens in places. This is
made possible by using transition guards. A guard defines a certain constraint that has
to be fulfilled before a transition is enabled. Guards are also used for tests on input arc
inscription variables and they can use one of these syntactical elements: =, <>,<=, >=,
andalso, orelse. Moreover, variables that are not found in input arc inscriptions can, in
some cases, be bound in the guards. Furthermore, transitions can have priorities which
are used for prioritizing the firing of one transition. Transitions can be assigned higher or
lower priority values that can either allow one transition to occur or prevent a transition
from occurring over other transitions in the model [30, 188]. For example, from Figure 3.7
transition Add has a higher priority (shown as P_HIGH) over all the other transitions.

Besides the color and time aspects needed for modeling the behavior of processes, a
CPN model also extends classical Petri nets with hierarchy. A page in a CPN is a CPN
model consisting of places, transitions, arcs and tokens. With hierarchy, there are two
types of transitions: (a) ordinary transition and (b) substitution transition. A substitu-
tion transition refers to a subpage, i.e., a page contained inside another page (shown as
a rectangle with a double outline) [12, 95]. A page containing a substitution transition is
referred to as a superpage. A superpage and a subpage are connected together by places
on both places using fusion sets. A fusion set contain only two places and the place on
a subpage is referred to as a port place while the place on the superpage is referred to
as a socket place. The socket places are connected to port places using port/socket as-
signments. The interface of a page is described using port places, i.e., places annotated

3.4 Process Modeling Formalisms 49

with In, Out, and In/Out. With the hierarchy concept of CPNs, it is possible to compose
a CPN model in a modular way allowing for the handling of different levels of abstrac-
tion. Consider the graduate admission process, in order to simulate this process we can
decompose the model based on departmental level. For example, Figure 3.7 shows two
substitution transitions representing two departments, i.e., the University Admissions
Office and Academic Department. These substitution transitions constitute a number
of activities that can be executed in each of these departments according to the process
model shown in Figure 1.3.

3.4.3 Declare

Declare is a declarative approach to business process modeling and execution. Declarative
languages do not explicitly state the allowed choices during process execution, but rather
focus on constraints between tasks. This implies that the focus is on disallowed behavior
rather than allowed behavior in the process model [18, 127, 129, 133, 186]. Each constraint
in a Declare model has: (a) a name, (b) a graphical representation that is presented to
a user, and (c) semantics given by Linear Temporal Logic (LTL) formulas [71]. LTL is a
temporal logic language which in addition to classical logic operators, also uses several
temporal operators: always (�), eventually (♦), until (t), weak until (W) and next
time (©) [51]. For example, the expression �(register ⇒ (♦acknowledge)) means that
every occurrence of register has to be eventually followed by acknowledge. Therefore, in
Declare constraints are graphical representations of the LTL formulas. The advantage of
having Declare as a modeling language is that the users do not need to have knowledge
about the underlying LTL formulas and all they require is to understand the meanings
of the constraints. The users can execute a Declare model in their own preference hence
allowing flexibility. They can choose which tasks to execute, how many times they can
be executed and the order in which the tasks can be executed. An example of a Declare
model is shown in Figure 3.8 which is a simple process that models the life of a graduate
student at a university.

MSc,ES

response not co-existence

Young can only be
executed at most once

Either MSc,BIS or
MSc,ES can be
executed

Young is eventually
followed by BSc,
MSc,ES or MSc,BIS

Master of BPM can only
be executed after
MSc,BIS hasexecuted

precedence

0..1

Young

BSc

Master
of BPMMSc,BIS

Figure 3.8: Study process model in the Declare language showing the different tasks
and constraints in the model.

50 Chapter 3. Preliminaries

The tasks in the model are represented as rectangles and constraints are shown as arcs
between tasks or annotations on the tasks. For example, the annotation 0 . . . 1 models
the requirement that a student is only young once. The hyper-arc from Young to the
three degrees (BSc, MSc,ES, and MSc,BIS) models the constraint that if a person is
young, they should get an education (at least one of the three). The arc between the two
MSc degrees indicates that if one is present in an execution, the other cannot be, and
finally, the arc from MSc,BIS to Master of BPM models that only after completing
a MSc,BIS can you become a true Master of BPM. Therefore, Declare provides a
flexible approach to process modeling unlike the imperative process modeling languages
that have been discussed in the previous section.

3.5 Query Languages

As discussed in Section 3.2, event logs are expressed in the XES format is an XML-based
standard. In order to make selections and computations over XML documents we can use
a XQuery as an example of a language for querying event logs in the XES format. XQuery
is query language for XML data similar to SQL [47]. XQuery uses FLWOR expressions
that to select and perform computations on nodes of the XML tree. A FLWOR expression
is constructed from five clauses after which it is named, i.e., For, Let, Where, Order By,
and Return.
• The For clause iterates through a sequence of nodes and calculates some value for
each item in that sequence.

• the Let clause simply declares a variable and gives a value,
• the Where clause specifies a condition and filters items retaining only those satis-
fying the desired conditions,

• the Order by clause sorts the values iterated over in either ascending or descending
order, and

• the Return clause builds the result of the entire expression for each value of the
sequence.

XQuery has a number of built-in functions used for string values, numeric values, date-
time comparison, node, sequence and boolean manipulation, and can also support user
defined functions.

An example of an XQuery expression is shown in Figure 3.9. This query returns the
execution times of the events from a partial trace like the one shown in Figure 3.52. The
XQuery consists of a number of standard constructs supported by the XQuery language
that form the FLWOR expression.

The query shown in Figure 3.9, iterates two variables ($a and $b) over all events in the
trace (l. 1) using the for clause. In this query, one of the events (i.e., a) is a start event
(l. 2) while the other event (i.e., b) is a complete event (l. 3). The events should belong
to the same trace and have the same name (l. 4-5). These conditions are specified by the
where clause. For each pair of events, an XML tree (l. 7-14) is constructed with a root

2The calculation of the execution times is only possible if the start events of the activities shown in
Figure 3.5 are added as part of this partial trace.

3.6 Tools 51� �
1 for $a in $trace/event, $b in $trace/event
2 where $a/lifecycle:transition='start' and
3 $b/lifecycle:transition='complete' and
4 $a/concept:instance=$b/concept:instance and
5 $a/concept:name=$b/concept:name
6 order by $a/concept:name ascending
7 return <item>
8 <time>{ round-half-to-even (
9 (xs:dayTimeDuration(xs:dateTime($b/time:timestamp)-

10 xs:dateTime($a/time:timestamp))
11 div xs:dayTimeDuration('PT1440M')), 2)
12 }</time>
13 <activity>{ $a/concept:name }</activity>
14 </item>� �
Figure 3.9: An example of a XQuery FLWOR expression that extracts the execution
time of tasks.

element of item. The XQuery expression contains a tag activity with the name of the
event (l. 12) and a tag time. Inside the time tag, the timestamps of the complete event
(i.e., b) and the start event (i.e., a) are obtained. This expression returns the difference
of these two timestamps. The result is divided by 1440 minutes and rounded to two digits
to return the result expressed in days (l. 11). The duration is returned for each activity
executed in the partial trace and is arranged in ascending order based on the activity
names. This is specified by the order by clause (l. 6).

3.6 Tools

This section describes four tools we use in this thesis. The rest of this section is structured
as follows. First, we discuss ProM which is a tool used for mining and analysis of event
logs, in Section 3.6.1 (cf. Chapter 5 and 6). Next, we discuss Declare which is a used for
modeling declarative processes in Section 3.6.2 (cf. Chapter 8 and 9). For modeling and
simulation of colored Petri nets and log generation we use CPN Tools which is discussed
in Section 3.6.3 (cf. Chapter 4, 7 and 9). In Section 3.6.4, we describe the Access/CPN
2.0 library used for embedding different software components together with CPN models
(cf. Chapter 9).

3.6.1 ProM Framework

The focus of process mining has been on the extraction of information from event logs.
The numerous efforts in process mining have led to the existence of a common platform
for implementation and use of process mining techniques, i.e., the ProM (ProcessM ining)
framework [138, 176, 181]. ProM is a powerful process mining toolkit that includes plug-
ins for mining, analysis, conversion, and importing/exporting process models and event
logs. It is a generic open-source framework that supports the implementation of process

52 Chapter 3. Preliminaries

mining algorithms in a standard environment [64]. The algorithms are implemented as
plug-ins of possible actions that can be executed within ProM.

Figure 3.10: Screen-shot of the ProM framework shows the visualization of an event
log.

Figure 3.10 shows a screen-shot of the ProM framework. This shows the visualization of
an event log that has been loaded into ProM. This visualization provides basic event log
information, for example, the number of events, activities and resources in the log.

3.6.2 Declare

As discussed in Section 3.4.3, Declare is a declarative approach to business process mod-
eling and execution. Declare models are supported by the Declare workflow system [59].
The Declare workflow system consists of three main components that are typical to many
workflow management systems.
• Designer is the tool for model development. Declare supports modeling of data and
resources.

• Server is a tool for process enactment where cases can be loaded.
• Client is the execution tool which provides the interaction between the user and
the workflow engine. The client also has an interface for operational support which
is used to display responses received from the operational support service.

Figure 3.11 shows a screen-shot of a Declare client with the study process model shown
in Figure 3.8.

These three Declare components support the build-time and run-time facilities for the
declarative approach to workflow management. Moreover, the Declare workflow system
is used as the prototype for the implementation of operational support client. A Declare

3.6 Tools 53

Figure 3.11: Screen-shot of a Declare client showing the simple study process model
from Figure 3.8. The right hand side shows results from the operational support service
based on the query shown in Figure 3.9.

client can interact with the Operational Support Service in the process mining framework
(ProM) that can, for example, make computations on the current partial trace being
executed by a the client. The computations are made on the information recorded in
partial trace (represented in the XES format), using the XQuery language. For example,
the XQuery expression shown in Figure 3.9 calculates the execution time of tasks and the
results based on this XQuery expression are shown on the right hand side of Figure 3.11.

3.6.3 CPN Tools

In this thesis we are interested in the modeling of resources behavior in simulation models.
For this purpose we rely on the use of CPN Tools which is a tool for colored Petri Nets.
CPN Tools provides techniques for the modeling, simulation and analysis of complex
processes expressed as colored Petri Nets [54, 95, 96]. CPN Tools allow for creating
declarations, net structure, inscriptions, and hierarchical models. Figure 3.12 shows a
screen-shot of CPN Tools highlighting the CPN model discussed in Section 3.4.2.

Figure 3.12 also shows the simulation palette at the top which enables the interactive
and automatic simulation of CPN model. However, there are several pallets available
for creating hierarchical models, editing the net etc. [96] The simulation tool options
available on the simulation palette specify that a simulation should stop after a certain
number of steps or after a certain time has passed.

CPN Tools also provides support for performance analysis of a simulation model using
simulation replications of independent simulations. Figure 3.12 shows how simulation
replications can be run automatically using an auxiliary text field containing the ML
function CPN’Replications.nreplications n. The value of n determines the number of
simulation runs, i.e., here n = 10. The result of a simulation with replications is stored

54 Chapter 3. Preliminaries

Figure 3.12: Screen-shot of CPN Tools.

in a replication performance report that reflects the accuracy of a performance measure
over the different simulation runs using confidence intervals. For example, it is possible
to return the 90%, 95%, and 99% confidence interval values for the average flow time
of cases. Such a simulation can also be stopped in a particular state using monitors. A
monitor is a used to observe, control, or modify the simulation of a colored Petri net.
Moreover, CPN Tools have the ability to generate event logs which can be analyzed in
the process mining framework, ProM.

3.6.4 Access/CPN 2.0

To provide for the testing of operational support algorithms, it is possible to simulate
user behavior based on a CPN model. Figure 3.13 shows an abstract testing platform
for operational support. A User (in CPN Tools) interacts with the Workflow System

(i.e., Declare) and the Operational Support service (in ProM).

It is necessary to provide for the interaction between Declare and CPN Tools (shown
as the Interface between the Workflow Model and User), and also cater for the
interaction between CPN Tools and ProM (shown as the Interface between the User
and Operational Support) in Figure 3.13. Access/CPN 2.0 [185] is a library that
can be used for this kind of interaction between CPN models and Java programs.

An architecture of Access/CPN 2.0 is shown in Figure 3.14. CPN Tools is used as the
editor for CPN models and it can read and write .cpn files. These files can be read by
Access/CPN and sent to the CPN Tools Simulator. The simulator generates model-
specific code that is necessary for simulating the CPN model. By using Access/CPN it
is now possible to communicate with the simulator and execute transitions. Access/CPN
provides an abstract interface that supports the monitoring of places, transitions, and

3.6 Tools 55

Workflow System

Declare

Interface

Interface

Operational
Support

ProM OSS

User

CPN Model

Figure 3.13: Abstract Testing Platform.

for embedding CPN models as parts of programs, for example, embedding a CPN model
as part of ProM.

CPN Tools
GUI

CPN Tools
Simulator

.cpn file

ProM

Access/CPN 2

Figure 3.14: Architecture of Access/CPN 2.0 [185].

Access/CPN 2.0 implements the interface shown in Figure 3.15. In order to use the
test platform, a client for Declare has to adheres to this interface. Since Declare has
client libraries written in Java, the implementation of the client requires the transla-
tion of incoming requests represented as tokens on CPN places. These are sent via the
InputChannels (via the output socket places in a CPN model) to the correct format
for the Declare workflow system. The responses from Declare have to be translated back
as tokens which should be understandable by the CPN model. These results are sent
back on the correct OutputChannels (via the input socket places in a CPN model).
Declare also sends more information to the user that is not meant to be changed and
this can made available through the DataStores in Figure 3.15.

The main idea of Access/CPN 2.0 is to perform a cosimulation between a CPN model

56 Chapter 3. Preliminaries� �
1 interface CPNToolsPlugin {
2 void start(ExecutionContext context);
3 void end();
4 }

6 interface InputChannel { Collection<Value> getOffers(); }
7 interface OutputChannel { void offer(Collection<Value> offers);}
8 interface DataStore {
9 Collection<Value> getValues();

10 void setValues(Collection<Value> values);
11 }

13 interface SubpagePlugin extends CPNToolsPlugin {
14 void setInterface(Collection<InputChannel> inputs,
15 Collection<OutputChannel> outputs,
16 Collection<DataStore> data);
17 boolean isDone();
18 }� �

Figure 3.15: Access/CPN 2.0 API.

and Java classes [189]. It is possible to simulate the CPN model and run the Java classes
at the same time and this enables a number of CPN model functionality.
• Showing simulation feedback. Using Access/CPN 2.0, it is possible to show feedback
as tokens on places in the CPN model.

• Generation of event logs. Access/CPN 2.0 is able to create event logs as executions
are going on in the CPN model.

• ProM orchestration. ProM contains many plug-ins each of which consumes input
values and produces output values.

• Embedding the Declare workflow engine and operational support. Moreover, using
Access/CPN 2.0 it is possible to embed a model of an operational support algorithm
inside ProM. It is also possible to combine a plug-in embedding Declare with a
plug-in embedding ProM’s operational support engine into a single suite.

Therefore, using Access/CPN 2.0 it is now possible to fully support the interaction be-
tween the different components as shown in Figure 3.13.

3.7 Visualization of Results

In this section, we describe two graphical representations used to show more insights in
the simulation and mining results presented in this thesis. This section is structured as
follows. We discuss an error bar plot in Section 3.7.1 and the discuss a box plot diagram
in Section 3.7.2.

3.7 Visualization of Results 57

3.7.1 Error Bar Plot

Error bars as shown in Figure 3.16 are a graphical representation of the variability of
data. The error bar plot represents the mean and confidence interval (CI) values of the
mean. The confidence intervals are used to indicate the the reliability or error of the
estimated mean. Error bars therefore can represent a certain confidence interval, e.g., a
95% interval. Figure 3.16 shows an error bar plot for an example of a data series. The
mean value of the data series is shown in the figure (450) together with the upper and
lower 95% confidence interval values (325,800).

Upper 95% CI

Lower 95% CI

Mean

0

200

400

800

1000

450

x

Figure 3.16: Error bar plot showing the 95% values of the mean.

The CI values are calculated as:

CI = b± s√
n
∗ tn−1(α2)

From Equation 3.1, b is calculated as the mean value of a data series, s is the standard
deviation, n are the number of points in the data series, and tx(y) is the critical value of
the Student’s t-distribution with x degrees of freedom.

3.7.2 Box Plot

The box plot shown in Figure 3.17 is a graphical representation of a data series using
seven possible elements. It is also sometimes referred to as a box and whiskers plot. The
box plot shows the smallest value, the lower quartile, the median, the upper quartile and
the largest value from a data series.

The lower and upper quartiles from the box plot divide the data series into four equal
parts, i.e., 25% of all the values that are lower than the lower quartile, 25% exceed the
upper quartile, and 25% lie between each quartile and the median value [92].

58 Chapter 3. Preliminaries

extreme
outlier

median

0

200

400

800

1000

x

outlier

largest value

upper quartile

smallest value

lower quartile

1200

Figure 3.17: Box plot for a data series showing outlier values.

A box plot also contains more information about outliers which are individual data points
from the data series that are not included within the quartiles. These are the individual
points that fall above or below 1.5 to 3.0 box heights (the values of the upper and the
lower quartiles). The data points that are above or below 3 box heights are considered
as extreme outliers. Figure 3.17 shows an example of a box plot illustrating outlier data
points. The values of the data series shown here follow a normal distribution, however,
there is one outlier and one extreme outlier.

Chapter 4

Using Process Mining to Analyze Resource
Availability

In Chapter 2, we discussed several pitfalls of current simulation models. In particular, we
highlighted that resources are modeled incorrectly and existing information about models,
logs, etc. is not used properly/systematically when building simulation models. From the
outlook discussed in Chapter 2 (cf. Section 2.5.2), we identified two key characteristics
of resource behavior: resource availability and resource busyness. To better deal with
resources using these resource characteristics, we propose two innovations:

1. First of all, we will use process mining to find key characteristics of resources from
event logs (which is the focus of Chapters 4 and 5 as shown in Figure 4.1).

2. Secondly, we will extend simulation models in order to incorporate these two key
characteristics (which is the main focus of Chapter 6 as shown in Figure 4.1).

process mining

Chapter 4

Chapter 5

Chapter 6

simulation

resource
availability

resource
busyness

Figure 4.1: Overview of the structure of Chapters 4, 5 and 6 highlighting the key
characteristics captured in each chapter.

Process mining can be used for analysis of event logs covering a number of perspectives
[5, 8], i.e., the control-flow, case, organizational/resource, and data perspectives. Orthog-
onal to these perspectives, it is also possible to focus on the time perspective. Here,
timing aspects of an event log are considered in combination with either the control-
flow or resource perspectives. To analyze the performance of resources from an event
log, timestamps play a very important role. Moreover, it crucial that precise informa-
tion indicating when events are started and completed by resources is recorded in the

60 Chapter 4. Using Process Mining to Analyze Resource Availability

log. However, it might be the case that such information about the resource perspective
is not recorded explicitly in an event log. These are the situations when the log only
contains information about the completion time of activities.

In this chapter, we discuss metrics for determining when resources start execution of
events based entirely on the complete events in the log. Using such metrics, it is possible
to insert missing events into the log and provide for analysis of the resource performance
perspective. Secondly, the focus of this chapter is on the mining of resource availabil-
ity characteristics from event logs. Given an event log, we discuss techniques to learn
availability parameters of resources, for example, resource availability parameters, and
periods of time over which resources work.

Chapter 2

Testing Operational
Support Algorithms

Chapter 9

Mining Resource
Availability

Chapter 4

Mining Resource
Busyness

Chapter 5

Operational Support

Chapter 8

Modeling Resource
Behavior

Chapter 6

Providing a Unified
View of Event Logs

Chapter 7

Resource
Availability

Resource
Busyness

Operational
Support

historic
data

current
data

Conclusion

Chapter 10

Figure 4.2: Overview of the structure of the thesis highlighting Chapter 4.

Figure 4.2 highlights this chapter and its main focus is on the mining of resource avail-
ability from historic data, i.e., event logs.

4.1 Introduction 61

The remainder of the chapter is structured as follows. First, we provide an introduction to
the analysis of resource performance perspective from event logs in Section 4.1. Section 4.2
discusses several assumptions we take into consideration about the work behavior of
resources given the information recorded in an event log. Furthermore, we describe how
to extract work items from an event log. In Section 4.3, we discuss how to estimate when
events are started by resources based on complete events recorded in a log. Section 4.4
discusses the approach taken to analyze resource availability parameters from event logs.
Section 4.5 discusses related work and Section 4.6 concludes the chapter.

4.1 Introduction
Lion’s share of process mining research has centered around discovery, i.e., deriving
information about process models where the focus is on the control-flow perspective
[13, 33, 52, 57]. The idea to apply process mining in the context of workflow processes was
first discussed in [33]. In [57] techniques of business process model discovery embedded
in the context of workflow management and business process redesign are discussed. The
discovery of more complex process models, i.e., models containing duplicate tasks was
first discussed in [85].

However, most of these classical approaches to the discovery of process models have
problems dealing with concurrency, i.e., either sequential models are assumed (e.g., tran-
sition systems, finite state machines, hidden Markov models) or a post-processing step
is needed to discover concurrency from event data. The α-algorithm discussed in [17]
was one of the techniques developed to handle concurrency. However, the α-algorithm
has limitations when dealing with complicated routing constructs and dealing with noise.
More advanced techniques in the discovery of the process models have been developed
that deal with issues such as noise. These techniques include the Heuristic miner which
also handles incompleteness [179, 180] and the Genetic algorithms [112, 113].

Further on, process simplification algorithms have also been proposed to deal with less
structured processes, i.e., very diverse or flexible business processes [76, 77]. Region-
based approaches have been used to express more complex control-flow structures during
process discovery as discussed in [27, 62, 170]. Process mining inspired adaptations to
the classical theory of regions, making it possible to influence the resulting model. For
example, it is possible to determine the number of places in the Petri net and of duplicate
tasks in the model [182, 183].

Once we have a discovered process model from an event log, for example, a Petri net
model, it is possible to carry out log replay where the event log is replayed on the process
model while calculating and gathering performance information [29, 88]. The process
model can be extended with additional perspectives based on the event log. For example,
in the area of decision mining which aims at the detection of data dependencies that affect
the routing of a case [152]. There are several approaches that use log replay to enrich
models with performance information, for example, Petri nets, Structural Precedence
Diagrams, and process maps [43, 63, 88]. The discovered models are extended with timing
information to show execution and waiting times of activities and identify any bottlenecks

62 Chapter 4. Using Process Mining to Analyze Resource Availability

in the model.

Besides the process perspective, process mining techniques also cater for the discovery
of the organizational perspective from the events recorded in the log. The organizational
perspective focuses on the resources that were involved in activity execution and how
they are related. The goal is to either build social networks or discover organizational
models from event logs [19, 172]. A social network represents nodes which can for example,
correspond to the individual resources or organizational entities discovered from the log.
These nodes are connected together using arcs that correspond to relationships between
such resources or organizational entities. Several metrics have been defined and can be
used to analyze social networks showing the role of individual nodes in the network [177].
An organizational model usually contains organizational units (e.g., functional units,
departments), roles (e.g., duties, responsibilities), and their relationships, for example,
any hierarchies among organizational units. It is also possible to obtain resource groups
with people who executed similar activities and their relationships between these groups.

The control-flow and organizational perspectives discussed do not provide a match be-
tween the resources in the model and the performance perspective. However, it is possible
to also look at the resource performance perspective and here the focus is on the resources
and the activities that each resource executed. For example, if we consider a time pe-
riod in the log, it is possible to give an estimate of how long resources spend executing
activities, the number of activities they execute over this time period, when resources
are actually available and working, how busy they are, and other resource performance
related information. In this chapter, we discuss techniques taken to analyze resource
availability parameters from event logs.

4.2 Assumptions about Resource Work Behavior
In Chapter 3, we discussed several functions assigning properties to events (cf. Defini-
tion 3.6 on page 39). We use these functions in this section to define a number of event
properties. In this section, we assume that the event log we are using has information
about the start and complete events for each activity.

Definition 4.1 (Event Properties) Given that L is an event log as defined in Def-
inition 3.7, we let E be a set of all possible event identifiers. We can define the event
universe of L as EL = {e ∈ E | ∃σ∈L e ∈ σ}. Each event e ∈ EL can be denoted by a
number of event properties:

• act(e) defines the activity name of an event e,
• type(e) defines a transactional type of an event e,
• time(e) defines the time of occurrence of an event e, and
• res(e) defines the resource that executed the event e.

Given these event properties from an event log, we now define several assumptions about
the way resources are expected to work.
(i) We assume that a resource works on at most one activity at a time.

4.2 Assumptions about Resource Work Behavior 63

(ii) Given an event e1 ∈ EL, we can obtain a corresponding event e2 ∈ EL where
e1, e2 ∈ σ such that the following hold:
• act(e1) = act(e2),
• type(e1) = start,
• type(e2) = complete,
• time(e1) ≤ time(e2).

Events e1 and e2 refer to the same activity instance where e1 is the start event and
e2 is the complete event of the activity. Note that some preprocessing of the event
log may be needed to find pairs of events belonging to the same activity.

(iii) We assume that an activity is assigned to exactly one resource who starts its exe-
cution and eventually completes it. For any two events e1, e2 ∈ σ belonging to the
same activity then res(e1) = res(e2).

Based on these assumptions and the event properties given in Definition 4.1, we now
formally define work items from an event log.

Definition 4.2 (Work Items from an Event Log) Let L, T ,R be as defined in Def-
inition 3.6 and EL be as defined in Definition 4.1. LetWL be the set of work items from
L. For any work item w ∈ WL, we define the following properties:

- es(w) ∈ EL is the start event of w,
- ec(w) ∈ EL is the complete event of w,
- een(w) ∈ EL is the event enabling w,
- r(w) ∈ R is the resource executing w,
- ts(w) ∈ T is the start time of w,
- tc(w) ∈ T is the completion time of w,
- ten(w) ∈ T is the enabling time of w,
- wt(w) = ts(w)− ten(w) is the waiting time associated to w,
- st(w) = tc(w)− ts(w) is the service time associated to w, and
- ft(w) = tc(w)− ten(w) is the flow time associated to w.

These work item properties are well defined if and only if for any w ∈ WL:
- ts(w) = time(es(w)) (time of start event matches start time),
- tc(w) = time(ec(w)) (time of completion event matches completion time),
- ten(w) = time(een(w)) (time of enabling event matches enabling time),
- ten(w) ≤ ts(w) ≤ tc(w) (enabling, start, and completion are in the right order),
- r(w) = res(es(w)) = res(ec(w)) (resources match),
- type(es(w)) = start and type(ec(w)) = complete (types match),
- there is a σ ∈ L such that {een(w), es(w), ec(w)} ⊆ σ (the three events related to
w belong to the same case), and

- for any w1, w2 ∈ WL, then {een(w1), es(w1), ec(w1)} ∩ {een(w2), es(w2), ec(w2)} 6=
∅ ⇒ w1 = w2 (enable, start and complete events relate to only one work item).

Determining an enabling event for a work item in a sequential process is easy, all we do
is to look at the last executed event for the trace. Consider, a sequential process shown
in Figure 4.3(a), work items w and w1 are executed for two events that belong to the

64 Chapter 4. Using Process Mining to Analyze Resource Availability

same trace. These events are executed in sequence. If we want to determine the enabling
event for the work item w1, we consider the previously completed event of the trace to
which the current event belongs. As shown in Figure 4.3(a), the event executed previously
belongs to work item w. Therefore, the enabling event for work item w1 is given as ec(w).
It could also be that when work item w is completed then work item w1 is started.

es(w) ec(w) es(w1) ec(w1) ec(w2)es(w2)

(b)

es(w) ec(w) es(w1) ec(w1)

(a)

w

w1

w

w1

w2

Figure 4.3: In (a), work items w and w1 belong to two events that are executed
sequentially. In (b), work items w1 and w2 belong to two events that are executed in
parallel after completion of a work item w belonging to another event. For each work
item we show the start and complete events.

However, to determine an enabling event for process with concurrency is not straight
forward. Consider the process in Figure 4.3(b), here two work items belonging to different
events are executed in parallel. The events belonging to work items w1 and w2 and are
executed after the completion of an event belonging to work item w. In this example, we
need to determine enabling events for work items w1 and w2. Due to concurrency these
work items have the same enabling event, i.e., ec(w) which corresponds to the complete
event for work item w. Moreover, for the first work item (i.e. w) we assume that this
work item was enabled the moment it was started, i.e., ten(w) = ts(w).

In this section, we have given several assumptions about the work behavior of resources.
In the next section, we discuss an approach taken to add missing events to event logs
that have only complete events recorded.

4.3 Preprocessing of Event Logs 65

4.3 Preprocessing of Event Logs
As discussed in the previous section, events are characterized by a number of properties.
For any event in the log we have assumed that if it is a complete event, then it is possible
to find a corresponding start event. However, it might be the case that in some event
logs it is not possible to find a corresponding start event for a given complete event.
However, given such event logs it should still be possible to calculate how long resources
take working on activities and other performance related measures. Therefore, in this
section we discuss several techniques we use to estimate when events are started based
entirely on the complete events recorded in the log.

An event in the log should have information about the activity name, the transactional
type, the time when it occurred and the resource that executed it. Since we have infor-
mation about the resources that completed events and the traces to which these events
belong, it becomes possible to determine a matching start event for a given complete
event. We can determine when events are started based on two main perspectives.
(i) The resource perspective considers the resource who completed the current event.

It is possible to look back in the log and see when the resource last completed any
other event and the time when this the execution occurred. This is only possible if
the event is not the first one that the resource executed.

(ii) The case perspective considers the trace to which the current event belongs. It is
possible to look back in the log and see when any other event for the same trace
was completed and the time when this execution occurred. This is possible only if
the event is not the first one executed for the trace.

As an example, consider Figure 4.4 that shows a “log footprint” consisting of three
complete events, i.e., e, e1, and e2. We assume that events e and e1 belong to the same
trace (i.e., e, e1 ∈ σ) and event e1 was completed before event e was started. As shown
in Figure 4.4, we assume that events e and e2 were completed by the same resource (i.e.,
res(e) = res(e2)). For each of the events we indicate the time when they were completed,
for example, from Figure 4.4, event e was completed at time(e). We use this example
in the remainder of this section to estimate when events are started based on complete
events.

4.3.1 Obtaining Start Event Given a Complete Event

Given a complete event from the log, we now formally define how we estimate when a
corresponding start event occurred (if it was not recorded).

Definition 4.3 (Start Time of a Complete Event) Let L, T ,R be as defined in Def-
inition 3.6 and EL be as defined in Definition 4.1. We can define a set consisting of all
complete events in EL as: EcL = {e ∈ EL | type(e) = complete}. Given an event e ∈ EcL
executed at time time(e) ∈ T by resource res(e) ∈ R, we can find two possibly related
complete events from the set EcL.

• Consider an event et ∈ EcL which is the last event completed in the same trace,
i.e., there is a trace σ ∈ L such that:

66 Chapter 4. Using Process Mining to Analyze Resource Availability

(time(e1),res(e1))(time(e2),res(e2)) (time(e),res(e))

trace

resource

Figure 4.4: An example showing the completion times of three events executed in the
log. Each event is shown with the time it was executed and the resource that executed
it.

- e ∈ σ (the current event belongs to the trace),
- et ∈ σ (the last completed event belongs to the trace),
- ∃1≤i≤|σ| σ(i) = et ∧ σ(i + 1) = e (this event is the previously executed event
in the trace),

- time(et) ≤ time(e) (the last event occurred before the current event).
• Consider another event er ∈ EcL which is the last event completed by the same
resource, i.e., there is a resource res1 ∈ R such that:

- res(e) = res1 (the resource executed the current event),
- res(er) = res1 (the resource executed the last event),
- time(er) ≤ time(e) (the last event occurred before the current event),
- e 6= er (the two events are not equal),
- {e′ ∈ EcL|res(e

′) = res1 ∧ e
′
/∈ {e, er} ∧ time(er) ≤ time(e′) ≤ time(e)} = ∅

(there is no other event from the set that was executed by the same resource
and that occurred between these two events).

We use events et and er to determine a start event for a complete event e. We note that
et and er may not always be defined. This is in situations where the current event is the
first one in the trace, or when the current trace is the first one executed by the resource,
or when a resource completes multiple activities at the same time. Moreover, it might
be the case that it is only possible to find one of two events, for example, we can find
a previous event completed for the trace but it is not possible to find a previous event
completed by the same resource and vise versa. The definition and the implementation
takes cares of these different trade-offs in order to find a corresponding start event for
each complete event such that these two events refer to the same activity instance.

Given a complete event e ∈ EcL executed at time time(e) ∈ T , the start time of a start
event can be defined based on a number of perspectives.

• We can define the start time of event e by considering the trace perspective. For
example, if we consider Figure 4.4 we want to determine when the event e was
started. This event is compared with a previous complete event e1 belonging to the
same trace. From Definition 4.3, the start time of a complete event belonging to

4.3 Preprocessing of Event Logs 67

the same trace is given as time(et) which should follow this requirement:

time(et) ≤ time(e). (4.1)

This can be used in situations when the current event is the first one that was
executed for the resource (i.e., we do not have any previous event that the resource
executed).
• The start time of an event can also be defined based on the the resource per-
spective. From Figure 4.4, event e can also be compared with a previous event e2
which was executed by a similar resource. From Definition 4.3, the start time of a
complete event executed by a similar resource is given as time(er) which follows
this requirement:

time(er) ≤ time(e). (4.2)

This definition can also be used in situations when the current event is the first one
that was executed for the trace (i.e., we do not have any previous event information
belonging to the current trace).

• Given that we have a complete event e such that we can obtain a previous event
executed for the trace to which e belongs and a previous event that the current
resource completed, we can define the start time of event e as:

max(time(et), time(er)). (4.3)

The max function is used in situations when the current resource completed a last
event but the trace is not available. For example, it might that event e1 shown
in Figure 4.4 is not completed yet by the time event e2 is completed. This is also
applicable in situations when the trace is available (i.e., the execution of event e1 is
completed) but the resource is still busy executing a previous event e2. Moreover,
when the trace is available and the scheduled resource to execute the next work
item is available, (s)he starts the execution of an event belonging to this trace.
After determining when the current event was started, it now becomes possible to
estimate the service time of the current event e defined as:

time(e)−max(time(et), time(er)). (4.4)

• When determining the start time of a complete event, we can assume an office
working hour, for example, that an event is started and completed within an 8-
hour period. If the start time of an event is obtained using one of the techniques
described before, we can assume that the start and completion time of an event
lies in the interval:

(time(e)−max(time(et), time(er))) ≤ 8. (4.5)

68 Chapter 4. Using Process Mining to Analyze Resource Availability

Given that we have a complete event e ∈ EcL, we can use the information about the last
completed event from the trace and the information about the last completed event of
the resource, to estimate when this event was started.

4.3.2 Obtaining Schedule Event Given a Complete Event

As discussed in Chapter 3, a work item undergoes a number of states which also corre-
spond to the various event properties as given in Definition 3.6. In this previous section
we have discussed how to estimate when events are started which corresponds to the
start state of a work item. It is also possible to estimate when an event is scheduled for
execution which corresponds to the schedule state of a work item. After a work item has
been scheduled for execution, it is started and eventually completed. In this section, we
formally define how to estimate when events are scheduled for execution (if they are not
recorded) given the complete events in the log. We assume that it is only the complete
events recorded and we do not have start events in the log.

Definition 4.4 (Schedule Time of a Complete Event) Let T ,R be as defined in
Definition 3.6 and EcL be as defined in Definition 4.3. Given a complete event e ∈ EcL
executed at time time(e) ∈ T by resource res(e) ∈ R, the schedule time corresponding
to a given complete event in the log, can be defined based on a number of perspectives.

• The definition of the schedule time follows similar requirements as given in Defi-
nition 4.3. If the current event is the first one that the resource executed, then the
schedule time is determined entirely on the trace perspective. As discussed, the cur-
rent event e is compared with the last complete event belonging to the same trace.
From Definition 4.3, the completion time of the last event is given as time(et). The
schedule time based on the trace perspective should follow this requirement:

time(et) ≤ time(e). (4.6)

• If the current event is the first one for the trace, then the schedule time is de-
termined entirely on the resource perspective. As discussed in Definition 4.3, the
current complete event is compared with a previous event that was completed by
a similar resource. The completion time of the last event executed by a resource
is given as time(er). The schedule time based on the resource perspective should
follow this requirement:

time(er) ≤ time(e). (4.7)

• Given that we can obtain a previous event executed for the current trace which
was completed at time time(et) and a previous event executed by a similar resource
completed at time time(er), we can define the schedule time of the current event e
as:

time(et). (4.8)

This is given in situations when we have the current event and the previous event

4.3 Preprocessing of Event Logs 69

belonging to a sequential process. In such situations we have one activity instance
running for a given trace.
• When a previously executed event of a given trace is completed, the scheduled
resource should be able to start the execution of the next event for the trace.
Therefore, the current completed event is scheduled as soon as a previous event for
the trace is completed. The current event will wait if the previous event for the
trace is completed but the resource scheduled to execute it is still busy. Therefore,
using the last event that a resource executed and the previous event executed for
the trace, it is now possible to estimate the waiting time of the current event e as:

(time(er)− time(et)),max 0. (4.9)

Therefore, the max function is used here for such situations when the resource is
available, but there is still an event being executed for the current trace. Here,
event et is later than event er. In such situations, we have a waiting time of zero.
If the previous event for the trace is completed when the resource is available, this
resource will start the execution of the next event for the trace.
• The trace to which the current event belongs can be associated with a flow time
value. For the current event e, the flow time can be given as the sum of its waiting
and service times. This can be calculated as the difference between the time an
event was completed and the time and event was scheduled. From Equation 4.8 the
schedule time of an event e can be given as time(et). Therefore, we can estimate
the flow time associated to the trace to which event e belongs as:

time(e)− time(et). (4.10)

Given that flow time is the sum of the service time and the waiting time of a given
event, we can also calculate this value from Equations 4.4 and 4.9.

- If we assume that event er occurred later than event et, then the service time
can be given as time(e)− time(er) (cf. Equation 4.4).

- Also, if event er was later than event et then the waiting time can be given as
time(er)− time(et) (cf. Equation 4.9).

- Therefore, the sum of the service time and the waiting time can be defined as
time(e)− time(et).

Therefore, based on the calculations described in this section, we can be able to estimate
when events are scheduled and started. Such events can be automatically inserted in an
event log. The approach described in this section is implemented in the process mining
framework, ProM.

4.3.3 Experimental Validation

In this section, we describe a case study carried out to estimate when events are started
based entirely on the complete events of activities recorded in the log.

70 Chapter 4. Using Process Mining to Analyze Resource Availability

Dutch Financial Institute

The real-life log we use in this section is from a Dutch Financial Institute that handles the
application procedure for a personal loan or overdraft [60]. The process is structured as
follows. Initially, an application is submitted through a web page. When the application
is received, some automatic checks are performed to ensure that the application submit-
ted is complete. If the application is not complete, it is complemented with additional
information. This information is obtained through contacting the customer by phone. If
a customer is eligible for the loan or overdraft then an offer is sent to the client by mail.
After the offer is received back from the customer, it is assessed. If it is incomplete, then
missing information is requested from the customer. After which a final assessment is
done and the application is approved and activated.

The main event log obtained consists of a merge of three sub-processes.
• The main process that deals with the applications received from the customer,
• the second process that handles the offers belonging to the application, and
• the third process that handles the work items belonging to the application.

This event log contains information for 262,200 events in 13,087 cases, 23 activities and
69 originators. The start date of the log was “2011-10-01 00:38:44” and the end date was
“2012-03-14 16:04:54”. Each of the activities in the sub-process handling the work items,
has the “schedule”, “start” and “complete” events recorded in the log. The other two
sub processes only had “complete” events for the activities that were executed. For the
analysis presented in this section, we use the sub-process that handles the work items
since this has both the “start” and “complete” events. Moreover, we can use this for
comparison purposes, i.e., compare the original event log with the log where start events
are inserted.

We filtered the main event log to obtain the events for the sub-process that handles the
work items belonging to the application. The filtered event log contains 170,107 events in
9,658 cases. Since this event log had both the “start” and “complete” events, we filtered it
to obtain an event log with only “complete” events. The aim of this analysis is to compare
the results obtained when “start” events are inserted in the log with the original event
log that had both “start” and “complete” events.

Dutch Financial Institute Analysis

Given an event log, missing events can be added to the log using the Add Missing

Events plug-in in ProM. The plug-in takes as input an event log and produces as output
an event log with the added “start” events. As discussed in the previous section, the start
time of a given complete event can be estimated based a number of perspectives, i.e.,
the case perspective, the resource perspective, and maximum of the case and resource
perspectives. In this case study, we insert missing “start” events based on a maximum of
case and resource perspectives.

After estimating when events are started, it is possible to calculate the service times
values of activities that each resource executed. However, since this calculation of the

4.3 Preprocessing of Event Logs 71

service times is based on estimates we may need to see the distribution of the service
time values. This is especially useful because it might be the case that there are outliers
in the service time values that have to be removed. In order to visualize the distribution
of the service time values, we use box plots for this representation. The box plots are
constructed as shown in Figure 4.5.

Figure 4.5: Configuration step for specifying the range of the service time values for
resources.

On the right hand side of this figure we see the box plot representations of service time
values calculated for each resource in the log1. The box plots also show any outliers or
extreme outliers of the estimated service time values for each resource. From the box plot
we can observe that on average the service times of most resources are similar and not
higher than 100 minutes (except for resource “hooten” with values skewed in the upper
part of the box plot). Such information can now be used as input for (a) removing outliers
(cf. the Remove outliers option in Figure 4.5) and (b) for estimating the range of
service time values (cf. Estimate range of service time option in Figure 4.5).

For the analysis presented in this section, we compared the (a) throughput times, and

1The resource names in Figure 4.5 (and the rest of this case studies in this section) have been changed
to ensure confidentiality.

72 Chapter 4. Using Process Mining to Analyze Resource Availability

(b) working times of the original event log and the event log where the start events have
been inserted. The working times are measured as the average of the sum of the execution
times for the activities executed per trace. These results are shown in Figure 4.6 and are
measured in hours. The average throughput and working time values are shown with
95% confidence intervals.

Throughput Working
Time (hours) Time (hours)

original event log 200.2 ± 7.2 12.1 ± 2.1
event log with inserted events 198.1 ± 7.5 12.7 ± 0.4

Figure 4.6: Results showing the throughput times and actual working times for the
original event log and the event log where start events have been added.

The results show that the throughput times for the log with inserted events are slightly
lower than the throughput times values in the original event log. However, the working
times for the log with the inserted events are similar to the values in the original event
log. For the process that was recorded in the log, we note that resources were dedicated
to executed tasks for specific periods of time. Therefore, using the approach presented it
is possible to estimate when events are started which is similar to when resources actually
started working in the original event log. Moreover, the results presented in Figure 4.6
tend to be close to the throughput and working time values that are in the original event
log. As observed in the results, the throughput times of the cases tend to be higher than
the actual working times. This is because the actual working times of the activities in
the original event log were low, however, the waiting time between the different activities
executed per case were higher and resources were available to work. This therefore lead
to higher throughput times.

We also compared the average service times for the six main activities (with both the
“start” and “complete” events) in the original event log and the event log where we
inserted start events. The results of the service time values of the activities from the two
event logs are shown in Figure 4.7. The service time values are measured in hours and
are shown with 95% confidence intervals.

The results of the average service time values of the original event log and the event log
with inserted start events are similar as shown in Figure 4.7. We note that some of the
activities in the original event log did not have any information about the resources that
completed them. In such situations, the start times of events was completely determined
based on the case perspective. However, this was not always optimal and it lead to higher
execution times compared to the original event log. For example, in most of the cases in
the log activity Calling after sent offers did not have any information about the resources.
In such cases, then we had to remove outliers of the service time values which was based
on the results of the service time values of other activities.

Moreover, as discussed already the actual working times of activities in the original
event log were much lower compared to the throughput times. This was because the time

4.4 Characterizing Resource Availability from Event Logs 73

activity service time (hours)

original log log with inserted events
Fixing incoming lead 0.19± 0.07 0.18± 0.06

Filling in information
for the application 4.57± 0.82 4.50± 0.59

Rate fraud 0.03± 0.05 0.18± 0.03

Calling after sent offers 2.48± 0.45 2.10± 0.11

Assessing the application 0.33± 0.06 0.47± 0.05

Calling to add missing
information to the application 0.23± 0.07 0.23± 0.01

Figure 4.7: Results showing the service time values (in hours) of activities from the
original event log and the event log where start events have been inserted.

between a complete event and the start times of the next event executed for the trace
were high. Since our approach takes the assumption that when a resource completes the
previous work item, they immediately start the execution of an available work item, this
at times also lead to higher execution times of activities. In such situations the execution
times in the original log tend to be much lower compared to the approach we take. In such
situations, it was easy to visualize such outliers based on box plots and in our calculation
these values were removed from the log.

Therefore, given an event log with only complete events it is possible to estimate when
events are started. Since we can visualize the distribution of the service time values it is
possible for a use to remove any outlier values or give estimates within which the start
times are expected to fall. It is also possible to estimate when events were scheduled for
users and “schedule” events can also be added to a given event log.

We have defined metrics of inserting missing events in an event log and this makes it
is now possible to analyze resource performance perspectives from the log. In the next
section, we describe the procedure taken to analyze resource availability parameters from
an event log consisting of both the “start” and “complete” events.

4.4 Characterizing Resource Availability from Event
Logs

The execution of any business process where human resources are involved depends
mainly on the availability of human resources. In [125], it is proposed that the avail-
ability of a resource can be given by a number of states, for example, a resource can
be available, unavailable, offered, busy, reserved, etc. A resource is in a given state over
a certain period of time which can be specified by a start and completion time. Each

74 Chapter 4. Using Process Mining to Analyze Resource Availability

organization and process has specific rules that pertain to the way resources are allowed
to work. For example, from the Graduate Admission process introduced in Chapter 1,
it can be specified that the Admissions Committee should take a 30-minute break after
having worked for four hours. Moreover, it can also be specified that resources in this
process are allowed to work for only eight hours a day.

As discussed in the Chapter 2, when people are working they often distribute their time
and attention over multiple processes (cf. Section 2.3 on page 25). Moreover, they also
tend to work part-time and in batches for a given process [3, 25, 143]. As we analyze
information recorded in an event log, we focus on a single business process whereas
people distribute their attention over a number of processes. In this section, we describe
an approach taken to approximate resource availability parameters for a given process
recorded in the log.

The remainder of this section is structured as follows. First, we introduce resource avail-
ability parameters in Section 4.4.1. Section 4.4.2 discusses the approach taken in this
chapter to analyze resource availability parameters from event logs. Given that we have
information about work items from an event log, we formally discuss how to approximate
resource availability for a given process in Section 4.4.3. Finally Section 4.4.4 discusses
two case studies where the techniques developed in this section have been applied.

4.4.1 Resource Availability Parameters

In reality, people are not available to work all the time but for specific periods of time.
When human resources are available to work on a particular business process they can
decide to work only part-time, for example, in afternoon or when there is work to be done.
When analyzing the information recorded in event logs, we can estimate availability of
resources over periods of time. In this section, we refer to this as availability and we
denote it as a. The availability of a resource is the percentage of time over which a
person is able to work. Moreover, in an event log it is possible to analyze times when a
resource executes activities, for example, the specific days in a week, months in a year.

When resources are available to work, they can choose the way they want to process
available work items. Some people prefer to execute work items as soon as they arrive
while other people prefer to wait for work to accumulate and process it in a batch. In
other words, they aggregate their work items and execute them together. Therefore, when
resources are available to work they can divide up their work over different portions or
chunks. The size of a chunk is denoted by c.

Figure 4.8 illustrates the relationship between chunk size and horizon. The horizon de-
notes the period of time over which a resource is available to work. The small empty
circles represent points in time when a new work item is started by a resource and the
small filled circles represent points in time when a work item is completed by a resource.
The periods when the resource is actually working are denoted by the shaded blocks.
Some work items can be started and completed in the same horizon period whereas some
work items can be started in one horizon period but completed in the another horizon
period. When analyzing the way resources work as recorded in an event log, it is possible

4.4 Characterizing Resource Availability from Event Logs 75

to estimate periods of time when resources work.

horizon (h)

c cc

completion
of work item

c c ccc

horizon (h)

start of
work item

resource is
available

resource
is working

cc

Figure 4.8: Overview of the relation between chunk size and horizon showing
periods when a resource is available to work.

Chunk sizes can vary among different resources, for example, a resource may work over
small or longer periods of time as shown in Figure 4.8. In the first big block a resource
works over one long chunk period while in the second block a resource works over three
shorter chunk periods. Additionally, we see that a resource is free between the two blocks
over which they work and they also wait for work items to accumulate and execute them
one at a time in the second block.

The chunks of work to be done can be distributed over a specific period of time. This
is referred to as a horizon and the length of a horizon is denoted by h. When analyzing
event logs, we can scan the log over a number of different horizon periods, for example,
consider all the events executed in a 6-hour period, a day, a week, a month, or even a
year. In the next subsection, we describe steps taken in this chapter to analyze resource
availability parameters from event logs.

4.4.2 Approach Taken to Analyze Resource Availability

Figure 4.9 shows an overview of the approach taken in this section to analyze resource
availability parameters from an event log (assume that it has the start and complete
events for each activity). In the following, we conceptually discuss each of these steps in
detail.

Step 1: Create Horizon Periods

The first step in this approach as shown in Figure 4.9 is to create horizon periods over
which we expect resources to work. Let us consider an example of part of an event
log shown Table 4.1. This event log is from a simplified process model of the graduate
admission business process shown in Figure 4.10.

The event log in Table 4.1 contains: (a) case id’s, (b) activity names, (c) resource names,
(d) timestamps and (e) service times. Given this event log, we can create different horizon

76 Chapter 4. Using Process Mining to Analyze Resource Availability

Event log

Availability per
horizon

Free periods per
horizon

Chunk size per
horizon

Create Map

Filter

Calculate

Resource 1

Resource 2

Resource 3

Horizon
periods

Figure 4.9: Overview of the approach taken to analyze resource availability parameters
from an event log.

periods over which resources are able to work. The length of the horizon period can be
specified as input parameter by the user. In this approach, the length of each horizon
period can be measured as: (a) day (length of 24 hours), (b) week (length of 7 days), (c)
month, and (d) year (length of 365 days). The timestamps as shown in Table 4.1 relating
to when resources start executing activities are used in determining the horizon periods.
For example, if the horizon length is 24 hours then the first horizon period in the log will
be created starting from “Feb 02 00:00:00” to “Feb 02 24:00:00”.

Table 4.1: An example of an event log based on the Petri net model shown in Figure 4.10.
Each row corresponds to one event and events are grouped per case. Events within each
case occurred in the given order.

Case Id Activity Resource TimeStamp

Start Time Completion
Time

Case 1 Register Application Ann Feb 02 08:13:00 Feb 02 09:20:00
Send Acknowledgment Ann Feb 02 09:43:00 Feb 02 10:05:00
Check Documents Tony Feb 02 10:58:00 Feb 02 11:59:00
Classify Application Erika Feb 02 12:25:00 Feb 02 12:50:00
Unconditional Offer Peter Feb 02 13:00:00 Feb 02 13:58:00
Send Reply Mary Feb 02 14:00:00 Feb 02 14:20:00

Case 2 Register Application Ann Feb 02 10:06:00 Feb 02 10:14:00
Send Acknowledgment Ann Feb 02 10:15:00 Feb 02 10:47:00
Check Documents Tony Feb 02 12:00:00 Feb 02 12:16:00
Request More

4.4 Characterizing Resource Availability from Event Logs 77

Documents Tony Feb 02 12:19:00 Feb 02 12:31:00
Check Documents Tony Feb 02 13:30:00 Feb 02 14:12:00
Classify Application Erika Feb 02 14:20:00 Feb 02 14:45:00
Conditional Offer Peter Feb 02 15:00:00 Feb 02 15:20:00
Send Reply Mary Feb 02 15:30:00 Feb 02 15:40:00

Case 3 Register Application Tony Feb 02 14:15:00 Feb 02 15:10:00
Send Acknowledgment Ann Feb 02 15:17:00 Feb 02 15:27:00
Check Documents Mary Feb 02 16:20:00 Feb 02 16:40:00
Classify Application Peter Feb 02 16:50:00 Feb 02 17:00:00
Reject Application Andy Feb 02 17:10:00 Feb 02 17:30:00
Send Reply Mary Feb 02 17:55:00 Feb 02 18:20:00

Case 4 Register Application Ann Feb 02 15:30:00 Feb 02 16:05:00
Send Acknowledgment Ann Feb 02 16:20:00 Feb 02 16:37:00
Check Documents Mary Feb 02 18:00:00 Feb 02 18:42:00
Classify Application Peter Feb 02 19:00:00 Feb 02 19:30:00
Conditional Offer Andy Feb 02 20:00:00 Feb 02 20:35:00
Send Reply Mary Feb 02 20:40:00 Feb 02 21:20:00

Case 5 Register Application Ann Feb 02 16:40:00 Feb 02 17:14:00
Send Acknowledgment Ann Feb 02 17:30:00 Feb 02 17:58:00
Check Documents Mary Feb 02 20:00:00 Feb 02 20:15:00
Classify Application Peter Feb 03 07:10:00 Feb 03 07:50:00
Unconditional Offer Erika Feb 03 08:00:00 Feb 03 08:25:00
Send Reply Mary Feb 03 09:00:00 Feb 03 09:15:00

As we are interested in the analysis of the availability of individual resources, we filter
the event log based on the resources that executed activities. In this way, the focus
is on resources and the activities that they executed and not on the cases in the log.
For example, from the event log shown in Table 4.1, we can filter events in the log for
resources Ann and Tony which correspond to the activities that these resources executed
as shown in Table 4.2.

Each row in Table 4.2 corresponds to one event and the events for each resource occurred
in the given order. It is now possible to learn the context of the work that resources did
and hence estimate their availability for the given process over specific periods of time.
Furthermore, by looking at the activities executed we can see that Ann was available
to work between “8:13” and “17:58” while Tony was available to work between “10:58”
and “15:10”. This gives an idea that resources are not available to work all the time but
for specific periods of time. When filtering out activities for a specific horizon period, we
only consider activities that are started and completed within this horizon period.

78 Chapter 4. Using Process Mining to Analyze Resource Availability

Register
Application

Send
Acknowledgement

Classify
Application

Request More
Documents

Check
Documents

Unconditional
Offer

Conditional
Offer

Send
Reply

Start

End

Reject
Application

p1

p2

p3

p4

p5

Figure 4.10: Petri net model of the graduate admission process.

Step 2: Estimate Resource Availability

After filtering the activities executed for each resource, the next step as shown in Fig-
ure 4.9 is to map these activities over the different horizon periods that were calculated
in the first step. This way we are able to analyze different working patterns of resources.
From the activities executed per resource as shown in Table 4.2, we can construct a time
line depicting the way in which such resources work.

The time line showing the two work patterns for resources Ann and Tony is shown in
Figure 4.11. This is constructed using the information about the timestamps of the start
and complete events of the activities that were executed. Figure 4.11 shows working
patters for Ann (in (a)) while (b) shows the working pattern for Tony over a horizon
period of the same length. We assume that these resources work for a horizon period of
a day.

From Figure 4.11(a), we observe that Ann started the execution of the first work item at
“09:13” and completed it at “09:20”. The shaded periods between the start and comple-

4.4 Characterizing Resource Availability from Event Logs 79

Table 4.2: The events shown in Table 4.1 can be filtered based on the resources. This
table shows events executed for two resources, i.e., Ann and Tony. Each row in the
table corresponds to one event and events are grouped per resource. The events for each
resource occurred in the given order.

Resource Activity Case
Id

TimeStamp

Start Time Completion Time
Ann Register Application 1 Feb 02 08:13:00 Feb 02 09:20:00

Send Acknowledgment 1 Feb 02 09:43:00 Feb 02 10:05:00
Register Application 2 Feb 02 10:06:00 Feb 02 10:14:00
Send Acknowledgment 2 Feb 02 10:15:00 Feb 02 10:47:00
Send Acknowledgment 3 Feb 02 15:17:00 Feb 02 15:27:00
Register Application 4 Feb 02 15:30:00 Feb 02 16:05:00
Send Acknowledgment 4 Feb 02 16:20:00 Feb 02 16:37:00
Register Application 5 Feb 02 16:40:00 Feb 02 17:14:00
Send Acknowledgment 5 Feb 02 17:30:00 Feb 02 17:58:00

Tony Check Documents 1 Feb 02 10:58:00 Feb 02 11:59:00
Check Documents 2 Feb 02 12:00:00 Feb 02 12:16:00
Request More Documents 2 Feb 02 12:19:00 Feb 02 12:31:00
Check Documents 2 Feb 02 13:30:00 Feb 02 14:12:00
Register Application 3 Feb 02 14:15:00 Feb 02 15:10:00

tion of the work items indicate when the resource is actually working. To estimate the
availability of a resource over a specific horizon period, we need to consider the interval
of time over which they work in this horizon. Therefore, the availability of a resource can
be estimated based on the information about the work items started and completed in a
specific horizon period.

Given the resource working pattern shown in Figure 4.11(b), we can estimate resource
availability for Tony given horizon period. We use the information about the five work
items that were executed by Tony. The resource availability value will be calculated
as the difference between the time Tony started the execution of the first work item
(“10:58”) and the time at which the last work item was completed (“15:10”) which gives
252 minutes. The difference between these two time values is divided over the horizon
length (i.e., horizon length of one day gives 1440 minutes) to get a percentage of time
that Tony is available to work on this specific process. This is calculated as:

252
1440 ∗ 100 = 17%.

We can also calculate the availability value for Ann using the same procedure described.
As shown in Figure 4.11(a), Ann starts the execution of the first work item at “08:13”
and completes the execution of the last work item at “17:58”. This implies that Ann is
available to work over this horizon period for 585 minutes. The percentage of time over

80 Chapter 4. Using Process Mining to Analyze Resource Availability

0
8
:
1
3

0
9
:
2
0

0
9
:
4
3

1
0
:
0
5

1
0
:
0
6

1
0
:
1
4

1
0
:
1
5

1
0
:
4
7

1
5
:
1
7

1
5
:
2
7

1
5
:
3
0

1
6
:
0
5

1
6
:
2
0

1
6
:
3
7

1
6
:
4
0

1
7
:
1
4

1
7
:
3
0

1
7
:
5
8

(b)
Tony

(a)
Ann

horizon (h)

1
0
:
5
8

1
1
:
5
9

1
2
:
0
0

1
2
:
1
6

1
2
:
1
9

1
2
:
3
1

1
3
:
4
5

1
4
:
1
2

1
4
:
1
5

1
5
:
1
0

horizon (h)

Figure 4.11: Working patterns for two resources showing start and complete times
of work items executed in a specific horizon period (h). The shaded periods with time
intervals indicate the start and completion of each work item. The blocks indicate when
each resource is available to work.

which Ann is available to work in the horizon period of a day is calculated as:

585
1440 ∗ 100 = 40%.

Given the values obtained, we see that over a horizon period of the same length, Ann is
available for a longer period of time compared to Tony.

The availability values discussed here are calculated over the individual horizon period
within which resources executed work items. However, it is also possible to estimate
the average availability values for the entire log period. This value can obtained using
the different availability values averaged over the number of horizon periods used in the
calculation. Moreover, we can easily compare the availability of resources across horizon
periods of different lengths, for example, the availability of Ann over the periods of
December and January given that the horizon length is a month.

The calculation of the availability parameters relies on the idea that the work items
used are started and completed in the same horizon period. Since a resource can be
available and work over multiple horizon periods in the event log, it is also possible to
calculate the average availability of a resource over the entire log. This can be based on
the information of the individual resource availability values from the specific horizon
periods when resources work.

However, there are limitations to this approach. In real life many work items span multiple
days, weeks or even months. For example, if we are using a horizon period of one day
but there are activities that started and completed over a period of a week, then such

4.4 Characterizing Resource Availability from Event Logs 81

activities are not used in the calculation yet in the actual sense they are activities that
a resource executed in a given horizon period. Therefore, the calculation of work items
per horizon period only provides a representative picture if the work items are started
and completed in the same horizon period.

Step 3: Estimate Chunk Size and Free Periods

As shown in Figure 4.9, the next step in this approach is to calculate the periods of
time over which resources work. Furthermore, we also calculate free and busy periods of
resources over the different horizon periods. To estimate the sizes of the chunk periods
we require information about the start and completion times of the different work items
executed in each horizon period.

Consider Figure 4.12 which shows working patters for Ann (in (a)) and Tony (in (b)))
over a horizon period of a day. We can observe that resources can work over different
blocks of time. For example, Ann (in Figure 4.12(a)) works over two short periods of
time while Tony (in Figure 4.12(b)) works over one long period of time. We can deduce
that Tony executes work items one at a time as they arrive while Ann waits for work
items to accumulate before starting their execution.

0
8
:
1
3

0
9
:
2
0

0
9
:
4
3

1
0
:
0
5

1
0
:
0
6

1
0
:
1
4

1
0
:
1
5

1
0
:
4
7

1
5
:
1
7

1
5
:
2
7

1
5
:
3
0

1
6
:
0
5

1
6
:
2
0

1
6
:
3
7

1
6
:
4
0

1
7
:
1
4

1
7
:
3
0

1
7
:
5
8

(b)
Tony

(a)
Ann

horizon (h)

1
0
:
5
8

1
1
:
5
9

1
2
:
0
0

1
2
:
1
6

1
2
:
1
9

1
2
:
3
1

1
3
:
4
5

1
4
:
1
2

1
4
:
1
5

1
5
:
1
0

horizon (h)

Figure 4.12: Working patterns for two resources showing start and complete times of
work items executed in a specific horizon period (h). Ann works over two short time
periods while Tony works over one long time period.

To estimate the period of time over which a resource works, we consider the work items
that were executed per horizon period. Given these work items we determine different
blocks of time when work items are executed based on the differences between the comple-
tion of a work item and the start of execution of the next work item. Consider Figure 4.13,
where we focus on the working pattern of the resource in (a) from Figure 4.12. Here, we

82 Chapter 4. Using Process Mining to Analyze Resource Availability

can distinguish the two working periods using information about the completion time of
the fourth work item, i.e., “10:47” and the start time of the fifth work item, i.e., “15:17”.
We see that there is a difference of approximately 270 minutes between these two time
periods.

We scan the log for work items that each resource executed in the specific horizon period.
We use the information about the start and completion times of these work items to
determine the working and free periods for each resource. For example, if we compare
the time a particular work item is started with the time a previous work item was
completed, there can be distinct gaps between these two times. If the free time between
a given start time of a work item and the completion time of the previous work item is
greater than 60 minutes, this can imply these two work items are executed over different
chunks. The difference between the completion time of the last work item executed in a
given chunk period and the start time of the first work item executed in the next chunk
period gives the size of the free period. Given the working pattern of a resource shown in
Figure 4.13, we see that there is a distinct period of time when a resource is not working,
i.e., between “10:47” and “15:17”. This can imply that the resource works over two chunk
periods where the first chunk period is of size 154 (difference between the start of the
first work item executed and the completion time of the last work item executed in the
chunk) and the second chunk is of size 161.

0
8
:
1
3

0
9
:
2
0

0
9
:
4
3

1
0
:
0
5

1
0
:
0
6

1
0
:
1
4

1
0
:
1
5

1
0
:
4
7

1
5
:
1
7

1
5
:
2
7

1
5
:
3
0

1
6
:
0
5

1
6
:
2
0

1
6
:
3
7

1
6
:
4
0

1
7
:
1
4

1
7
:
3
0

1
7
:
5
8

horizon (h)

23 01 01
270

03 15 03 26

Figure 4.13: Working pattern for Ann from Figure 4.12. The figure is annotated with
values indicating the differences between completion and start times of work items exe-
cuted in the horizon period(h).

Moreover, we can also use the information about the periods between two chunk periods
to estimate whether resources accumulate work or not. For example, the resource shown
in Figure 4.13 accumulates work between the two chunk periods. Therefore, we can
assume that in the second chunk period the resource will process the work items in a
batch. This also depends on the size of the free period between two chunks. This implies
that a resource does not work all the time on a given process, but will be available for
specific times and can take breaks when working on a given process.

Next, we formally define how to analyze resource availability from an event log using the
information about work items that resources executed.

4.4 Characterizing Resource Availability from Event Logs 83

4.4.3 Resource Availability from Event Logs

In the previous subsection, we have discussed an approach taken to analyze resource
availability from event logs. In this section, we formally define how to extract work items
executed by each resource from an event log. We use this information to formally describe
how resource availability and working periods are obtained from the information in the
log.

Horizon Period

In Section 4.2, we formally defined how to obtain work items from an event log. We use
this information to formally define a horizon period.

Definition 4.5 (Horizon Period) Let T , R be as defined in Definition 3.6. We can
define a horizon period of length h ∈ T as follows:

• Given some reference time t ∈ T , we can specify the start of a horizon period as
t.
• We can define a function hforw ∈ T → T that specifies the end of a horizon period
based on a given reference time t.
• For a reference time t ∈ T , the horizon period starts at t and ends at hforw(t)
with t ≤ hforw(t) as shown in Figure 4.14.
• This implies that if t is the start of the horizon period and hforw(t) defines the
end of the horizon period then hforw(t)− t ≤ h.

t hforw(t)

h

Figure 4.14: Timeline showing a horizon period of length h. The start of the horizon
period is specified by t and the end of the horizon period is given by hforw(t).

Work Items Executed in a Horizon Period

In this subsection, we formally define how to obtain work items that a resource executed
in a horizon period. in this period by a given resource.

Definition 4.6 (Work Items Executed in a Horizon Period) Let L, T ,R, andWL

be as defined in Definition 4.2.
• Given a reference time t ∈ T , we can specify the start of a horizon period as t
and the end of the horizon period as hforw(t) as shown in Figure 4.14.

84 Chapter 4. Using Process Mining to Analyze Resource Availability

• We can define a function wl(t, r) : T × R → ℘(WL) that maps work items from
a set WL into a result set ℘(WL) that consists of work items executed by a
resource r in a horizon period of length h as:

wl(t, r) = {w ∈ WL | t ≤ ts(w) ≤ hforw(t) ∧ res(w) = r}.

Given the set of work items WL from the event log L, we filter out all the work items
that are executed for a specific resource r in each horizon period. These work items
are mapped into the set ℘(WL) which is a power set of the set WL consisting of work
items executed for a resource r. This is only possible if the work item was started in
the specified horizon period. In the next step, we can calculate resource availability for
a given resource from the work items that are in the set ℘(WL).

Resource Availability

In this subsection, we need to obtain the availability of resource over a specified horizon
period. The work items in the given set obtained in the previous subsection have a
number of properties. However, when calculating resource availability we are interested
in the start and completion times of events that are associated with the work items.
Moreover, we need to abstract away from the other properties of the work items, for
example, activity names.

In order to calculate the availability of a resource, we need to use the timestamp infor-
mation associated with the work items in each horizon period. It is important that the
work items in obtained in the set ℘(WL) are ordered based on the times when they were
started. This is because such the events associated with these work items can be obtained
from different traces in the log. Therefore, we define a function fsort(w) that sorts work
items on their start times and this is given as:

fsort(w) : ℘(WL)→ τs(WL).

The function fsort(w) orders work items from the power set ℘(WL) and maps them into
a sequence τs(WL). The sequence τs(WL) is defined over the set of work itemsWL. Given
that the sequence τs(WL) = 〈w1, w2, ..., wn〉, for any two work items w1, w2 such that
τs(WL)(1) = w1, τs(WL)(2) = w2, then ts(w1) ≤ ts(w2). This implies that work item w1
was started before work item w2.

Definition 4.7 (Resource Availability) The availability of a resource r ∈ R over
a specified horizon period of length h is calculated based on the following procedure.

• Given that we have a sequence τs(WL) containing the work items that a resource
executed in a horizon period, we obtain the first and the last work items from the
sequence given as:

- τs(WL)(1) = w1 that corresponds to first work item that a resource started in
the horizon period.

- last(τs(WL)) = wn that refers to the last work item that a resource started
in the horizon period such that: ts(w1) ≤ ts(wn).

4.4 Characterizing Resource Availability from Event Logs 85

• Using the first and the last work items executed in the sequence, (i.e., w1, wn),
we define a function availh : T → R that is used to calculate the availability of a
resource r over a specified horizon period of length h as:

availh = ts(wn)− ts(w1)
h

.

For an event log, we can calculate several horizon periods using given reference times
(i.e., t, t1 ∈ T) based on a given horizon period. If the length of horizon period is a day,
then we have a horizon period created for each day where a resource started a work item.

It is possible to calculate the availability of a resource over all the horizon periods that
this resource worked in the log. We can define the number of horizon periods over which
a resource r worked in the log L as hn. The availability of the resource over the log can
be defined by a function availhn : T → R which is given as:

availhn =

hn∑
h=1

availh

hn
.

The calculation of resource availability over the log is based on the availability of the
resource calculated for each horizon period as shown in Definition 4.7. However, we note
that to get the average availability value over the entire log we consider all the horizon
periods that have been created. This is done to provide a uniform comparison over all the
resources in the log. There might be horizon periods when one resource executed work
items and other periods when the same resource was not available to work. For example,
we can compare the availability parameters of a resource over two different months (if the
horizon length is a month). However, we can also calculate the availability parameters for
a resource over the entire log. This is useful because then we can compare the availability
parameters for individual resources over a given process recorded in the log.

Chunk Periods

As discussed in the previous subsection (cf. Figure 4.13 on page 82), when a resource is
available there are periods of time when they are working and there are some periods
when resources are not working over a given horizon period. We refer to such periods as
the free and busy periods of a resource in a given horizon period. These periods define
the chunks over which a resource works.

When we discussed how to calculate resource availability, we defined a sequence of work
items τs(WL) that contains the work items that a resource executed in a specified horizon
period. In this subsection, we use the work items in this sequence τs(WL) to formally
calculate the chunk periods over which a resource works.

86 Chapter 4. Using Process Mining to Analyze Resource Availability

Definition 4.8 (Free and Busy Periods) Let a horizon period be as defined in Def-
inition 4.5, the chunk periods over which a resource works in a given horizon period
are obtained using the following procedure.

• Given that we have a sequence τs(WL) = 〈w1, w2, w3, ..., wn〉 that contains the
work items that a resource executed in a horizon period. We can obtain these work
items from the sequence as:

- τs(WL)(1) = w1 that corresponds to first work item that a resource started in
the horizon period.

- τs(WL)(2) = w2 that refers to the second work item that a resource started
in the horizon period such that: ts(w1) ≤ ts(w2).

• We compare the time when the first work item was completed, with the time
when the second work item in the sequence was started. This is done to estimate
the free period between the first work item and the next work item in the sequence.
Therefore, we define a function fp(w) : τs(WL)→ R that computes the free periods
between work items as:

fp(w1) = tc(w1)− ts(w2).

The function fp(w1) estimates the value of the free period (if any) after completing
the first work item. In this example, we have calculated the free time period after
the first work item in the sequence.
• This procedure is done for all the work items in the sequence, for example, we
can calculate the free time period after the completion of the second work item as:
fp(w2) = tc(w2)− ts(w3) such that τs(WL)(3) = w3
• The free periods between each work item in the sequence τs(WL) are mapped into
a sequence fpd : {1, 2, ..., n} → R that can be defined as:

fpd = 〈fp(w1), fp(w2), ..., fp(wn)〉.

• We can obtain the free time periods from the sequence fpd that have a value
greater than 60 (i.e., 60 minutes). If such a value is found, we obtain the work
item in the sequence τs(WL) that corresponds to this free value. For example, if
fp(w4) > 60 then the work item it corresponds to is w4.
• Next, we obtain all the work items in the sequence that were started before the
current work item (i.e., w1, w2, w3). This implies these work items (including work
item w4) belong to a different chunk period from the rest of the work items in the
sequence τs(WL) (i.e, work items w5, ..., wn).
• Using the example in the previous step if work items w1, ..., w4 belong to the same
chunk period, then we can calculate the period of time when the resource is busy.
We can define a function bp(w) : τs(WL) → R that computes the busy periods
over which resources work as:

bp(w1) = tc(w4)− ts(w1).

Here, w1 is the first work item executed in the chunk period and w4 is the last work
item executed in the chunk period. The function bp(w1) estimates the size of the

4.4 Characterizing Resource Availability from Event Logs 87

chunk periods over which a resource works when they are available.

We note that in a given horizon period we can find more than one chunk period over
a resource works. Moreover, not all the chunk periods that are found are of the same
length. This can intuitively be interpreted that some times over the same horizon period
a resource can work for a chunk period that is much longer or shorter than the previous
chunk period.

In this section, we have formally discussed an approach taken to approximate resource
availability for a given process recorded in the log. Furthermore, we have discussed how
to estimate periods of time over which resources work. For example, from Figure 4.12
we have shown that given two resources they tend to have completely different working
patterns. Some resources tend to execute work items as soon as they arrive while other
resources will wait for work to accumulate and process it in a batch.

4.4.4 Experimental Validation

In this section, we discuss two case studies where we analyze resource availability pa-
rameters. The first case study is from a Dutch municipality and the second case study is
from the Dutch Financial Institute (discussed in Section 4.3.3). The event log from the
Dutch municipality consists of information from multiple processes that are handled in
the municipality. It is possible that in such an event log resources participate in multiple
processes within the municipality. Therefore, we expect that the results from the first
case study show that resources are actually involved in multiple process and are not
available all the time for a specific process.

On the other hand, the event log from the Dutch Financial Institute that we use in this
section is from one sub process related to the handling of work items for each application.
This process has dedicated resources available to execute work items and we expect to
see this from the availability results. Moreover, we expect to see that although resources
are available to work, they still work over specific periods of time and take breaks as they
work.

Dutch Municipality

The first case study was conducted on real-life logs from a municipality in The Nether-
lands. The real-life event log is taken from the CoSeLoG research project [53]. In the
CoSeLoG project 10 Dutch municipalities are investigated as they execute their processes.
In this section we discuss an event log from one of these municipalities consisting of mul-
tiple processes. The event log contains information for 107,471 events in 7,824 cases, 117
resources and 607 activities. The start date of the log was “2010-01-10 15:07:40” and the
end date was “2012-02-10 00:00:00”. We filtered this event log to get sub-logs consisting
of five of the processes contained in the original event log.

88 Chapter 4. Using Process Mining to Analyze Resource Availability

Mapping Resource Availability per Horizon Period

We use the Availability Analysis plug-in in the ProM framework to analyze re-
source availability parameters from an event log. The plug-in takes as input an event log
and produces as output resource availability analysis results. As input, we can specify
the horizon dimension for which we can calculate availability of resources, i.e., either day,
week, month, or year.

The plug-in gives results for the different steps described in the approach shown in
Figure 4.9. In the first step, we create horizon periods based on a given horizon dimension.
After creating the horizon periods we then map resource availability on these periods.
Figure 4.15 shows availability of resources mapped onto the different horizon periods. As
input we assume that the horizon period of a month. We create a horizon period for a
specific month if there was an execution of a work item on any day during that month.

Figure 4.15: Availability of resources over different horizon periods. The shaded periods
indicate that a resources was available to work in that horizon period.

Figure 4.15 shows for each resource (column in the table), the different horizon periods
when they were available to work. If a resource is available, this is indicated by the shaded
cell matching the horizon period and the resource. The uncolored cells matching specific
resources and horizon periods indicate that the given resources were not available to work
in the horizon periods. For example, resources “braam” and “cookie” are both available
in the second horizon period, i.e, from “Tuesday December 21 2010” to “ Thursday
January 20 2011”, while resources resource “braam” was not available to work in the
fourth horizon period, i.e., from “Tuesday February 01 2011” to “ Monday February 28
2011”.

4.4 Characterizing Resource Availability from Event Logs 89

Resource Availability per Horizon Period

In the next step we calculate availability values for each resource over the different horizon
periods when they executed work items. The result of this analysis on the municipality sub
process (i.e., “zaaktype-115”) is shown in Figure 4.16. The values are shown for each of the
resources that were available to work over the different horizon periods (cf. Figure 4.15).
The availability values are calculated for all the work items that were executed over
a horizon period of a month. If a resource is available, then a value calculated as a
percentage is shown in each cell matching the horizon period and the resource.

Figure 4.16: Resource availability values for a horizon period of a month.

The resource availability values shown in Figure 4.16 are calculated per horizon period
h based on Definition 4.7. The availability values are calculated based on the work items
that each resource executed in each horizon period.

From the results, we see that “braam” spends 77% of his time on the process during
the second horizon period while “cookie” spends 9% of his time on the process over the
same horizon period. From the results, we can also compare the availability values of
a single resource over the different months when they worked. There are months when
a resource dedicated more of their time to work compared to other months. Although
there are horizon periods when a resource is available (indicated by the shaded periods in
Figure 4.15), the availability values of some resources as shown in Figure 4.16 are equal
to 0. This can be the case that a resource was only available for a short period of time
over the given horizon period for the particular process recorded in the log.

Resource Availability for Entire Log

We also calculated availability values for resources over the entire log. As discussed in
Definition 4.7, we estimate the availability of a resource r over the work items that were
executed entire event log L. This calculation takes into consideration the number of

90 Chapter 4. Using Process Mining to Analyze Resource Availability

horizon periods that have been created. The availability results of a resource r from the
municipality sub process are shown in Figure 4.17.

resource availability value

zaaktype-116 zaaktype-117 zaaktype-127
smorel 0.04 0.02 0.15
wvrijse 0.53 0.21 0.04
ivdbjl 0.00 0.29 0.14
jvisser 0.00 0.03 0.01
wrijse 0.26 0.41 0.18
wpieck 0.14 0.18 0.23
antoon 0.39 0.18 0.00

Figure 4.17: Availability values for resources for three sub-processes from the munici-
pality event log. The availability values are calculated over a horizon period of a month.

The availability values shown are calculated from the individual horizon periods of a
month. For each resource, we show the availability values of three sub processes that
are involved in. Given each sub process, for example, “zaaktype-116”, we observe that
resources are not fully available and have low availability values for this particular process
that they are involved in. Moreover, we can also compare the availability values across the
different processes and observe that resources dedicate different percentages of their time
over different processes. For example, “wrijse” is available to work on process “zaaktype-
116” for a 53% of their time while the same resource is available to work on process
“zaakype-117” for 40% of their time.

Chunk Size Values per Horizon Period

Figure 4.18 shows the chunk size values for different resources over a horizon period of
day from a sub process of the municipality (i.e., “zaakype-127”). We also show the values
for the free periods in between the working periods.

The values of the free periods given an indication into the working patterns of resources,
i.e., whether resources wait for work to accumulate and process it in a batch or whether
resources work over short or long periods of time. The results shown in Figure 4.18
indicate that different resources work over chunk sizes of different lengths. Some resources
accumulate work items and work for an extended period of time. For example, “hanneke”
has on average a free period value of 390 minutes while the average chunk size over which
he work is 433 minutes. In comparison, resource “karel” has on average a free value of 29
minutes and a chunk size value of 109 minutes. We can conclude that “karel” works over
shorter periods of time and executes work items one at a time as they arrive whereas
“hanneke” works over longer periods of time and will wait for work to accumulate before
executing it. Furthermore, we observe that the free values for some resources are low
which implies that they work over one chunk period in a given horizon period when they
are available. For example, “kbaker” works for a period of 174 and will execute all the

4.4 Characterizing Resource Availability from Event Logs 91

resource horizon period - day

chunk size value free period value
bartel 345 131
ewout 161 0
hanneke 433 390
drika 48 1
braam 255 208
kbaker 174 0
geert 27 0
heike 468 450
karel 109 29
katja 149 15

Figure 4.18: Chunk size and free period values for resources from a sub-process of the
municipality based on a horizon period of a day.

work items over one chunk period.

The results presented in this section indicate that human resources are often times in-
volved in multiple processes and when available to work, they can work over longer or
shorter periods of time.

Dutch Financial Institute

The second case study was conducted on real-life event logs from the Dutch Financial
Institute (discussed in Section 4.3.3). In this process, we have resources dedicated to
handling of work items of the applications that are received by the institute. There-
fore, compared to the previous case study, we expect to see higher availability values of
resources over different horizon periods.

Mapping Resource Availability per Horizon Period

Given an event log, we can create horizon periods and map resource availability over
these horizon periods. The results are shown in Figures 4.19 and 4.20. In Figure 4.19,
we see availability of resources mapped onto horizon periods of a day, while Figure 4.20
shows availability of resources mapped onto horizon periods of a month. Both figures
have the same resources mapped over different horizon periods.

From the results shown over the different horizon periods, we see that resources are
available to work for most periods of the day and the month. Moreover, for some months
all the resources shown here were available to work, for example, in December, January
and February (cf. Figure 4.20). Therefore, compared to the previous case study from the
Dutch municipality, here we see resources more available to work for this process. This
also confirms what we discussed initially that for the Dutch Financial Institute that there
are dedicated resources executing on the work items for the applications received.

92 Chapter 4. Using Process Mining to Analyze Resource Availability

Figure 4.19: Resource availability over different horizon periods of a day. The shaded
periods indicate that a resource was available to work in that period.

Figure 4.20: Resource availability over different horizon periods of a month. The shaded
periods indicate that a resource was available to work in that period.

Resource Availability per Horizon Period

In Figure 4.21, we see different horizon periods constructed for a horizon length of a
month. For the different periods when a resource was available to work, we show a value
indicating the percentage of time that a resource was available to work in the given
horizon period.

From the results shown here, we see that most of the resources except resource “kaysen”
were available to work. This is indicated by the high availability values for each horizon
period. As indicated in the results, most of the resources were available to work for

4.4 Characterizing Resource Availability from Event Logs 93

Figure 4.21: Resource availability values for a horizon period of a month. The avail-
ability values are shown for the horizon periods when a resource was available to work
(cf. Figure 4.20).

shorter periods of time in the final month of the event log, i.e., in March. The availability
results shown in this figure for this process model indicate that resources were available
to work on the given process.

We also calculated the availability values for resources over the entire log and the results
are shown in Figure 4.22. The availability values shown here are calculated over horizon
periods of a week and a month.

resource availability value

horizon period-week horizon period-month
amient 0.70 0.71
bekker 0.77 0.88
bruijn 0.50 0.69
coers 0.78 0.89
debaun 0.42 0.71
gessel 0.45 0.77
graaf 0.74 0.87
hansen 0.54 0.77
kaysen 0.00 0.10
kepper 0.71 0.87

Figure 4.22: Availability values for resources from the real life event log. The availability
values shown are calculated for horizon periods of a week and a month.

From the results shown in Figure 4.22, we see that over a horizon period of a month all
the resources expect resource “kaysen” were available to work for more than 50% of their
time on the process. As shown in Figure 4.20, “kaysen” was not available to work for two

94 Chapter 4. Using Process Mining to Analyze Resource Availability

of the five months recorded in the log. This is also reflected in the low availability values
shown in Figure 4.22. Although we see lower availability values for a horizon period of
a week these values get higher over a horizon period of a month. The results presented
in this section show that for this particular process, resources were available to work for
most of their time over horizon periods of a month.

Chunk Size values per Horizon Period

We also analyzed the chunk size values for some resources from the event log of the Dutch
Financial Institute. The results of this analysis over a horizon period of a day is shown in
Figure 4.23. In addition, we also show the values of the free periods between the different
working periods of resources. The aim of this case analysis was to determine whether
resources work in batches or process work as it arrives. This is important to determine
whether resources work for short or longer periods of time.

resource horizon period - day

chunk size value free period value
amient 724 645
bekker 627 560
bruijn 711 659
coers 760 682
debaun 608 596
gessel 653 282
graaf 637 694
hansen 699 603
kaysen 12 0
kepper 737 620

Figure 4.23: Chunk size values for resources from real-life event log based on a horizon
period of a day.

From the results shown in this figure, we see that most of the resources work for extended
periods of time except resource “kaysen” who is available for a smaller percentage of
time compared to other resources. This resource also works for a shorter period of time
(i.e., 12 minutes) compared to the other resources over similar horizon periods. The
results also show that there are longer free periods between the chunk periods over which
resources work. Therefore, unlike the chunk size values shown in the previous case study
(cf. Figure 4.18), in this case study resources work over longer periods of time. Although
resources are available to work for higher percentages on the given process, they will still
not work all the time but take breaks as they work. This is indicated by the lengths of
the free periods between the chunk periods.

The results presented in this section indicate the way human resources actually work
in real life. These similar issues characterizing resource availability do exist in real life

4.5 Related Work 95

based on the analysis of case studies. From the analysis of event logs discussed in this
section, we have shown that resources are not always available and eager to work on
a given process. However, resources work are involved in multiple processes. In real-life
situations, resources are available to work for specific periods of time. Moreover, even
if resources are available to work they still take breaks as they work. Some resources
work over short periods of time while other resources work over longer periods of time.
Therefore, the chunks of time over which resources work vary between resources and over
the different horizon periods when they are available to work.

4.5 Related Work
The work presented in this chapter is related to earlier literature mainly in the area of
mining the organizational perspective from event logs and modeling of organizational is-
sues in workflow management systems. Using process mining techniques, it is possible to
analyze the organizational perspective which considers resources in an event log. In this
analysis, social networks are built which can be analyzed using social network analysis to
find relationships between individual resources [19]. It is also possible to discover orga-
nizational models and analyze relationships between organizational entities as discussed
in [172].

In terms of performance analysis, several literature has proposed the use of timestamps
to obtain performance related information from an event log [7, 43, 63, 88, 94, 140, 174].
It is also possible to visualize performance related information on organizational models
where bottlenecks and other performance indicators can be graphically shown [172]. This
is similar to the performance analysis on a control-flow model [43, 63, 88]. Moreover, it
is possible to visualize process performance based on dotted charts. The dotted chart
shows the spread of events in the log over time [171]. Here, the performance of a process
is analyzed while focusing on time dependencies between the different events executed in
the log. However, such performance analysis deals with the cases and not on individual
resources in the log.

In the area of organizational aspects in workflow systems, a number of authors have
proposed organizational meta models for modeling. A generic organizational meta model
has been proposed in [48] that specifies task assignment policies in workflow management
systems. In [41] a logic based model is developed that supports both static and dynamic
authorization constraints based on the history of a workflow instance. Several meta mod-
els or object models describing the relation between a number of workflow concepts and
guidelines have also been developed for organizational modeling [114, 115]. However, all
the meta models developed focus on the structural description of resource properties and
do not consider workflow aspects, for example, the area of work distribution [160].

A number of resource patterns have been described in [160, 162] which specify the way
in which work items are distributed and executed by resources in a PAIS. Moreover, a
number of commercial workflow systems, for example, Staffware, COSA etc. are evaluated
using these patterns. The work on resource patterns complements earlier work described
in [130]. Here, a reference model for work distribution using various resource patterns

96 Chapter 4. Using Process Mining to Analyze Resource Availability

based on the colored Petri nets is discussed. The resource perspective of a number of
workflow systems was analyzed with the aim of understanding the way such systems
distribute work to people based on their organizational capabilities and qualifications
[128].

Earlier work has also been done in the mining of staff assignment rules from event logs
and organizational models based on decision tree learning [106]. The handling of resources
at run time is described in [101] where, an approach to dynamic work distribution that
provides a balance between quality and performance, is presented. In [125] data models of
resources capturing complex resource requirements are discussed. These take into account
various resource classes and their interactions in order to support resource scheduling and
assignments.

This related work mentioned in the area of work distribution, does not take into con-
sideration past performance aspects of resources. This still has the drawbacks about the
view of resources that was discussed in Chapter 2. During work distribution, it will be
assumed that a resource will always be available and eager to work. However, in real life
situations this is not always the case.

4.6 Conclusion

As discussed in this chapter, there are several aspects that characterize the way resources
actually work. For example, people are involved in multiple processes and work part-time
and in batches for a given business process. Since human activity is increasingly recorded
by PAIS technology, it is now possible to better characterize resource behavior based on
empirical data.

In this chapter, we presented various properties of events that relate to resources exe-
cuting such events. Based on such properties, we defined the notion of work items and
how they are obtained based on the information recorded in event logs. The information
about work items is used in Section 4.3 where we discussed an approach taken to add
missing “start” and “schedule” events in an event log (if they are missing or if we only
have “complete” events). This is based on a number of assumptions that relate to the
resource executing such events and the trace to which these events belong. We also pre-
sented a case study where we insert start events based on the complete events in the log.
Through experiments, we have shown that the approach presented here produces service
and throughput times that are similar to the original event log (with both the start and
complete events).

In the Section 4.4 we discussed an approach taken to analyze resource availability from
event logs. For such analysis, we assumed that an event log has enough information for
characterizing resource availability parameters. Using the information contained in the
log, it is possible to approximate percentage of time a resource is available for a given
process and to estimate different periods over which resources work. In this section,
we have carried out two case studies where resource availability parameters have been
analyzed.

4.6 Conclusion 97

In the first case study resources are available to work for specific percentages of their
time. When available, they work in batches and not continuously for the entire period
that we considered. In the second case study, we know that resources are dedicated to
work on the process. As we have shown, the availability values of such resources are much
higher compared to the previous cases study. Although resources are dedicated to work
on this process, from the chunk size results we see that resources also have periods of
time when they are free and tend to also work in batches. Through experiments, we have
shown that indeed availability parameters of resources vary.

The work presented in this chapter can be used in combination with performance anal-
ysis techniques focusing on the control-flow perspective of an event log [43, 63, 88]. For
example, it might be the case that the availability of resources for one process is low
because they are executing other processes that are not recorded in the log.

Chapter 5

Using Process Mining to Analyze Resource
Busyness

In the previous chapter, we have discussed techniques to analyze resource availability
parameters from event logs. When analyzing the performance of organizations it is cru-
cial that the resource perspective is considered, especially when human resources are
involved. The reason is that in many situations, human resources are a limiting factor
[162, 172], i.e., delays are often caused by unavailability of resources, or overloading of
human resources [37]. Understanding such delays and their relation to resource perfor-
mance is important for process improvement, resource allocation [101], and as input for
parameterizing simulation models [3]. In this chapter, we focus on the analysis of event
logs where activities are executed by human resources. In particular, we analyze the effect
of workload on the performance of resources. As discussed in Chapter 2 (cf. Section 2.3.5
on page 28), it is reasonable to assume that people do not work at constant speeds.

In Figure 5.1, we highlight this chapter in relation to Chapter 2 and we focus on the
mining of resource busyness from event logs [25, 116, 118]. The input needed for this
chapter is an event log shown as historic data.

The remainder of the chapter is structured as follows. First, we provide a discussion on
the effect of workload on processing speeds in Section 5.1. In Section 5.2, we discuss the
approach taken to extract workload-dependent speeds from event logs. We formally define
implementation details of the ProM plug-in used to characterize the effect of workload
on processing speeds. Section 5.3 discusses related work and Section 5.4 concludes the
chapter.

100 Chapter 5. Using Process Mining to Analyze Resource Busyness

Chapter 2

Testing Operational
Support Algorithms

Chapter 9

Mining Resource
Availability

Chapter 4

Mining Resource
Busyness

Chapter 5

Operational Support

Chapter 8

Modeling Resource
Behavior

Chapter 6

Providing a Unified
View of Event Logs

Chapter 7

Resource
Availability

Resource
Busyness

Operational
Support

historic
data

current
data

Conclusion

Chapter 10

Figure 5.1: Overview of the structure of the thesis highlighting Chapter 5.

5.1 Workload-dependent Processing Speeds

In Chapter 2, we briefly introduced the concept of workload-dependent speeds. We dis-
cussed that in many systems, the speed at which resources work is partly determined
by the amount of work that is currently present [124]. This is especially true for human
resources and unlike machines, the performance of humans is rather elastic. For example,
in busy periods of the year people tend to increase their speed to process more cases.
However, when people are given too much work over a long period of time, their perfor-
mance then tends to drop. Moreover, with higher workloads the process quality is also
affected.

Theoretically, this phenomenon is known as the “Yerkes-Dodson Law of Arousal” [190].
The earliest work in this area was carried out by Yerkes and Dodson in [193]. Here,
different levels of learning were considered for a number of mice. Experiments were carried

5.1 Workload-dependent Processing Speeds 101

out to examine the learning of mice under different illumination conditions. The mice were
put in different boxes and the illumination in each box varied, the higher the illumination
in each box the easier the task of moving around the box. The most challenging task
was presented with the lowest illumination level. The results from these experiments
indicated that the optimal level of stress was dependent on the task being performed,
where task was interpreted as the level of illumination. Therefore, this law was initially
constructed to model the relationship between the strength of stimulus and the rapidity
of learning. Later on this law was extended to to relate stress and human performance
by the introduction of a new factor, i.e., arousal [82, 84].

The “Yerkes-Dodson” law was extended to model the relationship between arousal and
performance as an inverse U-shaped curve (cf. Figure 2.6 that was discussed earlier on
page 29). In [190], the effects of the “Yerkes-Dodson” law are depicted in Figure 5.2.
The law suggests that at the lower end of the arousal scale (i.e., low stress) increasing
the level of stress by increasing arousal will increase performance. With higher levels of
arousal, stress begins to cause difficulties which affect the performance and causes it to
reduce. The optimum level of arousal is at a lower level for a more complex task (skilled
worker) than for a simpler task (expert worker). Moreover, arousal can be caused by
stressors such as worry, anxiety, fear, etc. Each worker experiences the pressure caused
by workload in a different way which leads to different levels of arousal. Therefore, an
inverse U-shaped relationship exists between workload (arousal) and performance. An
example is in a production system, the processing rate of system can be increased once
the number of jobs waiting to be processed increases. The speed of the system is relatively
low when there is too little work (laziness) and when there is too much work (stress) [42].

Level of Arousal

Poor

Performance

Good

Low High

Optimum level of
arousal

Complex task

Simple task

Figure 5.2: The relationship between arousal and performance (adapted from [190]).

102 Chapter 5. Using Process Mining to Analyze Resource Busyness

Until recently, there were no means for systematically observing such phenomena in
the workplace. However, because the activity of human resources is tremendously be-
ing recorded by PAISs we can better characterize resource behavior based on empirical
data. In this chapter, we refer to the relationship between workload and speed at which
resources work as workload-dependent processing speeds.

Next, we discuss the approach taken to characterize the relationship between workload
and processing speeds of resources from the event logs. We assume that the event log is
complete (cf. Chapter 4 where we discuss how to add missing events to an event log). For
example, we require that the event log contains information about the start and complete
events for each activity recorded in the log.

5.2 Characterizing Workload-Dependent Speeds from
Event Logs

As discussed in Chapter 3, an event log contains information about events executed by
resources for a given business process. Given such an event log, it is possible to analyze the
individual activities that a given resource executed, we can measure the number of times
a resource executed a particular activity. Moreover, we can use the timing information
for the different cases that a resource was involved in to determine certain performance
information. For example, the average time that a given resource spends on the execution
of a given activity (calculated by taking the mean value of time values of the activity
instances).

Given the event log, we can obtain a Petri net model focusing on the control-flow perspec-
tive which can enhanced to include information about resource groups that are allowed
to execute each of the activities in the model. However, in such situations the focus is
on the control-flow perspective and it is not possible to learn the context of the work
executed by resources. For example, the effect of workload on service times cannot be dis-
covered by looking at properties of individual cases. Therefore, we need to consider the
time perspective for groups of events executed in the log by particular sets of resources.
This can only be done given that events have timestamps indicating the times when they
occurred. Such information can be used for obtaining service times of events, waiting
times of events, throughput times of cases, frequency of event execution, prediction of
remaining processing times, resource utilization etc.

In this section, we use such information about resources and the times at which they
executed activities to formally define the effect of workload on the resource working
speeds. The remainder of this section is structured as follows. In Section 5.2.1, we discuss
the approach taken to analyze resource busyness. Section 5.2.2 formally discusses the
workload and process speeds concepts introduced in Section 5.2.1. Finally, Section 5.2.3
discusses case studies that are analyzed to quantify the relationship between workload
and the processing speeds of resources.

5.2 Characterizing Workload-Dependent Speeds from Event Logs 103

5.2.1 Approach Taken to Analyze Resource Busyness

Figure 5.3 shows the approach taken in this section to extract workload profiles from
an event log (assume that it has the start and complete events for each activity). In the
following, we conceptually discuss each of these steps in detail.

extract

build
generate

event
log

timing
profiles

workload
profiles

resource
groupings

Figure 5.3: Overview of the approach taken in this chapter. Given an event log,
the first step is to filter out different resource groupings. From these groupings,
timing profiles are built and these are used as basis for generating the workload
profiles.

Step 1: Extract Resource Groupings

The first step in this approach as shown in Figure 5.3 is to extract resource groupings
from an event log. In the previous chapter, we introduced an example of part of an
event log from a simplified process model of the graduate admission business process (cf.
Table 4.1 on page 77). In this section, we will refer to and use this event log to explain
how resource groupings are extracted. In this table, the typical view of an event log is
on the case perspective, i.e., the events executed per case. However, in this chapter our
main concern is on the resources and the activities that they executed in the log.

Therefore, in the first step of this approach we filter out all the work items from the
log that were executed by each resource. Table 5.1 shows an example of information
about the work items executed for three resources (i.e., Ann, Mary and Peter) extracted
from Table 4.1. Each row in the table corresponds to one event and the events shown
are grouped per resource, for example, Ann executed events for only two activities (i.e.,
Register Application and Send Acknowledgment) between “8:13” and “17:58”. The events
that each resource executed occurred in the shown order. Each event consists of the
activity name, the time it was started and completed and its service time. Although we
focus on the resources, we can also consider all the events that were executed per activity
in the log. The resource groupings therefore, contains specific information about the work
items executed by each resource.

Step 2: Build Timing Profiles

After extracting resource groupings, the next step in this approach is to build timing
profiles as shown in Figure 5.3. The basic idea about building timing profiles is that

104 Chapter 5. Using Process Mining to Analyze Resource Busyness

Table 5.1: An event log taken from Table 4.1 showing events executed for three resources,
i.e., Ann, Mary and Peter . Each row in the table corresponds to one event and events
are grouped per resource. The events for each resource occurred in the given order.

Resource Activity Case
Id

TimeStamp Service
TimeStart Time Completion

Time
Ann Register Application 1 Feb 02 08:13:00 Feb 02 09:20:00 72

Send Acknowledgment 1 Feb 02 09:43:00 Feb 02 10:05:00 37
Register Application 2 Feb 02 10:06:00 Feb 02 10:14:00 08
Send Acknowledgment 2 Feb 02 10:15:00 Feb 02 10:47:00 32
Send Acknowledgment 3 Feb 02 15:17:00 Feb 02 15:27:00 10
Register Application 4 Feb 02 15:30:00 Feb 02 16:05:00 35
Send Acknowledgment 4 Feb 02 16:20:00 Feb 02 16:37:00 17
Register Application 5 Feb 02 16:40:00 Feb 02 17:14:00 37
Send Acknowledgment 5 Feb 02 17:30:00 Feb 02 17:58:00 28

Mary Send Reply 1 Feb 02 14:00:00 Feb 02 14:20:00 20
Send Reply 2 Feb 02 15:30:00 Feb 02 15:40:00 10
Check Documents 3 Feb 02 16:20:00 Feb 02 16:40:00 20
Send Reply 3 Feb 02 17:55:00 Feb 02 18:20:00 25
Check Documents 4 Feb 02 18:23:00 Feb 02 18:42:00 19
Check Documents 5 Feb 02 20:00:00 Feb 02 20:15:00 15
Send Reply 4 Feb 02 20:40:00 Feb 02 21:20:00 25
Send Reply 5 Feb 03 09:00:00 Feb 03 09:15:00 15

Peter Unconditional Offer 1 Feb 02 13:00:00 Feb 02 13:58:00 58
Conditional Offer 2 Feb 02 15:00:00 Feb 02 15:20:00 20
Classify Application 3 Feb 02 16:50:00 Feb 02 17:00:00 10
Classify Application 4 Feb 02 19:00:00 Feb 02 19:30:00 30
Classify Application 5 Feb 03 07:10:00 Feb 03 07:50:00 40

given the resource groupings, we project activities executed over the different resources.
This is done while considering the time that was taken for each activity execution. In
this way, we build a time line over which resources execute activities one after the other
and this cuts across to include all the activities from the different cases.

Figure 5.4 shows a fragment of an event log for three resources based on the information
obtained from Table 5.1. The activity names of the different events shown in this table
are simplified but still correspond to the activities in Table 5.1. For example activity a
corresponds to Register Application, activity b corresponds to Send Acknowledgment. The
timestamps of the executed activities are also simplified, i.e., instead of using the long
timestamps for example, “Feb 02 08:13:00” we use two-digit timestamps (representing the
minutes) to show the relative time when events occurred. For example, the first activity
executed for resource Ann was started at time 13 and completed at time 85 which has
a duration of 72 minutes. This corresponds to the information shown in Table 5.1 and
here we focus on the different timestamps for each executed activity.

The simplified events in Figure 5.4 are represented graphically in Figure 5.5. The events
shown in Figure 5.5 are obtained after replaying the event log over a 24-hour time. This
figure shows all the activity instances projected onto the three resources that executed
them. The horizontal axis indicates the time over which work items are executed while the
vertical axis indicates the order in which the work items are executed. Each box shown

5.2 Characterizing Workload-Dependent Speeds from Event Logs 105

Resource Trace
Ann 〈a13

start,a
85
complete,b

108
start,b

145
complete,a

146
start,a

154
complete,b

155
start,b

187
complete, ...〉

Mary 〈g360
start,g

380
complete,g

450
start,g

460
complete,g

500
start,g

520
complete,c

595
start,c

620
complete, ...〉

Peter 〈e300
start,e

358
complete,f

420
start,f

440
complete,d

530
start,d

540
complete,d

660
start,d

690
complete〉

Figure 5.4: Representation of event log shown in Table 5.1 while emphasizing the times-
tamps of each activity.

corresponds to a work item executed by a resource. The start of the big box indicates
when a work item is scheduled, the start of the shaded part of this box indicates when the
work item is started and the end of the main box shows when the work item is completed.
Consider for instance resource Ann. This resource starts an instance of activity Register
Application at time 13 to time 85. The resource starts the next execution of the instance
of activity Send Acknowledgment at time 108. Since these two activity instances belong
to the same trace, we observe that there is a waiting time of 23 minutes between these
two activity instances. This is represented by the unshaded box in the second activity
instance shown in Figure 5.5. This applies to all the activity instances projected on the
resources.

Ann

time

Mary

0 300 500

1a

2a
1 b

2 b

4 b
4a

5a

1 g
2 g

3 g
5 c
4 g

Peter

4

5 b

3 b

100

d

1 e
2 f

3 d

200 400 600

Figure 5.5: Time line showing work items executed as shown in Figure 5.4 can be
visualized and projected onto resources. Each work item is denoted by the case id and an
activity identifier. For example work item (1,a) corresponds to the execution of activity
a belonging to case 1.

This activity instance projection also gives an idea of the resource free/busy periods over
specific time periods. For example, Peter was busy from time 300 to 348 (cf. the fifth work
item belonging to case 1), however, between 348 and 420 Peter was free and only begins

106 Chapter 5. Using Process Mining to Analyze Resource Busyness

the execution of the next work item belonging to case 2 at 420. Given such projection
information we can consider different points in time when resources are working and
obtain work items belonging to three different states. These are the scheduled, started,
and completed states. In the scheduled state, we consider the work items that have been
assigned to a resource. In the executing state, we consider the work items that a resource
is currently working on, and the completed state has the work items that a resource has
recently completed. For example, from Figure 5.5 if we consider time 500 and look at
resource Peter we observe that:
• work item (4, d) is in the scheduled state,
• work item (3, d) is in the executing state, and
• work items (1, e) and (2, f) are in the completed state.

Therefore, through the projection of activity instances while focusing on the information
about the waiting, start and complete provides the needed information for obtaining
work items in these three states. In the next step, we discuss how such work items are
used for building workload profiles.

Step 3: Generate Workload Profiles

After building timing profiles for different resource or resource/activity combinations,
the next step shown in Figure 5.3 is to generate workload profiles. From the projection
shown in Figure 5.5, we can look at different points in time over which resources started
execution of work items. At these points, we build sequences of work items that were
present in the system in the scheduled and completed states as discussed in the previous
step. Figure 5.6 shows workload profiles created for the resources shown in Figure 5.5.

Time Point Resource Work Item to
be Executed

Number of
Work Items

Service
Time

Sc
he

du
le
d t = 300 Peter (1, e) 1 58

t = 500 Peter (3, d) 1 10
t = 600 Mary (5, c) 1 15

C
om

pl
et
ed

t = 400 Mary (2, g) 1 10

t = 500 Peter (3, d) 2 10
Ann (5, a) 7 37

t = 600 Mary (5, c) 3 15

Figure 5.6: Workload information for resources obtained from Figure 5.5. The figure
is divided based on the two work item states, i.e., scheduled and completed. Each line
represents the number of work items in a specific state. The number of work items is
calculated at different points in time that a particular resource starts the execution of
a specific work item. The service time column corresponds to duration of this specific
work item. For example, before Peter starts the execution of work item (3, d) at time
500, there is one work item in the scheduled state and two work items in the completed
state.

5.2 Characterizing Workload-Dependent Speeds from Event Logs 107

The workload profiles are build for work items present in both the allocated and com-
pleted states. At a given point when a resource starts the execution a specific work item,
the number of work items in these two states are calculated and this is mapped with the
service time information obtained in the event log. For example, at point t = 500, Peter
starts the execution of work item (3, d) which corresponds to activity Classify Application
belonging to case 3. At this point, we can determine the number of work items that have
been scheduled for Peter (i.e., 1) and the number of work items that Peter has completed
in the past (, i.e., 2). Moreover, from the event log (cf. Figure 5.4), we see that Peter
executed this work item (3, d) for a time period of 10 minutes. This information is used
to denote the service time column in Figure 5.6.

At different points in time when resources start execution, the number of work items can
be observed in the two different states, i.e., the scheduled and completed states. Using
the information about the work items in these states we can derive two main definitions
of workload that we use in this chapter. We note that although there are many workload
definitions possible [40, 42, 124], in this chapter we will define workload based on the
queue length and how busy perspectives.
• The queue length perspective specifies the amount of work scheduled for a given
resource, i.e., the work items in the scheduled state. These refer to the work items
that are queuing for each user in the system at the time (s)he starts the execution
of a specific work item.

• The how busy perspective specifies the amount of work that each resource has
executed in the recent past, i.e., the work items in the completed state. These are
the work items that a resource has completed in the past.

The workload based on the queue length perspective keeps varying based on the work
items scheduled for a given resources. However, the workload based on the how busy
perspective keeps increasing over time because as time goes on a resource completes the
execution of more and more work items. Therefore, when measuring workload based on
the how busy perspective we can consider over different periods of time. The workload
effect on the working speeds of resources can be different based on the point in time
when the measuring is done. For example, it might be the case that the workload present
right before a lunch break will influence the speed of resources in a different way than
the workload present in the morning hours.

Given the workload information shown in Figure 5.6 we build sequences of work items
constituting the workload and sequences of service times constituting the processing
speeds. Consider the work items for resource Mary in the completed state as shown in
Figure 5.6. We see that at time 400 there is one work item that was completed in the
past, at time 600 there are three work items that have been completed. This implies that
at different points in time the number of work items in both the scheduled and completed
states are different. Therefore, the sequences of work items described here are build from
the work items that are observed at different points in time when an active work item
is started, for example for resource Mary the sequence of work items will comprise of
〈1, 3, ...〉. The sequence of the service time values is also built which will constitute of the
service time values for the active work items as observed in the log.

108 Chapter 5. Using Process Mining to Analyze Resource Busyness

Figure 5.7 shows an example of work items that have been built from the scheduled state
(workload based on the queue length perspective) and the completed state (workload
based on the how busy perspective). These are measured at different points in time for
the three resources. The workload column consists of the work items obtained based on
the two workload definitions and the service time column corresponds to the service time
obtained from the event log.

Workload Processing
Speeds

Queue Length
Peter 〈2, 1, 3, 6, ...〉 〈58, 40, 32, 10, ...〉
Mary 〈6, 7, 3, ...〉 〈150, 130, 160, ...〉

How Busy
Mary 〈1, 3, 6, 8, ...〉 〈10, 15, 32, 10, ...〉
Peter 〈2, 16, 18, 26, ...〉 〈10, 25, 46, 19...〉
Ann 〈7, 15, 18, 22, 27, ...〉 〈37, 45, 32, 70, 57, ...〉

Figure 5.7: Workload profiles showing workload and processing speeds values measured
at different points in time when a resource starts execution of a work item. Each line
represents a measure of workload and a corresponding processing speed value.

We can now measure any correlations between the number of work items and their
service time values. For example, regression analysis can be used to show a possible
output characterizing the relationship between workload and the processing speeds of
resources. Figure 5.8 shows graphs that depict relationship between the number of cases
and the service time values. We can observe here that as the workload in the system
increases so does the speed at which resources work. This can be a logical result from
the information built in Figure 5.6. Moreover, the number of work items in these two
definitions can be compared with the actual waiting times of activities.

(a) (b)

Figure 5.8: Graphs showing correlations between workload and service times for two
resources.

Based on the approach presented in this section, in the next section, we discuss imple-

5.2 Characterizing Workload-Dependent Speeds from Event Logs 109

mentation details of obtaining workload and processing speeds from event logs including
introducing a formal description of these concepts.

5.2.2 Workload and Processing Speeds from Event Logs

In the previous section, we have discussed an approach taken to characterize workload
and processing speeds based on the information contained in an event log. In this section,
first we formally discuss how workload is obtained from an event log and then describe
how processing speeds are characterized based on the information contained in the logs.

Workload

In the Chapter 4, we defined the concept of work items extracted from event logs (cf.
Definition 4.2 on page 63). Moreover, we also defined several work item properties that
we use in this section. Given that L, T ,R are as defined in Definition 3.6 and WL is a
set of work items extracted from an event log L. For a work item w ∈ WL, we specify a
number of work item properties as:
• r(w) ∈ R is the resource executing w,
• ts(w) ∈ T is the start time of w,
• tc(w) ∈ T is the completion time of w, and
• ten(w) ∈ T is the enabling time of w.

In this section, there are a number of assumptions about the work behavior of resources
that we rely on as we characterize workload dependent speeds from event logs. Given an
event log we assume that:
(i) each activity in the log is characterized by both the start and complete events,
(ii) each event has information about the resource that executed it,
(iii) each work item is assigned to one resource who starts its execution and eventually

completes it,
(iv) if an event is the first one for the trace, then the enabling event for the work item

belonging to this event is the same as the start event for the work item.

At any point before a resource starts the execution of a specific work item, we can
calculate the workload for this resource based on two workload dimensions. It is important
to note that a work item can be started more than once and these are the situations where
a work item is initially started and suspended. Later on, the execution of this work item
is resumed. When we have to match events for such a scenario, then we match a complete
event with the nearest start event having a similar activity name as observed in the log.

Workload based on the Queue Length Perspective

As defined previously, workload based on the queue length perspective focuses on the
number of work items that have been scheduled for execution. The calculation can be
based on all the work items in the entire log (i.e., ignore the resource who executed the
work item). Alternatively, we can calculate workload based on the work items that are

110 Chapter 5. Using Process Mining to Analyze Resource Busyness

scheduled for each resource in the log. Based on the assumptions that we have defined
in this section, we now formally define workload based on the queue length perspective.

Definition 5.1 (Workload Based on Queue Length) Given that L is an event log,
WL is the set of work items referred to by L, R is a set of resources conducting these
work items, and T is the time domain. The workload definition based on queue length
perspective is calculated using the following procedure.

• Given time t ∈ T we can define a function qlL(t) : T → IN used to calculate
workload for an entire log based on the queue length perspective as:

qlL(t) = |{w ∈ WL | ten(w) ≤ t ≤ ts(w)}|.

• The function qlL(t) can be extended to compute workload based for a specific
resource. Given a resource r ∈ R, function qlL(r, t) : R × T → IN computes the
workload for r at a particular time t ∈ T as:

qlL(r, t) = |{w ∈ WL | ten(w) ≤ t ≤ ts(w) ∧ res(w) = r}|.

From these definitions, we have specified a workload function that calculates the number
of work items based on the queue length perspective. Moreover, at a given time t ∈ T
workload can also be calculated for a specific resource r from the set R as qlL(r, t). A
work item w is calculated as part of workload based on the queue length perspective if
its enabling time is before the current time that we are considering and also its start
time is after the current time. This implies at the time when we measure workload this
work item is scheduled for execution but has not been started as yet.

We can relate the two workload functions the first one where we consider all the work
items (i.e., qlL(t)) and the second one where we consider work items for individual re-
sources (i.e., qlL(r, t)) based on the specific resources that execute the work items as:

qlL(t) =
⋃
r∈R

qlL(r, t).

Furthermore, we can also consider the individual activities that were executed by the
resources. Here, we can specify the individual activities that each resource executed and
compute workload parameters for them.

Workload based on the How Busy Perspective

As defined in the previous section, workload based on the how busy perspective calculates
the number of work items that were completed in the recent past. Such work items can
be calculated for the entire log L (we ignore the resource that executed the work item),
or we can calculate workload for each individual resource in the log. We now formally
define workload based on the how busy perspective.

Definition 5.2 (Workload Based on How Busy) Given that L is an event log, WL

is the set of work items referred to by L, R is a set of resources conducting these work

5.2 Characterizing Workload-Dependent Speeds from Event Logs 111

items, and T is the time domain. The workload definition based on how busy perspective
is calculated using the following procedure.

• Given time t ∈ T we can define a function hbL(t) : T → IN used to calculate
workload for an entire log based on the how busy perspective as:

hbL(t) = |{w ∈ WL | ts(w) ≤ t ≤ tc(w)}|.

• The function hbL(t) can be extended to compute workload for specific resources.
Given a resource r ∈ R, function hbL(r, t) : R × T → IN computes the workload
for r at a particular time t ∈ T as:

hbL(r, t) = |{w ∈ WL | ts(w) ≤ t ≤ tc(w) ∧ res(w) = r}|.

We have defined functions that calculate the number of work items w based on the how
busy perspective. At a given time t ∈ T workload can also be calculated for a specific
resource r from the set R as hbL(r, t). A work item w is calculated as part of workload
based on the how busy perspective if its start time is before its completion time but these
two times should also be before the current time at which the calculation is done. This
refers to the work items that have been started and completed before the current time.

We can relate the two workload functions the first one where we consider all the work
items (i.e., hbL(t)) and the one where we consider work items for individual resources
(i.e, hbL(r, t)) based on the specific resources that execute the work items as:

hbL(t) =
⋃
r∈R

hbL(r, t).

When we are calculating workload using the how busy perspective we can specify periods
of time over which workload is measured. For example, instead of considering how busy
a resource has been in the past year, we can consider how busy a resource has been
in the past month. We can measure workload based on different horizon periods and
it is interesting to see how this affects resource performance. At each point in time at
which we measure workload we calculate the sum of all the work items that are started
and completed before this time. For example, if we consider the workload measure for
the entire log given by the function hbL(t), this function will return all the work items
completed before a given time t. We can specific a horizon period over which workload
is measured which is parameterized by hback and hforw where:

1. hback ∈ T → T is a function that defines the start of the time window given
some reference time, i.e., for some reference time t ∈ T , the time window starts at
hback(t) (with hback(t) ≤ t),

2. hforw ∈ T → T is a function that defines the end of the time window given some
reference time, i.e., for some reference time t ∈ T , the time window ends at hforw(t)
with t ≤ hforw(t) as shown in Figure 5.9.

The function hbL(t) introduced in Definition 5.2 can be extended to specify the start and
end of the horizon period over which workload is measured. At a particular time, t ∈ T ,

112 Chapter 5. Using Process Mining to Analyze Resource Busyness

hback(t) hforw(t)

h

Figure 5.9: Timeline showing a horizon period of length h. The start of the horizon
period is specified by hforw(t) and the end of the horizon period is given by hback(t) based
on some reference time t.

we define a function hbL(t, hback, hforw) : T × T × T → IN that computes the workload
based over a period given by hback and hforw as:

hbL(t, hback, hforw) = |{w ∈ WL | hback(t) ≤ ts(w) ≤ tc(w) ≤ hforw(t)}|.

To provide a better analysis of the effect of these work items we can define a weight
function that changes over the different time periods over which we measure. This would
imply that the effect of the work items measured over a horizon period of 2 hours is
different from the effect of the work items measured over a horizon period of 6 hours
in the past. We can assign greater weights to work items executed closer to the time at
which we measure t and less weights to the work items executed further away from the
time t at which we measure.

In our approach we apply exponential weights to each of the calculated workload values
over horizon periods of different lengths. Given that at time t the calculated workload
value over a horizon period of length h is given as hbL(t)h and the workload value over
a horizon period of length h − 1 is given as hbL(t)h−1. We use a weight value given by
α such that α is in the range 0 ≤ α ≤ 1. We can apply the weights to the calculated
workload values as:

hbL(t) = hbL(t)h ∗ α+ hbL(t)h−1 ∗ (1− α) + hbL(t)h−2 ∗ (1− α)2 + . . .+
hbL(t)h−n(1− α)n

As defined previously, the hbL(t) function returns the measured workload value at time t.
After the application of weights the value given by this function consists of the workload
values measured over periods of different horizon lengths. If the first horizon period is
given by length h = 20 this means that we find all the work items that were started and
completed in the previous 20 minutes from the current time at which we are measuring.
The next horizon period given by h− 1 = 40 which implies that we consider all the work
items that are completed within the previous 40 minutes from the current time.

In these workload definitions, we use a given time t as our reference time when calculating
workload values. Given the information recorded in the log this time can be given as the

5.2 Characterizing Workload-Dependent Speeds from Event Logs 113

start time of an event. Such events are referred to as reference events. Given that EL is
the event universe of an event log L, we can specify that:

EsL = {e ∈ EL | type(e) = start}

where EsL is the set of all start events in the log. Given a reference event e ∈ EsL, we can
find all the work items in the log that were enabled but not started before the start of
the event e which are used to calculate workload based on the queue length perspective.
The same approach also applies to the workload calculated on the how busy perspective
and here we find all the work items that are started and completed the start time of a
given reference event e.

Processing Speeds

The processing speeds of resources can also be obtained from event logs. The processing
speeds can be defined as: the waiting time of an activity, the service time of each activity
and the flow time of a case. From our earlier definitions of work items (cf. Definition 4.2),
we can therefore formally define service time, waiting time and flow time associated to
work items as:

Definition 5.3 (Processing Speeds) Given that ten(w) is the enabling time of w,
ts(w) is the start time of w and tc(w) is the completion time of w. We define the waiting
time, service time and flow time attached to a work item w as:

• wt(w) = ts(w)− ten(w) is the waiting time associated to w,
• st(w) = tc(w)− ts(w) is the service time associated to w, and
• ft(w) = tc(w)− ten(w) is the flow time associated to w.

Given an event log, we assume that for each event executed both the start and com-
plete events are present and there should be a one-to-one correspondence between them.
Furthermore, when reading the log there are situations when we are not able to match
the start and complete events, for example, when the event log is incomplete (where we
have only the start events and not the complete events or when the complete events
are recorded but the start events are missing), or the event log has multiple overlapping
instances within a case. As discussed in the previous chapter, we can determine when
events are started based entirely on the complete events. This is useful for situations
when the logs are incomplete.

After obtaining workload and service times we need to analyze the relationship between
these two parameters. Based on the “Yerkes-Dodson law” as shown in Figure 5.2, we know
that as the stress increases this in turn affects the processing speeds. This corresponds
to the first half of this curve. Typically, we expect the performance of human resources
to follow the first half of the “Yerkes-Dodson law”. We use the information from event
logs to find evidence for the existence of the “Yerkes-Dodson law” which describes the
way people work in real life.

The approach described in this section is implemented as a plug-in in the process mining
tool ProM and in the next section we discuss two case studies where the techniques

114 Chapter 5. Using Process Mining to Analyze Resource Busyness

discussed in this section are applied.

5.2.3 Experimental Validation

In this section, we describe two case studies where we analyze the effect of workload on
the processing speeds of resources. The first case study is taken from a software company
called Cordys. The second case study is based on an event log taken from a municipality
from The Netherlands.

Cordys Software Company

In the first case study, we analyzed an event log taken from Cordys business operation
platform. Cordys is a software company that provides a unified cloud platform solution
based on Service Oriented Architecture (SOA), Business Process Modeling (BPM) and
Composite Application framework to different enterprises. The event log used in this
section is extracted from an information system of a First Aid company using Cordys
[50]. The basic flow of this process is that first, a customer requests for assistance from
the first aid company. An operations employee of the company registers the received
case in the system and accepts the request. After which, a number of activities can be
executed in any order, for example, assistance can be arranged, an employee in the claims
department can receive the purchase invoice linked to a case and validate this invoice.
Eventually, the system archives the case after a period of time. However, if the requested
policy is not accepted, or there is no coverage provided for the requested assistance, then
the case is canceled. Otherwise, the request is accepted.

The event log contains information for 6264 events in 387 cases, 41 resources and 109
activities. The start date of the log was “2010-08-10 16:38:40” and the end date was
“2011-14-01 14:03:23”. We analyzed the event log based on the Workload Analysis

plug-in implemented in the ProM framework. The plug-in takes as input an event log and
produces as output workload analysis results. As previously discussed, we can calculate
workload based on the how busy and the queue length perspectives. Furthermore, we
can specify the dimension to use for denoting the processing speeds of resources, i.e., the
service time or the waiting time of activities.

The results presented in this section are based on the workload calculation option of
how busy. The workload calculation is given by the function hbL(t, hback, hforw) which
specifies a horizon period of length h. As input for the plug-in, we can specify the length
of a horizon period over which workload is measured and in our approach we measure
workload over a horizon period of 24 hours. Workload based on the how busy perspective
can be calculated by considering all the events executed in the log while ignoring the
resources that executed such events or by considering events executed by a each resource
in the log.

5.2 Characterizing Workload-Dependent Speeds from Event Logs 115

Effect of Workload from How Busy Perspective on the Service Time

As input for the results discussed in this section, we calculate workload based on the how
busy perspective and the processing speeds of resources are denoted by the service time.
Moreover, as discussed already, we specify the reference events as “start” events. Since,
we are calculating workload based on the how busy perspective we also specify the length
of horizon period (i.e, we use a horizon length of 23 hours). Therefore, given a work item
to be executed w that was started at time t, we find all work items that were started and
completed in the horizon period hback = t− 23 hours and hforw = t+ 23 hours using the
hbL function.

As discussed previously in Section 5.2.1, after extracting event log information and ob-
taining timing information we can calculate all the work items in the finished state before
a resource starts executing a work item belonging to a reference event. These work items
are used to build different workload profiles that are used as input for analysis of the
workload relationship. Figure 5.10 shows an example of workload profiles built from the
event log analyzed in this section. We have two columns in the figure and one column
represents the number of work items that a resource has executed in the past before (s)he
starts execution of a reference. The second column consists of service time values of the
reference event.

No. of work items
(Workload)

Service Time
(Processing Speeds)

30 4
47 3
48 5
49 3
56 16
65 4
64 8
74 11
76 15

Figure 5.10: Example of input used to construct the relationship between workload and
processing speeds.

This figure is used as input for regression analysis which calculates the r-values (r) and
R-square (R2) values which are used for quantifying the relationship between workload
and processing speeds.

Figure 5.11 shows the linear regression results for: (a) the resource perspective (i.e.,consider
all the tasks that one resource executed) and (b) a combination of resource/activity per-
spectives (i.e., consider each resource and the specific resource that they executed). The
result of the relationship between workload and processing speed is reflected by the r
and R2 values.

The first three row divisions shown in Figure 5.11 are based on the resources while the
last row in the figure shows results based on the activity perspective (for activity “contact

116 Chapter 5. Using Process Mining to Analyze Resource Busyness

name resource &
activity names

correlation
coefficient (r) R-square (R2)

cokti 0.18 0.03

cokti & enter roadside 0.70 0.48
cokti & contact moment 0.73 0.54
cokti & complete data 0.50 0.25

bwilling 0.16 0.03

bwilling & complete data 0.59 0.35
bwilling & validate invoice 0.66 0.43
bwilling & storage 0.56 0.31
bwilling & check policy 0.5 0.25

clijfers 0.11 0.01

clijfers & enter roadside 0.71 0.50
clijfers & storage 0.53 0.29
clijfers & complete data 0.94 0.88

contact moment 0.05 0

spalm & contact moment 0.96 0.92
cpers & contact moment 0.50 0.25
truyde & contact moment 0.62 0.38

Figure 5.11: Linear regression results depicting the relationship between workload and
processing speeds.

moment”). The first row in the figure shows the regression results for resource “cokti”
and the next rows in this part of the figure correspond to regression results of 4 different
activities that “cokti” executed, i.e., “enter roadside”, “contact moment” and “complete
data”. This is similar for all the other rows in this figure. Considering the results from
Figure 5.11, we see that for all the resources shown, their regression values were low.
For example, “cokti” has an r-value of 0.18 and an R2-value of 0.03 or “clijfers” has
an r-value of 0.11 and an R2-value of 0.01. However, we can also look at some of the
individual activities that each resource executed as shown in this figure. For example, we
see that for activity “enter roadside” which was executed by “cokti” has an r-value is now
much higher, i.e., 0.7 and the R2-value was 0.48 and this also applies to activity “contact
moment” with an r-value of 0.73 and an R2-value of 0.54. In addition, looking at the third
resource, i.e., “clijers”, the r and R2-values are 0.11 and 0.01 which indicates a poor fit
of the workload and processing speed relationship. However, for specific activities, for
example, “complete incomplete data” the r and R2-values are 0.94 and 0.88 respectively
which indicates a good fit of the workload relationship on the processing speeds.

The relationship between workload and the processing speeds of resources also applies
to the activities that were executed. For example, if we consider the last division in

5.2 Characterizing Workload-Dependent Speeds from Event Logs 117

the figure which corresponds to events executed for activity “contact moment”, we see
an r-value of 0.03 and an R2-value as 0. However, if we consider the events for the
particular resources that executed this activity, we see a relationship between workload
and processing speeds. For example, resource “splam” has an r-value of 0.96 and an R2-
value of 0.92, while for “cpers” has an r-value was 0.62 and an R2-value of 0.38. The
values presented in Figure 5.11 provide an indication of a relationship between the effect
of varying workload on the working speeds of resources from a real life event log.

The results from this figure are based on the how busy perspective which tells us that
when a resource has been busy in the past, this affects the speed at which a resource will
now work. Hence when resources are working, the processing speeds are also dependent on
the varying workload in the system. As discussed the results shown in the previous section,
human resources can be involved in multiple processes and do not fully dedicate their
attention on one process. However, the event logs we use in this section have events that
were recorded for only one particular process in isolation whereas employees distribute
their attention over multiple processes. Moreover, resource utilization for this recorded
process is low and this in turn affects the results we obtain for the workload and processing
speeds. Hence, that is why for some results in the Figure 5.11, the r and R2-values are
low.

In this case study we have presented linear regression results which we typically use to
depict the first half of the “Yerkes-Dodson” curve hence when workload is increasing,
the processing speeds of the resources increase as well. However, linear regression may
not always be a good choice for the workload relationship. Therefore, in the next case
study we graphically represent the number of work items obtained from the queue length
perspective and the service time values obtained to analyze the effect of workload on
processing speeds.

Dutch Municipality

This case study was conducted using real-life logs from a municipality in the Netherlands.
The logs are obtained from a process that deals with getting a building permit. The
workflow system used in the municipality is the Eastman Software Workflow for NT.
The event log contains information about 2076 cases, 67271 events, 109 resources and 11
activities. The start date of the log was “2003-01-24” and the end date was “2005-11-08”.
We filtered the log to remove the resources and activities with infrequent occurrence and
also only considered the events with both the start and complete.

Effect of Workload from Queue Length Perspective on the Service Time

We analyzed events for different resources and activities and obtained the number of cases
and the respective service times for these cases based on the queue length perspective.
The results of graphs showing the relationship between the cases and the service times
is shown in Figure 5.12.

For simplicity, we remove the different resource and activity names and simply show
results for the number of cases and the service times labeled from (a) to (d). The graphs

118 Chapter 5. Using Process Mining to Analyze Resource Busyness

5 10 15 20

0
50

00
10

00
0

15
00

0

No. of cases

Se
rv
ic
e
tim

e

(a)

0 10 20 30 40 50 60

1
10

0
10

00
0

No. of cases

Se
rv
ic
e
tim

e

(b)

1 2 3 4 5

5e
+
03

2e
+
04

5e
+
04

No. of cases

Se
rv
ic
e
tim

e

(c)

0 5 10 15 20 25 30 35

1e
+
00

1e
+
02

1e
+
04

1e
+
06

No. of cases

Se
rv
ic
e
tim

e

(d)

Figure 5.12: Graphs showing the effect of the number of cases (on the x-axis) against
the service time values (on the y-axis). The service times are measured in minutes.

show the number of cases plotted on the x-axis and the service time plotted on the y-axis.
The y-axis is represented as a logarithmic scale. This represents an exponential increase
in the service time as the number of cases increases. For all the graphs, we see that
when the number of cases are low, the service times are also low. However, looking at for
example, graphs (b) and (d), when the number of cases are high which in this case is 60
and 35 respectively, the service times are also high. For example, graph (a), the number
of cases less than 10 are concentrated around the lower half of the graph. When the
number of cases is high, for example, greater than 15, the service times are also higher.

The results from the graphs show that the relationship between workload based on the
queue length perspective exists in real life. Hence, even before resources start working
they are already under pressure based on the work items that have been scheduled for
them. Especially, when the workload increases, the processing speeds are also high and

5.3 Related Work 119

as seen in all the graphs. Moreover, when the number of cases are higher this greatly
impacts the service times and they are also high as seen in for example, graphs (a) and
(c).

We have presented two case studies where we analyzed the relationship between workload
and processing speeds. In the first case study, we used regression analysis to quantify the
relationship between workload based on the how busy perspective and the processing
speeds as seen in Figure 5.11. As observed with a number of resource and activity com-
binations, the effect of workload on processing speeds indeed exists. In the second case
study, we graphically represented the number of cases and service times of a number of
resources. These values are obtained based on the queue length perspective. From the
graphs shown in Figure 5.12, we can also conclude that when the number of cases are
higher, the processing speeds are also high.

Although we considered the processing speeds to be denoted by the service times, we
could have also considered the waiting times and we do not discuss the results when
using waiting times. For a number of resources the number of work items affects the
waiting time of cases. This is closely related to the idea of batching activities discussed
earlier in Chapter 4. This implies that resources can accumulate similar tasks and execute
these at once, however, because the length of the queue is already long this will in turn
affect the speed at which resources work.

5.3 Related Work

The work discussed in this chapter is related to earlier work done in the field of operations
management and in simulation studies. The “Yerkes-Dodson Law of Arousal” illustrated
in Figure 5.2, is one of the main motivations for this work. Initial research concerning
this law was focused on learning [193], however, over time this law has been reformulated
and applied to several areas [190]. As discussed in Section 5.1, the “Yerkes-Dodson law
of Arousal” is now used to relate the relationship between arousal and performance. This
law depicts a low performance when the resource is over-worked or under-worked.

In operations management, substantial work has been done to operationalize the “Yerkes-
Dodson law of Arousal” using mathematical models [39, 40, 42, 124]. For example, some
of these studies has shown that there exists a relationship between work-in-process (mea-
sured as the number of work orders on the shop floor) and productivity (measured as
output per resource). There is a level for the work-in-process at which, given a number of
resources the resource output is maximum. If the work-in-process comes above or below
this level the productivity decreases and this in turn affects the productivity [124].

The authors also investigate queues with workload-dependent arrival and service rates
and they characterize the effect of work-in-process (the number of work orders on the
shop floor) on productivity (the output per employee). The authors in [42] use both
empirical data and simulation to explore the relationship between workload and shop
performance. They also consider the impact on efficiency while taking into account the
psychological effects of lower or higher workload. In [39], a queuing model is developed

120 Chapter 5. Using Process Mining to Analyze Resource Busyness

that assumes that the service rate is first increasing and then decreasing as a function of
the amount of work.

The Yerkes-Dodson law has several application areas beside operations support. The
authors in [98] introduce the concept of workload-dependent processing speeds in real-
time computing. In this study, they deal with a maximum allowable workload problem for
real-time systems with tasks having variable workload sizes. Work presented in [87] shows
that in industrial statistics a strong relationship exists between productivity improvement
and the speed of industry networks in various industries. Further on, in [31] the authors
develop a theoretical model that predicts an inverted-U relationship between multitasking
and performance of resources. Here the measure between productivity of resources and
the levels of multitasking indicates an inverse U-shaped curve where medium multitaskers
perform significantly better than both high and low multitaskers.

In [123] it is shown that an inverted-U relationship (similar to the “Yerkes-Dodson law
of Arousal”) exists between role stressors and job outcomes of sales people. The Yerkes-
Dodson law has also been recently applied in the area of child weight management.
This study focused on the evaluation of the impact of weight dissatisfaction on weight
loss in a group of children enrolled in a weight management intervention. Here, weight
dissatisfaction was the stress factor that was shown to influence the amount of weight
that was lost by each child in the shape of an inverted U-shaped curve. This study showed
that children with either very high or very low weight dissatisfaction demonstrated less
weight loss than children with mid-ranges of weight dissatisfaction [97].

The related work mentioned shows that the “Yerkes-Dodson law of Arousal” has been
used and studied in several areas. However, most of the work is based on theoretical mod-
els rather than empirical analysis. In this chapter we have measured the relationship be-
tween workload (number of work items executed) and the processing speeds (denoted by
service times) of resources. This relationship exists in real life but is difficult to quantify.
From event logs we can find empirical evidence for the “Yerkes-Dodson law of Arousal”.

5.4 Conclusion

Although organizations use various analysis techniques (e.g., simulation or queuing the-
ory) to analyze their business processes, the results may be very misleading if the as-
sumptions used are incorrect. For example, in most simulation tools, service times are
simply sampled from a probability distribution without considering the workload. In this
chapter, we have discussed an approach to quantify the relationship between workload
and processing speed implemented as a plug-in in ProM. This is a good step in the use of
process mining techniques for the extraction of useful information from event logs char-
acterizing resource performance. This approach looks at the analysis of performance of
resource perspective. As process mining techniques focus more and more on the behavior
of workers it becomes easier to discover such aspects about the way people actually work.

A better resource characterization can help in improving simulation by building simu-
lation models that are more realistic and that are tightly coupled to PAISs [150, 158].

5.4 Conclusion 121

In this chapter, we have used process mining as a technique for the extraction of char-
acteristic properties of resources from event logs, i.e., the effect of changing workload
on resource performance. Moreover, as discussed in [150, 158], it is now possible to use
various process mining techniques to yield or generate an integrated simulation model.

Chapter 6

Modeling Resource Behavior in Simulation Mod-
els

Business process simulation is a powerful technique that can be used to understand,
analyze, and improve business processes. Moreover, simulation can be used to predict
process performance under different circumstances. However, as discussed in Chapter 2
the use of simulation in reality is limited because there are a number of problems encoun-
tered when building simulation models. In particular, several functionality is typically
missing when modeling resources in simulation models. For example, people are involved
in multiple processes, people tend to work part-time and in batches, and people do not
work at constant speeds. These issues exist in reality but such phenomena is insufficiently
captured in most simulation models. As a result, it is not uncommon that the simulated
model predicts flow times of minutes or hours while in reality flow times are weeks or
even months.

Therefore, from the topics presented in the conclusion of Chapter 2 (cf. Section 2.5.1),
in this chapter we focus on a more accurate modeling of resources in simulation models
using the insights and key characteristics described in Chapters 4 and 5 (resource avail-
ability and resource busyness)[25, 118]. As shown in Figure 6.1, we incorporate resource
availability and resource busyness parameters in simulation models.

The remainder of this chapter is structured as follows. First, we provide an introduction
to business process simulation in Section 6.1. In Section 6.2, we discuss how to model
resource availability in simulation models. Section 6.3 discusses the modeling of resource
busyness in simulation models. Section 6.4 concludes the chapter.

124 Chapter 6. Modeling Resource Behavior in Simulation Models

Chapter 2

Testing Operational
Support Algorithms

Chapter 9

Mining Resource
Availability

Chapter 4

Mining Resource
Busyness

Chapter 5

Operational Support

Chapter 8

Modeling Resource
Behavior

Chapter 6

Providing a Unified
View of Event Logs

Chapter 7

Resource
Availability

Resource
Busyness

Operational
Support

historic
data

current
data

Conclusion

Chapter 10

Figure 6.1: Overview of the structure of the thesis highlighting Chapter 6.

6.1 Business Process Simulation

In Chapter 2 we provided a general introduction to business process simulation. We
discussed that simulation is an established analysis technique that can be used to un-
derstand and analyze business processes. Figure 6.2 shows a classical view of simulation.
The “world” consists of people, services, organizations, products, processes, machines,
etc. Information systems play a very important role, i.e., they support a business process
in the context of the “world”. To carry out simulation, the real-world has to first be
mapped to a simulation model and usually data is gathered and used to parameterize
hand-made models.

When simulating business processes at least three perspectives can be modeled, i.e,
control-flow, data & rules and resource perspectives as shown in Figure 6.2.
• The control-flow perspective is concerned with the control-flow dependencies

6.1 Business Process Simulation 125

business
processes

machines

people

services

organizations
documents

“world”

collect simulation
results to answer

“what-if” questions

collect data and
model by hand

simulation models

 resources

 data & rules

 control-flow

Information
System(s)

Figure 6.2: Classical view of simulation [3].

between tasks in a process model, for example, tasks may be performed in sequence,
in parallel, or a choice has to be made about a task to execute. The control-flow
perspective can be defined in terms of control-flow patterns that define a range
of control-flow constructs that can be encountered when modeling workflows [14,
160]. The control-flow patterns provide various process modeling constructs, for
example, sequence, loops, Parallel Split, Synchronization, Exclusive Choice, Simple
Merge, Structured Loop etc. All of which are currently supported by the workflow
language YAWL with a number of modeling notations, for example, sequence, AND-
splits/joins, XOR-splits/joins, loops etc. [191]

• The data & rules model decisions made within a process and how data influ-
ences these decisions. There are a number of workflow data patterns that apply to
the way data attributes in a process are defined and utilized in a PAIS. Data pat-
terns deal with: (a) data visibility that relates to the extent in which data elements
are viewed in a process, (b) data interaction that focuses on the way in which data
is communicated between tasks in a process, (c) data transfer which considers the
transfer of data attributes occurs between the different tasks in the model, and (d)
data-based routing characterizes the manner in which data attributes influence the
operation of other aspects of a business process, i.e., the control-flow perspective
(the routing of cases in a process model) [158, 160, 163].

• The resource perspective centers on the modeling of resources and their interac-
tions with a PAIS. There are several resource patterns discussed in [160, 162] that
deal with the way resources are utilized in the workflows especially focusing on
how work items are distributed and executed by resources. Moreover, this perspec-

126 Chapter 6. Modeling Resource Behavior in Simulation Models

tive also deals with information about the availability of resources, authorizations,
delegations, busyness of resources, etc.

For each of the tasks in the process, the time taken to execute the tasks (duration) also
plays a very important role. This will determine how long resources take working and in
turn affect flow times or waiting times in the process. Moreover, probabilities which can
influence the likelihood of taking a particular path are also important. It is possible to
collect simulation results from the models and answer “what-if” questions, i.e., consider
the future of the process under different circumstances. Under simulation, it is possible
to estimate and evaluate design alternatives and the effects of these alternatives on the
process before they are actually implemented for example, consider the effect of adding
more resources, or combining several tasks together [3, 121].

As discussed in Chapter 2, mapping a real life process to a simulation model is often
problematic. The modeling of resources in simulation models is far from trivial and is
often the root cause of discrepancies between the model and reality. In this chapter, we
address the problem of modeling the resource perspective of a business process. We do this
by representing essential characteristics of resources hence depicting the way resources
actually work. First we discuss the modeling of resource availability in Section 6.2 and
then discuss the modeling of resource busyness in Section 6.3.

6.2 Modeling Resource Availability

When people are working, they often distribute their time and attention over multiple
processes and moreover, they also tend to work part-time and in batches (cf. Section 2.3
on page 25) [3, 25, 143]. For example, if we consider the graduate admission process
model introduced in Chapter 1 (Figure 1.3 on page 5), at some point during this process
the research statement of an applicant has to be checked. The research background can
be inferred from the projects and internships undertaken by the applicant, and/or any
research publications. For a specialized field of study that the applicant may be interested
in, a research professor can be called in to assess these statements. However, the professor
can be involved in many other processes and activities, for example, student supervision,
teaching, journal paper reviews etc. Moreover, the professor can indicate that he will be
available to access applications only on Thursday afternoons. Hence, when building a
simulation model for the admission process it is sufficient to indicate that the professor is
available only for a specific percentage of time in this process. In addition to their limited
availabilities, people will prefer to let work items related to the same task accumulate
and process all of them in one batch. For example, the academic professor can let all
applications accumulate and check the research statements at once.

However, in most simulation tools a resource is either available or not, i.e., it is assumed
that a resource is eagerly waiting for work and immediately reacts to any work item
that arrives. Moreover, simulation models typically limit their focus to a single process
whereas people distribute their attention over a number of processes. One way to address
this issue is by not modeling a single process but the entire organization. The drawback
to this approach is that this makes the simulation model rather complex which limits the

6.2 Modeling Resource Availability 127

effectiveness of simulation. Moreover, it is difficult to model the distribution of resources
over a number of activities because there may be other factors that have to be considered,
for example, preferences and prioritization of resources, varying workload etc. [143]

To address these issues we provide an approach to approximate resource availability for a
given process based on a flexibility parameter called “chunk size”. In this way, we are able
to limit the scope of modeling to a single process but still capture various phenomena,
e.g., people working in multiple processes or working part-time, and the tendency for
people to work in batches.

The remainder of this section is structured as follows. In Section 6.2.1, we describe the ap-
proach taken to model resource availability in a simulation model. Here, we focus on the
main parameters used to represent resource availability. Section 6.2.2 describes the CPN
model we use to analyze the effects of the various resource availability parameters using
a simulation model. The simulation experiments based on this CPN model are discussed
in Section 6.2.3. In Section 6.2.4, we discuss a large workflow process model used for cap-
turing resource availability parameters. Section 6.2.5 discusses the CPN model used for
embedding resource availability parameters in the workflow model. Finally, Section 6.2.6
discusses results from experiments carried out in this section.

6.2.1 Availability Simulation Model Parameters

In Chapter 4 (cf. Section 4.4) we discussed an approach to analyze resource availability
from event logs and in the following we discuss this in terms of modeling resource behavior
in simulation models. When building a simulation model involving humans, we need to
approximate their availability (denoted as a) for this particular process of interest since
there are other processes that resources can participate in. For example, we can specify
that a resource is available for only 20%, 40%, 80% of his/her time in the process of
interest.

For any process that we are simulating, we also need to specify the length of the period
over which people divide up their work. As discussed in Section 4.4, this period is referred
to as a chunk (denoted as c). Hence, the availability of a resource is divided over portions
or chunks as shown in Figure 6.3 which illustrates the relationship between chunk size and
horizon (introduced in Section 4.4.1 on page 75). The small empty circles represent case
arrivals, i.e., the points in time where a new work item is offered. The small filled circles
represent case completions, i.e., the points in time where some work item is completed.
Chunk sizes may vary among different people, for example, a person that is available for
40% of his time may work whenever there is work and he did not exceed the 40% yet
(i.e., small chunk size), or only in blocks of say half a day (i.e., large chunk size). Another
case is that a person may save up work and then work for an extended period (large c)
while another person prefers to regularly check for new work items and work on these
for a shorter period of time (small c).

The chunks of work to be done can be distributed over a specific period of time, i.e.,
horizon (denoted as h). The horizon is the period over which a number of timing con-
straints can be placed. A natural horizon period of time over which resources work is a

128 Chapter 6. Modeling Resource Behavior in Simulation Models

horizon (h)

c cc

completion
of work item

c c ccc

horizon (h)

arrival of
work item

resource is
available

resource
is working

c

Figure 6.3: Overview of the relation between chunk size and horizon.

day. However, this can be extended to a week or a month as discussed in Section 4.4. For
example, a resource can specify that (s)he will be available to work for only two full days
in a week (horizon period is a week), or for only two Monday mornings in June (horizon
period is a month).

A resource in a business process is always in one of these states: (a) inactive, (b) ready, and
(c) busy. Figure 6.4 illustrates the three resource states in the form of a state transition
diagram. A resource can move from one state to another state depending on a number
of parameters related to their availability.
• A resource is in the Inactive state if (s)he is not allocated to a process. This can

be because there is no work available for them to do. However, a resource can also
be inactive if their available capacity has been used up. For example, if a resource
has used up the chunks over which (s)he can work. In this state, work items can
accumulate because they arrive when all the chunks over which a resource can work
are exhausted or the resource is unavailable.

• A resource is in the Ready state if (s)he has been allocated to a process but
currently there is no work to be done. This can mean that (s)he has completed
the execution of all the work items offered to them. A resource will move from the
Inactive state to Ready state if a new work item is offered to them, there are
chunks left over which (s)he can work, or a new horizon period is specified over
which (s)he can distribute work. The resource moves from the Ready state to the
Inactive state if all the chunks have been used up.

• When a resource is in the Busy state, (s)he has been allocated to a process and is
currently executing a work item. Hence, a resource moves from the Ready state to
Busy state once (s)he starts executing work items. The resource will move back to
the Ready state as soon as (s)he completes execution of a work item. The resource
can also move from the Busy state to Inactive state if all the capacity is used
up, i.e., the chunks over which a resource can work is exhausted or the length of
the horizon is too short to allocate a new chunk.

When a case arrives, and the resource is inactive but still has remaining chunks of time
(given the current horizon), then a chunk of time is allocated and the resource starts

6.2 Modeling Resource Availability 129

resource
starts

execution

Inactive

resource
completes
execution

resource capacity
is used up

new work item
arrives and

chunks are left

all chunks
are used up

Busy

Ready

Figure 6.4: A resource can be in the Inactive, Ready and Busy states.

working. If a case arrives and the resource is busy, then work is queued until the resource
becomes available. Note that it may be the situation that work cannot be completed in
the current horizon and is postponed to the first chunk in the next horizon period of
length h, as illustrated in the first horizon period in Figure 6.3. Furthermore, if a chunk
has been started then it will be completed even though there might be no work pending
(in this case the resource is in the ready state).

Given this view about resource availability, we now translate this in a simulation model.
First, we define the main parameters of the simulation model as follows.
• Arrival rate λ (λ > 0) is the average number of cases arriving per time unit. We
assume a Poisson arrival process, i.e., the time between two subsequent arrivals is
sampled from a negative exponential distribution with mean 1

λ .
• Service rate µ (µ > 0) is the average number of cases that can be handled per time
unit. The processing time is sampled from a negative exponential distribution with
a mean 1

µ .
• Utilization ρ = λ

µ is the expected fraction of time that the resource will be busy.
• Chunk size c is the smallest duration for which a resource is allocated to a process.
When a resource leaves the inactive state, i.e., becomes active (is in state ready or
busy), it will do so for at least a period c. In fact, the active period is always a
multiple of c.

• Horizon h (h > 0) is the length of the period over which chunks are distributed.
• Availability a is the fraction of time that the resource is available for the process

(0 < a ≤ 1), i.e., the resource is inactive at least 1− a percent of the time.

It is important to note that the following constraints need to be satisfied.

130 Chapter 6. Modeling Resource Behavior in Simulation Models

(i) ρ = λ
µ ≤ a, i.e., the average utilization should be smaller than the average avail-

ability.
(ii) c ≤ h, i.e., the chunk size cannot be larger than the horizon.
(iii) (a ∗ h) div c = 0, i.e., the maximum time a resource can be active each period

should be a multiple of c, otherwise it would never be possible to actually use the
resource up to fraction a.

We use an example to explain the last requirement. Suppose that the horizon is 8 hours,
the availability is 0.5, and the chunk size is 3 hours. In this case, a ∗ h = 4 hours and
c = 3 hours. Now we assume that per horizon period only one chunk can be allocated.
Hence, the effective availability is not 4 hours but just 3 hours (i.e., effectively a = 3

8).
Since this is misleading, we require that a ∗ h is a multiple of c.

Figure 6.5 summarizes the parameters used in the basic model. Cases arrive with a
particular arrival rate λ and are then placed in a queue. A resource, described by four
main parameters (availability a, horizon h, chunk size c and service rate µ), is then
made available to work on each work item belonging to a case as shown in Figure 6.5. A
resource can execute a number of work items for each case in the process model.

queue resourcework item

availability
(a)

arrival rate
(λ)

chunk size
(c)

horizon
(h)

service rate
(μ)

Figure 6.5: Cases arrive with intensity λ and are placed in a queue and a resource with
parameters a, c, h, and µ handles each work item belonging to a case.

Figure 6.6 shows the work item life cycle introduced in Chapter 3 (cf. Section 3.2 on
page 42). A work item can move from one state to another from the time it is created up
to when it is either completed or canceled. In this section, we explain the different states
that a work item can be in based on the approach presented in the simulation model.
Initially, a work item is created, it can be assigned to a resource. A resource will start
working on the first work item in the queue and can either complete the execution of
this work item or suspend it. A work item is suspended if it is not completed within a
particular chunk. If it is suspended, it is sent back to the beginning of the queue to wait
for the next chunk to be allocated for the resource. Once a new chunk is allocated for
the resource, (s)he can resume the execution of this work item.

Next, we discuss the CPN model we use to capture the resource availability parameters,
i.e., availability, chunk size and horizon.

6.2 Modeling Resource Availability 131

assign

start complete

suspend

resume

abort_activity

schedule

Figure 6.6: Life cycle model of a work item.

6.2.2 CPN Model

The effects of various resource availability characteristics are analyzed using a CPN
model. The CPN model is a hierarchical model composed of 4 pages.

1. The Overview page connects the Work Creation and Execute pages.
2. The Work Creation page generates new cases.
3. The Activation page models the availability of resources.
4. The Execute page handles the work item execution.

This CPN model is used to study the behavior of a single resource, but it can be ex-
tended to more realistic situations with different resources as will be shown later (cf.
Section 6.2.4). In the following we describe each of the pages of the CPN model1.

Overview Page

Figure 6.7 shows the Overview page of the CPN model. It connects the Work Creation
substitution transition and the Execute substitution transition. The Activation page is
used by the Execute page.

Work Creation Page

The Work Creation page of the CPN model is shown in Figure 6.8. Cases are created
in this page by the Generate Cases transition from the Start place. We assume that
the arrival process is Poisson with parameter λ. The time between two subsequent case
arrivals is given by the function IAT(), the creation time of cases is recorded by the current
model time function Mtime(), and the duration of the task is given by the function Dur().

The created cases are represented by tokens with a value which is a product of two
parameters: case id and task duration. After a case has been created, Generate Cases

1The CPN model is initialized with λ = 1
100 , and one resource “r1” characterized by a = 0.2, c = 200,

h = 1000, µ = 1
15 .

132 Chapter 6. Modeling Resource Behavior in Simulation Models

Execute

Execute

Work Creation

Work Creation

Completed
Case

CASEID

Queue

[]

QUEUE

Work Creation Execute

1 1`[(1,16)]

Figure 6.7: The Overview page connects the Work Creation page (on the left) and the
Execute page (on the right).

(cid,t)

(cid,Mtime()-t)

(cid,t)

cid

(cid,Mtime())

Measure
Flow time

Add

Generate
Cases

Queue
Out

[]

QUEUE

Case

Waiting

Completed
Case

In
CASEID

Start

1

CASEID

InOut

CASEIDxTIME

CASEIDxTIME

cid

cid+1@+IAT()
q

q^^[(cid,Dur())]

1 1`[(1,16)]

1 1`(1,0)@0

1 1`2@1

Figure 6.8: The Work Creation page. Cases are generated and put in the Queue place.
When all the work items for a case are completed, the case is sent back to this page
through the Completed Case place.

transition adds it to both the Queue and Waiting places. The case is added to the
Waiting place together with the value of the current model time given by the Mtime()
function. When a completed case arrives from the Execute substitution transition via
the Completed Case place, the Add transition move the case from the Waiting place to
the Case place. The difference between the time the case was created and the time the
case arrives in this page is measured and also added to this place. This information is
used by the Measure Flow Time transition to calculate the flow time of the case (using
a data collection monitor).

6.2 Modeling Resource Availability 133

Activation Page

The modeling of the availability of resources is done in the Activation page of the CPN
model shown in Figure 6.9. Initially, Resource Information place holds the details about
a resource with values related to the resource availability, chunk size, and horizon. It is
important at this point to determine the amount of work that a person can do. This is
obtained by multiplying availability by horizon. For example, in the CPN model when
a=0.2 and h=1000, the amount of work that can be done per period is 200. The avail-
ability can be distributed over the horizon period h in chunks of size c. This information
is updated on the Resource Capacity place by Reset Chunk transition. Therefore, Re-
source Capacity place will contain tokens which are a combination of the resource, the
amount of work that the resource can do and the chunk size. Not more than (a ∗h) div c
chunks can be allocated for each resource. So if a=0.2, c=200 and h=1000 it is possible
to allocate only one chunk per horizon. As long as there is work to be done and available
capacity, the resource will be in the Active place.

nh

Mtime()+h

nh

(r,t')

q

(r,Mtime()+c)

r

r@+c

r

(r,(a,c,h))@+h

(r,w,c')

(r,(a,c,h))

r

(r,w,c)

(r,w-c,c)

Deactivate
Resource

Activate
Resource

Next
Horizon

0

INT

Ready
I/O
RESOURCExTIME

Queue
I/O

[]

QUEUE

RESOURCExINFO

Resource
Capacity

RWC

Active

RESOURCE

Inactive

inact(Rinit)

RESOURCE

I/O

I/O

Resource
 Information

Reset
Chunk

q

[q<>[], w>=c,nh-Mtime() >= c]

cap(Rinit)

(r,(a*h) div 100,c)

Rinit

1 1`1000

1 1`[(1,16)]

1 1`("r1",200,200)@0

1 1`"r1"@0

1 1`("r1",(20,200,1000))@1000

Figure 6.9: The Activation page. Initially, the resource is in the Inactive place but the
resource will move to the Ready place when a new chunk is allocated for the resource.

Activate Resource transition will only be enabled if:
• the Queue place is not empty, i.e., there is available work,
• there is a remaining chunk available, and
• the next chunk fits into the remaining time until the end of the horizon, the in-
formation about the length of the current horizon is stored on the Next Horizon
place.

When there is a new case in the Queue place and a new chunk has been released for

134 Chapter 6. Modeling Resource Behavior in Simulation Models

the resource, Activate Resource transition will fire. A resource with the parameters r
and Mtime()+c will become available to work. A resource will be put in the Ready place
(corresponding to the resource in the Ready state in Figure 6.4) and Active place. A
resource will be in the Active place when they are in either the Ready or Busy states
(cf. Figure 6.4). The resource in the Ready place will have a delay attached to them
which is equivalent to the current time plus the chunk size, i.e., the resource will be in
the Active place for c time units and the chunk will end at time Mtime()+c.

If the chunk is used up or the horizon period is not long enough to allocate a new chunk,
Deactivate Resource transition moves the resource from the Ready and the Active places
to the Inactive place. The availability of resources is therefore controlled by Activate
Resource and Deactivate Resource transitions.

Execute Page

The actual processing of work items is carried out in the Execute page shown in Fig-
ure 6.10. This page uses the information from the Work Creation and Activation pages
already described. Cases come in from Work Creation page through the Queue place
and a resource in the Ready place is made available from the Activation page. As soon
as there is a case waiting and an available resource, the resource will begin to execute a
work item for the case that is on top of the Queue place.

q

(cid,w)::q

cid

(cid,w) (cid,0)

(cid,w)

(r,t')

((cid,w),(r,t'))

((cid,w-done),(r,t'))@+done

(r,t')

q

(cid,w)::q

Activation

Activation

Suspend
Case

[w>0]

Add
Complete

Complete
Work

Start
Work

[Mtime()<t',
done=min(w,t'-Mtime())]

Case

CASE

Busy

BUSY

Ready

RESOURCExTIME

Queue
In

[]

QUEUE

Completed
Case

Out
CASEID

Out

In

Activation

1 1`("r1",200)@0

1

1`[(1,16)]

Figure 6.10: The Execute page. A resource in the Ready place starts execution of a
work item and can either complete it or suspend it.

The length of the processing of the work item (shown as done) is restricted by the task
duration (already sampled during case creation) and the remaining chunk size. Start
Work transition moves the resource from the Ready place and the case from the Queue
place to the Busy place (corresponding to the resource in the Busy state in Figure 6.4).

A token in the Busy place indicates the actual processing of a work item by the resource.

6.2 Modeling Resource Availability 135

When Complete Work transition fires, the case is removed from the Busy place and put
in the Case place. However, if a case leaves the Busy place and the work item for this
case is incomplete because the resource is no longer available for a time period sufficient
to complete the work item, then it is suspended and put in front of the Queue place.
This is controlled by the Suspend Case transition. When a new chunk is allocated to
the resource, (s)he can resume the execution of the work item. If the processing of the
work item is completed, the resource is made available to work again. However, this
is only possible if there is still time left in the current chunk. Otherwise, the resource
will be deactivated and is no longer available until the next chunk is allocated. The
deactivation is controlled by the Deactivate Resource transition shown in Figure 6.9.
Therefore, place Busy shows the interaction between a resource and a case while the
Ready place shows that a resource is available to process a work item. Once the work
item has been completed for the case, the case is sent back to the Work Creation page.
When the case arrives in this page, its flow time is measured. The flow time is the total
time the case spends in the system, i.e., the difference between when the case is created
and when the last task for the case is completed.

The CPN model just described specifies how we can model resource behavior. Although
we assume a very basic setting of the model, our goal is to show that that parameters such
as availability a, chunk size c, and horizon h really matter. Most business simulation tools
do not provide such parameters and assume a = 1 (always available), c → 0 (resources
are only active if they are actually busy working on a case), and h→∞ (infinite horizon).
Next, we discuss the experiments carried out on our simple model. Later, we extend our
model to a process containing multiple tasks.

6.2.3 Simulation Experiments

In this subsection, we describe experiments carried out to investigate the relationship
between the flow time of cases and the main parameters related to resource availability,
i.e., availability (a), chunk size (c), and horizon (h). We use the monitor concept of CPN
Tools to extract numerical data during the simulation. All experimental results reported
here are based on simulations with 10 subruns, each subrun having 10,000 cases. For each
performance indicator measured, we calculated the so-called 95% confidence interval.
These are shown in the graphs but are typically too narrow to be observed (which is
good as it confirms the validity of the trends observed).

Experiment 1: Effect of Availability on Flow Time

The availability a of a resource is the percentage of time over which a person is able
to work. In the first experiment, we analyzed the effect of availability on the flow time
of cases. The aim of this experiment is to investigate the effect of increasing resource
availability on the flow times. For example, if a resource dedicates 20% of his/her time
to a given process, what is the effect on the flow time values if this availability value
is increased to 60%. We anticipate that with higher resource availability, flow times are
reduced. Note that cases are queuing in periods where the resource is unavailable. In this
experiment, different availability values were varied while keeping the chunk size and

136 Chapter 6. Modeling Resource Behavior in Simulation Models

horizon constant. The results from this experiment are shown in Figure 6.11.

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

F
lo

w
 T

im
e

(m
in

ut
es

)

Availability

95% Confidence Interval Values for the Availability

Figure 6.11: Graph showing availability (a) against flow time (λ = 1
100 , µ = 1

15 , ρ =
0.15, c = 200, and h = 1000). The flow time reduces as the availability increases

The graph was plotted to show the values of the average flow times with a 95% confidence
intervals. In the caption all fixed parameter values in the model are shown. The result
from this experiment is obvious: the more the resource is available, the more work one
can do and the shorter the average flow time is. However, one should realize that in
most simulation tools it is not possible to set the parameter a, i.e., a 100% availability
(a = 1) is assumed. Figure 6.11 shows that assuming a too optimistic availability may
have dramatic effects on the average flow time values.

Experiment 2: Effect of Chunk Size on Flow Time

In this experiment, we analyzed the effect of chunk size on the flow times of cases. The
aim of this experiment is to establish the effect of varying chunk size on the flow times.
Recall that, the chunk size is the smallest duration a resource is allocated to a process.
While the effect of reduced availability may be obvious, the effect of the chunk size c
on the flow time may be more surprising. People divide their availability into chunks of
varying sizes. When availability is distributed over chunks, we can observe the following
phenomenon: the bigger the chunk, the larger the flow times of cases. Therefore, work is
more likely to accumulate especially because people are batching up work and waiting to
work for a longer period of time, i.e., use a chunk of a larger size. The results obtained
from the experiments carried out with different chunk sizes are shown in Figure 6.12.

6.2 Modeling Resource Availability 137

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200

F
lo

w
 T

im
e

(m
in

ut
es

)

Chunk Size

95% Confidence Interval Values for the Chunk Size

Figure 6.12: Graph showing chunk size (c) against flow time (λ = 1
100 , µ = 1

15 , ρ = 0.15,
a = 0.2, and h = 1000). The flow time increases as the chunk size increases.

The graph shows the values of the average flow times and the 95% confidence intervals.
The chunk size is varied while keeping the availability and horizon size values constant.
The findings indeed confirm that flow time increases as the chunk size increases. This can
be explained as follows: the larger the chunk size the longer the periods between chunks
become. Figure 6.12 shows an important insight that people making simulation models
often do not realize.

Experiment 3: Effect of Horizon on Flow Time

In the third experiment, we are interested in finding out what the effect of the horizon
length is on the flow time. The aim of this experiment is to investigate the effect of the
horizon length on the flow times. As discussed earlier, horizon is length of the period over
which resources can work. When the horizon is large, then the distribution of chunks is
more flexible. For example, if a ∗ h = c, then only one chunk per period is possible. This
chunk will typically start in the beginning and if a is small, then for a large part of h no
resource is available. If a ∗ h is much larger than c, then more chunks are possible and
these can be more evenly distributed over the period h. Note that the effect of making
the horizon longer is similar to making the chunk size smaller.

Figure 6.13 shows the relation between flow time and horizon observed in our experiment.
It clearly shows that shortening the horizon may lead to longer flow times. However, if
the horizon is sufficiently large (in this case h is more than 4000), it does not seem to

138 Chapter 6. Modeling Resource Behavior in Simulation Models

 20

 25

 30

 35

 40

 45

 50

 0 1000 2000 3000 4000 5000 6000 7000 8000

F
lo

w
 T

im
e

(m
in

ut
es

)

Horizon

95% Confidence Interval Values for the Horizon

Figure 6.13: Graph showing the horizon (h) against the flow times (λ = 1
100 , µ = 1

15 ,
ρ = 0.15, c = 200, and a = 0.8). The flow time decreases as the horizon increases.

matter less.

6.2 Modeling Resource Availability 139

Experiment 4: Effect of Utilization on Flow Time

In this experiment, the aim is to establish the effect of varying utilization rates on the flow
times. The utilization rate is defined as the fraction of time that a resource is expected
to be busy. Therefore, with higher utilization values the flow times obviously increase as
shown in Figure 6.14. In this experiment we keep µ constant and vary λ to get different
utilization values. The graph shows the values of the average flow times and the 95%
confidence intervals. Typically, flow times dramatically increase when ρ get close to 1.
However, with limited availability, the flow time dramatically increases when ρ gets close
to a. Note that ρ results from dividing λ by µ. As expected, the confidence intervals get
wider as ρ approaches a.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
lo

w
 T

im
e

(m
in

ut
es

)

Utilization

95% Confidence Interval Values for the Utilization

Figure 6.14: Graph showing utilization (ρ = λ
µ) against flow time (µ = 1

15 , c = 200,
a = 0.8, and h = 1000). The flow time increases as the horizon increases.

In this section, we have shown that the resource availability parameters indeed have an
effect on the flow times of resources. Next, we discuss an example of a process model
with the resource perspective characterized by the availability parameters.

140 Chapter 6. Modeling Resource Behavior in Simulation Models

6.2.4 Embedding Availability Parameters in a Workflow Model

This section discusses how the resource availability parameters a, c and h can be em-
bedded in a larger workflow model. The workflow model we use in this section is the
running example that was introduced in Chapter 1 (cf. Section 1.3 on page 5). This
model corresponds to the a graduate admission process and the workflow model of the
process is shown here in Figure 6.15. The process model consists of 14 tasks that can
be (potentially) executed for each case. Each task in the model has a specific number
of resources that are allowed to execute it. Each of the resources in the model belongs
to a specific organizational unit and has a particular role. Moreover, work items can be
assigned to resources depending on the organizational units they belong or the roles that
they have.

The admission process is handled by three organizational units, i.e., University Admis-
sions Office (UAO), Graduate School (GS) and Language Center (LC). Each of these units
has a number of roles i.e., an Employee (E), an Admissions Committee (AC). For exam-
ple, an employee from the University Admissions Office is allowed to register applications
received by this office. As shown in Figure 6.15, each task has a number attached to it
which corresponds to the number of people available to execute the task. For exam-
ple, there are 2 (two) employees that can execute Register Application task. The
process model has various modeling constructs shown.
• There is Loop modeled by the Request More Documents transition.
• There is an AND-split modeled by the Check Research Statement transition

and a corresponding AND-join.
• There are XOR-splits modeled by the Classify Application and Assess

Application transitions and one corresponding XOR-join modeled by Send

Reply transition.
The workflow net shown in Figure 6.15 can be translated to a Petri net model shown
in Figure 6.16. The Petri net model can be modeled and represented in the CPN model
capturing various resource availability parameters.

From the Petri net model shown in Figure 6.16, we have places in the model where
alternative paths can be taken. These are the places with multiple out-going arcs or the
XOR-splits in workflow model. We refer to such points as decision points. The choices
made at each decision point have to translated and modeled in the CPN model and
we have to specify the likelihood of taking a specific path at each of these points. One
way of doing this is based on data attributes. It is possible to have the result of data
attributes influence the selection of alternative branches [150]. However, since we abstract
away from the data we can randomly select an alternative branch in the process model
based on some probability distribution. Therefore, when carrying out simulations with
this Petri net model we use probabilities to select alternative paths to take from each
decision point. Figure 6.17 shows part of the Petri net model with the different decision
points highlighted.

We have three decision points from the graduate admission model shown in Figure 6.16.
(i) In the first decision point (p3) shown in the model, we have a 90% probability to

6.2 Modeling Resource Availability 141

Register
Application

Send
Acknowledgement

Classify
Application

Check
Documents

Unconditional
Offer

Conditional
Offer

Assess
Application

Send
Reply

Start

End

Check Research
Statement

AND-join

Reject
Application

Confirm Test
Results

Contact Language
Center

Verify Academic
Documents

E,UAO

E,UAO

AC,GS

AC,GS

AC,GS

AC,GS AC,GS
AC,GS

E,UAO

E,LC

Request More
Documents

E,UAO
E,UAO

1

E,UAO

AC,GS

1

2

2
1

2

1

2

1

3

1

3

2

1

Figure 6.15: Workflow model for the graduate admission process enhanced with roles
and organizational. The number attached to each task indicates the number of resources
that can execute the task.

Classify Application and 10% probability to Request More Documents.
(ii) In the second decision point (p4) we have a 75% probability to Check Research

Statement and a 25% probability to Reject Application.
(iii) In the final decision point (p10) we have a 55% probability to give an Uncondi-

tional Offer, a Conditional Offer is given with a 20% probability and
Reject Application is executed with a 25% probability.

The availability model described in Section 6.2.2 is extended to handle the execution of

142 Chapter 6. Modeling Resource Behavior in Simulation Models

Register
Application

Send
Acknowledgement

Classify
Application

Request More
Documents

Check
Documents

Assess Application

Send Reply

Start

End

Check Research
Statement

Confirm Test
Results

Contact Language
Center

Verify Academic
Documents

p1

p2

p3

p4

p5 p6

p7 p8

p9

Reject
Application

Conditional
Offer

Unconditional
Offer

p11

p12

p10

Loop

Parallel
Split

Choice

Figure 6.16: Petri net model of the graduate admission process that is equivalent to
the WF -net shown in Figure 6.15

tasks in the admission process model. The CPN model will consist of multiple tasks that
can be executed and these vary from one case to another.

Next, we discuss each of the pages of the availability CPN model that we use for embed-
ding the Petri net model shown in Figure 6.16.

6.2 Modeling Resource Availability 143

Classify
Application

Request More
Documents

Check
Documents

Check Research
Statement

p2

Reject
Application

Conditional
Offer

Unconditional
Offer

p10p3

Assess
Application

p490

10

75

25

25

55

20

Figure 6.17: The probabilities of alternative paths in the process model are shown on
each of the outgoing arcs from each decision point.

6.2.5 CPN Model for the Workflow Model

The resource availability parameters for the larger workflow model were analyzed using
a CPN model. The CPN model is a hierarchical model composed of 5 pages.

1. The Overview page connects the Work Creation and Execute pages.
2. The Work Creation page generates new cases.
3. The Create Work Item page creates new work items for each case created in the

Work Creation page.
4. The Activation page models the availability of resources.
5. The Execute page handles the work item execution. The Execute page uses the

Create Work Item and Activation pages.

Overview Page for the Process Model

Figure 6.18 shows the overview page of the CPN model used for capturing the workflow
model. It connects the Work Creation page shown on the left and the Execute page
shown on the right. A created case on the Queue place and the state for the case on
the State place are sent to the Execute substitution transition. A completed case is sent
back to the Work Creation substitution transition where its flow time is measured.

The Execute page uses the Create Work Item page. Once a new case arrives in the
Execute page, this page sends the case (in the Queue place) and the initial state of the
case (in the State List) to the Create Work Item Page where a new work item is created
for the case.

Work Creation Page for the Process Model

Cases are generated in the Work Creation page shown in Figure 6.19 and are placed in
the Queue place. This page is similar to the Work Creation page in Figure 6.8. Each
created case is added to the State List place together with its initial state. Initially, each
place in the Petri net shown in Figure 6.16 holds zero or more tokens represented as
black dots.

144 Chapter 6. Modeling Resource Behavior in Simulation Models

Execute

Execute

Work Creation

Work Creation

Queue

[]

QUEUE

state

[]

STATES

Completed
Case

CASEID
Work Creation Execute

1 1`[]

1

Figure 6.18: The Overview page of the availability process model connects the Work
Creation page (on the left) and the Execute page (on the right).

(cid,Mtime()-t)

(cid,t)

cid+1@+IAT()

cid

Measure
Flow time

Add

Generate
Cases

[]

QUEUE

[]

STATES

Case

CASEIDxTIME

Waiting

CASEIDxTIME

Completed
Case

In
CASEID

Start

1

CASEID

In

q

states

State
List

OutOut

Queue
OutOut

states^^[(cid,initial)]

q^^[cid]

cid

(cid,t)

(cid,Mtime())
1 1`(1,0)@0

1 1`2@126

1

1`[(1,[("p1",0),("p2",0),("p3",0),("p4"
,0),("p5",0),("p6",0),("p7",0),("p8",0),
("p9",0),("p10",0),("p11",0),("start",1
),("end",0)])]

1 1`[1]

Figure 6.19: The Work Creation page. Each case that is generated is added to the
Queue place. The case together with its initial state are also added to the State List
place.

This corresponds to the state of the Petri net. For example, in the Petri net model shown
in Figure 6.16 place Start has one token while all the other places are empty. This
means that initially, only transition Register Application is enabled to fire since
its input place has a token. Translating this to the CPN model this means that for all
the cases, the first task to be executed will be Register Application. The state
of the case in the CPN model will contain the distribution of tokens over places in the
net. For example, from Figure 6.19 the State List place has one token which has a value
corresponding to the case that has been created, i.e., case 1 and the initial state for the
case.

Create Work Item Page for the Process Model

The admission process model in Figure 6.16 has multiple tasks that can be executed for
each case. Therefore, for created case in the CPN model we have to determine the next
task to be executed. Furthermore, the Petri net model has various decision points shown

6.2 Modeling Resource Availability 145

in Figure 6.17. At these points, we need to select alternative paths to take, i.e., which
tasks to execute next. The likelihood of taking a specific path in the model is based on
a randomly selected value from the discrete probability distribution.

q

cid::q

pd

states

pd

states

dropState(cid,states)
^^[updateState(tid,cid,states,pd)]

(cid,w)

wis

(cid,r,tid)

(cid,tid,r,w)::wis

wis

Change
State

Generate
Random

Create
Work Item

Queue
In

[]

QUEUE

Work Item
Queue

[]

WIQUEUE

pinitial

DECLARATION

Work
Out

CASEIDxDUR

CASEIDxTIME

State
List

I/O

[]

STATES

WI

I/O

In

Case

input ();
output ran;
action
discrete (0, 100)

(cid,ran)

Work Item
OutOut

Process
Declaration
DeclarationDeclaration

wis^^
getResource(cid,tids)

(cid,ran)

Out

[tids = getTask(cid,pd,states,ran)]

1 1`[]
1 1`[(1,"Register Application","r1",12)]

1

1

Figure 6.20: The Create Work Item page. For each case, a new work item is created
and added to the Work Item Queue place.

When a case arrives in the Create Work Item page, Generate Random transition gen-
erates a random number (ran) between 0 and 100. Generate Random transition adds a
new token to the Case place which is a product of case that is at the top of the Queue
place and the randomly generated value. Create Work Item transition takes as input the
information about the: (a) case id (cid), (b) process declaration (pd), (c) initial state
(states), and (d) random number (ran) to determine the next task(s) to be executed for
the current case. This is done using the getTask function 2.

The new task depends on the previous task that was executed for the case. For exam-
ple, if the case has just been created from the Work Creation page then the next task
to be executed is Register Application (cf. first task in Figure 6.16). However,
if the previously executed task according to the process model is Check Research

Statement then two tasks will be created, i.e., Verify Academic Documents and
Confirm Test Results. These tasks have to be executed in parallel.

If two tasks are executed in parallel, both tasks must be completed first before a new
task is created for the case. This is based on the information about the pre and post sets
of each transition in the process model, which is stored in the Process Declaration place.
For each of the created task, a resource to execute it is assigned using the getResource
function. Moreover, the task duration is also sampled at this point (using the Dur()
function) and added to the task.

The created work item(s) is now added to the Work Item Queue place. The work item is

2Create Work Item transition creates new tasks per case using information in the Process Declaration
and State List. A similar model will be used in Section 6.3.2.

146 Chapter 6. Modeling Resource Behavior in Simulation Models

a product of four parameters: (a) case id, (b) task to be executed, (c) resource to which
the work item has been offered, and (d) the task duration. For example, from Figure 6.20
the new task created is Register Application, the task has been assigned to resource r1.
The resource will execute this task for a duration of 21 minutes. After the work item(s)
has been created, Change State transition moves the created work item from the Work
Item Queue place to the Work Item place and also adds the case id together with the
sampled duration to the Work place. In addition, Change State transition updates the
State List with new information about the state used in determining the next task to be
executed.

Execute Page for the Process Model

The actual execution of work items is carried out in the Execute Work Item page shown
in Figure 6.21. Once there is a new work item on the Work Item place, it is sent to the
Activation page where a resource with the availability parameters (a, c, and h) is allocated
to execute the work item through the Ready place. The Activation page of this model is
similar to page shown in Figure 6.9. Moreover, this page will contain information about
all the resources that are allowed to execute tasks in the process model. A resource in the
Ready place takes tokens from the Work Item (stores the actual work item) and Work
places (stores the work item duration) and will start the execution of the work item given
by the Start Work transition.

q

if tid<>finaltask then
q^^[cid] else q

pd

[tid=finaltask]%cid

newState
(tid,cid,states,pd)

states

(cid,w)

(cid,w)

(cid,r,tid)

(cid,r,tid)

((cid,r,tid),w)

((cid,r,tid),w)

((cid,r,tid),w)

(r,t')

((cid,w),(r,t'),tid)

((cid,w-done),
(r,t'),tid)@+done

(r,t')

Activation
Activation

Suspend
Case

[w>0]

Check
Completed Case

[w=0]

Complete
Work

Start
Work

[Mtime()<t',
done=min(w,t'-Mtime())]

Queue
In

[]

QUEUE

Process
Declaration
Declaration

pinitial

DECLARATION

Work

CASEIDxDUR

State
List

In

[]

STATES

Case

WIs

Busy

BUSY

Work Item

WI

Completed
Case

Out CASEIDOut

In

Declaration

In

Create
Work Item

Create Work ItemCreate Work Item

Activation

Ready

RESOURCExTIME

1

1

1 1`(1,2)@0

1

1 1`(1,"r1","Register Application")@0

1 1`("r1",200)@0

Figure 6.21: The Execute Work Item page. A resource “r1” in the Ready place will start
the execution of a work item in the Work Item place.

The Execute Work Item page is extended from the previous Execute page (cf. Figure 6.10)

6.2 Modeling Resource Availability 147

and this is because now we have to do two checks on this page.
• First, we have to determine if the work item has been completed within the partic-
ular chunk over which a resource was working. This is done by the Suspend Case
transition which checks if w>0 or not. If the work item is not completed within the
chunk period, then it is suspended and added back to the Work Item place. When a
new chunk is allocated to the resource, (s)he can resume the execution of the work
item.

• Secondly, we have to determine if the work item that has been completed by the
Complete Work transition is the last task in the process model (cf. Send Reply

in Figure 6.16). This is done by Check Completed Case transition. If the task is
not the last one, then the case is added to the Queue place and sent back to the
Create Work Item page where a new work item is created. Otherwise, it will be sent
to the Work Creation page (cf. Figure 6.19) where its flow time is measured. It is
important to note that only work items that are completed within the particular
chunk over which a resource was working, are added to either the Completed Case
place or the Queue place (i.e., w=0).

Next, we describe experiments carried out to determine the effect of varying different
availability parameters (a, c and h) in the extended CPN model.

Experiment 5: Effect of Varying Different Availability Parameters

In this section, we discuss experiments carried out to determine the effect of the varying
different availability parameters in a larger workflow model. The aim of this experiment
is to determine the effect of varying the availability parameters on the flow time values.
Initially, a base scenario was chosen with suitable values for the availability (a), chunk size
(c), and horizon (h), for all the resources in the model. Based on these values, experiments
were carried out to determine the sensitivity of these parameters with respect to the flow
time. For example, it is interesting to see what the effect on the flow time is with larger
chunk sizes or with smaller availability values.

Table 6.1 summarizes the values of the flow times obtained from the experiment. Each row
in the table corresponds to an experiment in which the parameters relating to resource
availability were varied. All experimental results shown here are based on simulations
with 10 subruns, each subrun having 1,000 cases. In the experiments, tasks have different
processing times but share the same values for chunk size (c), horizon (h), and availability
(a). In the base scenario for example, c = 5, h = 2000, and a = 0.4. Table 6.1 shows
the results obtained from experiments carried out to determine the effect of different
availability parameters on the flow time. For the base scenario, we see that the flow time
with 95% confidence is within 295.2− 15 and 295.2 + 15 minutes.
Given the base case scenario, different variations were made on the availability parameters
and different flow time results obtained. For example, when the chunk size was increased
from c = 5 to c = 100 the flow time more than doubled (the flow time increased from
295.2±15 to 878.2±29. Furthermore, if we consider the experiments where the availability
and horizon values were decreased, we see that the effects on the flow times were as
expected. The less time a resource is available on a process, the higher the flow time.

148 Chapter 6. Modeling Resource Behavior in Simulation Models

Table 6.1: Results of experiments carried out to determine the effect of varying different
parameters against the flow time.

Parameters Flow Time

Base Case Scenario (a = 0.4, c = 5, h = 2000), and λ = 1
75 295.2 ±15

Divide the horizon by 20 (h = 100) 850.7 ±43

Divide the horizon by 40 (h = 50) 886.7 ±28

Multiply the chunk size by 5 (c = 25) 318.7 ±22

Multiply the chunk size by 20 (c = 100) 878.2 ±29

Multiply the chunk size by 80 (c = 400) 1230.1 ±29

Multiply the chunk size by 160 (c = 800) 1241.6 ±48

Decrease availability and arrival rate by 2 (a = 0.2, λ = 1
150) 463.2 ±35

Decrease availability and arrival rate by 4 (a = 0.1, λ = 1
300) 1452.3 ±122

The shorter the horizon period over which a resource can work, the higher the flow time
values. Moreover, when the availability and arrival rate decreased by a factor 4 while
keeping the relative utilization ρ/a unchanged, the flow time goes up from approx. 295
to approx. 1452 minutes.

The results shown in Table 6.1 indeed confirm that the parameters for availability (a),
chunk size (c), and horizon (h) have dramatic effects on the flow times. Hence the pa-
rameters discussed in this section are relevant. In fact, it is easy to see that the effects
easily accumulate when the workflow is larger.

6.2.6 Discussion

There are a number of lessons to be learned from our experiments using a CPN model.
Resource availability can be characterized by parameters such as a, c, and h that dra-
matically affect performance. It is therefore important that these issues characterizing
resource availability are considered in order to make simulations more realistic.
• First of all, it is important to not automatically assume that people are always
available and eager to work when cases arrive. In real-life situations, this is often
not true because people are available for only specific times and may let work
accumulate before commencing it. This heavily impacts performance as shown in
Figure 6.11.

• Secondly, when people are available to work, they will do this work in chunks whose
sizes may vary between different people. The bigger the chunk size, the longer the
flow times of cases. So, even if the availability is the same, the flow time heavily
depends on this parameter and it cannot be ignored as shown in Figure 6.12.

• Chunks are divided over a particular horizon and so the larger the horizon, the

6.3 Modeling Resource Busyness 149

shorter the flow times because of increased flexibility. Increasing the length of the
horizon corresponds to making chunks (relatively) smaller as shown in Figure 6.13.

• Utilization of people is also an important factor that greatly affects the flow times
of cases. When it is high, then the flow times increase as shown in Figure 6.14.

• The example in Section 6.2.4 shows that these effects may accumulate in larger
workflows. The typical assumptions made in today’s simulation tools (i.e., a = 1,
c→ 0, and h→∞), may result in flow times of minutes or hours while with more
realistic settings for a, c, and h the flow time may go up to weeks or months to
actually coincide with the actual flow times observed.

In this section, we have discussed how to model resource availability in simulation models.
With experiments we have shown the effect of various resource availability parameters on
the flow time. Next, we focus on incorporating workload-dependent speeds in simulation
models. These are used to investigate the effect of workload on processing speeds of
resources.

6.3 Modeling Resource Busyness
As discussed in Chapters 2 and 5, it is reasonable to assume that people do not work at
constant speeds and their speeds can be influenced by workload present in the system.
Theoretically, this effect is modeled as the “Yerkes-Dodson Law of Arousal”, which models
the relationship between arousal and performance as an inverted U-shaped curve (cf.
Figure 5.2 on page 101) [190]. In Chapter 5, we observed that workload-dependent speeds
can be observed in daily life. However, today’s simulation tools typically do not support
the modeling of workload-dependent speeds. Usually when building a simulation model,
the processing speeds of resources are sampled from a probability distribution and are
independent from the contextual factors within the organization, for example, stress, and
varying workload.

As an example, if we consider the admission process model shown in Figure 6.15, there are
periods in the year when the university receives a high number of applications. However,
there are also periods when there are few applications received. This implies that there are
specific periods when the number of applications to be handled are high or periods when
they are low. The number of applications received by the university may influence the
speed at which resources work. It might be the case that a resource will work faster to met
a specific deadline. Therefore, when resources are working it is not their distribution of
attention over different processes that can affect their performance, workload-dependent
speeds also determine the effective capacity of resources [3, 8]. In this section, we discuss
an approach taken to capture workload-dependent working speeds in simulation models.
We use the definitions of workload and processing speeds that we introduced in the
previous chapter. We limit our focus to a single process involving multiple resources and
tasks and represent this in a simulation model.

The remainder of this section is structured as follows. In Section 6.3.1, we discuss
the parameters needed to capture workload-dependent speeds in a simulation model.
Section 6.3.2 describes the colored Petri model used to analyze the effects of various

150 Chapter 6. Modeling Resource Behavior in Simulation Models

workload-dependent speeds parameters. The simulation experiments based on this CPN
model are described in Section 6.3.3.

6.3.1 Workload-Dependent Simulation Model Parameters

In Chapter 5, we discussed an approach taken to analyze workload-dependent speeds
from event logs. In this section, we discuss the main parameters that were introduced
in Section 5.2 that we use for incorporating workload-dependent speeds in simulation
models. When a resource is working, (s)he can execute a number of work items for a
given case. In Section 6.2.1 (cf. Figure 6.6), we discussed that there are several states
that a work item can be in from the moment it is created until it is either finished or
canceled. Initially, a work item is created and subsequently offered to a resource. In our
approach, we assume that a work item can only be offered to a single resource. Moreover,
a work item can be offered to a resource even though (s)he is currently busy executing
another work item. When the resource is free, (s)he will start executing an allocated
work item. A resource starts working on the first work item in the queue and eventually
completes the execution of this work item.

As discussed in the previous chapter (cf. Section 5.2), at any point before a resource
starts the execution of a specific work item, we can analyze the work items that have
assigned to a resource (i.e., in the offered state) and the work items that a resource has
completed (i.e., in the finished state). The work items in these two states are used to
define the workload that is present in the system from two perspectives.
• The queue length perspective which specifies the amount of work scheduled for a
given resource, and

• The how busy perspective which specifies the amount of work that each resource
has executed in the recent past.

During the simulation, it is possible to count the number of work items that have been
scheduled for a resource and the number of work items that a resource executed in the
recent past. The work items are measured before the resource starts the execution of
a work item. Furthermore, we also characterize processing speeds of resources in the
simulation model. This is associated with each case execution and is the total time the
case spends in the system, i.e., the difference between when the case is created and when
the last work item for the case is completed.

The main parameters in the simulation model are:
• Arrival rate λ (average number of cases arriving per time unit),
• Service rate µ (average number of cases handled per time unit), and
• Utilization ρ = λ

µ (fraction of time a resource will be busy) as defined in Sec-
tion 6.2.1.

Next, we discuss the CPN model we use to represent workload-dependent speed param-
eters.

6.3 Modeling Resource Busyness 151

6.3.2 CPN Model

The effects of workload on processing speeds of resources are explored by simulating a
colored Petri net model. The CPN model is a hierarchical model composed of 6 pages.

1. The Overview page connects the Work Creation and Create Work Item pages.
2. The Work Creation page generates new cases in the model.
3. The Create Work Item page creates new work items for the each case and it uses

the Add Parameters page.
4. The Add Parameters page adds resource parameters to a queue. The Add Param-

eters page uses the Measure Workload and Execute pages.
5. The Measure Workload page measures the workload present in the model from the

queue length and how busy perspectives.
6. The Execute page handles the work item execution.

In the CPN model, we execute tasks for the graduate admission process model shown
in Figure 6.16 as a Petri net model (discussed earlier in Section 6.2.4). The Petri net
model is translated and represented as a token in the CPN model. As discussed earlier,
each transition in the Petri net model corresponds to tasks executed in the CPN model.
The Petri net model in Figure 6.16 is represented in the CPN model as a token on the
Process Declaration place shown in Figure 6.22.

[]pinitial

DECLARATION

Process
Declaration

DeclarationDeclaration STATES

State
List

InIn

1

1`{pmodel=(["start","p1","p2","p3","
p4","p5","p6","p7","p8","p9","p10","p
11","p12","end"],["Register Applicatio
n","Send Acknowledgement","Check
Documents","Request More Document
s","Classify Application","Check Resea
rch Statement","Verify Academic Docu
ments","Confirm Test Results","Conta
ct Language Center","Assess Applicat
ion","Conditional Offer","Reject Applic
ation","Unconditional Offer","Send Re
ply"],[("start","Register Application"),(
"Register Application","p1"),("p1","Se
nd Acknowledgement"),("Send Ackno
wledgement","p2"),("p2","Check Doc
uments"),("Check Documents","p3"),(
"p3","Classify Application"),("Request
More Documents","p2"),("p3","Reque
st More Documents"),("Classify Applic
ation","p4"),("Classify Application","p
11"),("p4","Check Research Statemen
t"),("Check Research Statement","p5"
),("Check Research Statement","p6"),

1

1`[(1,[("p1",0),("p2",0),("p3",0),("p4"
,0),("p5",0),("p6",0),("p7",0),("p8",0),
("p9",0),("p10",0),("p11",0),("p12",0),
("start",1),("end",0)])]

Figure 6.22: A new work item is created based on a predefined Process Declaration
and an initial state in the State List.

The token is a product of: (a) finite set of places, (b) finite set of transitions and (c) the
pre and post sets for all the nodes in the Petri net model. For example, from the Petri net
model (cf. Figure 6.16) the start place does not have any input transitions hence its preset
is empty, but its post set contains transition Register Application. During the execution
of this model, each place in the Petri net can zero or more tokens which represents to the

152 Chapter 6. Modeling Resource Behavior in Simulation Models

state of the Petri net. The state of the Petri net is represented as a token in the State
List together with the case to which it belongs. For example, in Figure 6.22, the state
shown in the State List belongs to case 1. The information about the places, transitions,
pre and post sets and the current state of the net are used as basis for making decisions
about the work item(s) to execute per case.

We now describe each of the six pages of the CPN model that we use for analyzing the
impact of workload on the processing speeds of resources.

Overview Page

The Overview page shown in Figure 6.23 connects the Work Creation substitution tran-
sition shown in Figure 6.24 and the Create Work Item substitution transition shown in
Figure 6.25.

Create
Work Item

Create Work Item

Queue

[]

Completed
Case

State
List

[]

Create Work Item

Work
Creation

Work CreationWork Creation

QUEUE

STATES

CASEID

1 1`[1]

1

Figure 6.23: The Overview page connects the Work Creation page (on the left) and the
Create Work Item page (on the right).

Work Creation Page

The Work Creation Page of the workload model is shown in Figure 6.24. Cases are
generated based on a predefined distribution and are put in the State List place together
with their initial state. Each new case is also added to the Queue place. The arrival
process of cases is Poisson denoted with parameter λ.

The time between two subsequent case arrivals is given by the function IAT() and the
creation time of cases is recorded by the current model time function Mtime(). After a
case has been added to the Queue place it is sent to the Create Work Item page where
a new work item is created for the case.

Create Work Item Page

The Create Work Item page of the CPN model is shown in Figure 6.25. Cases arrive in
this page through the Queue place. The Petri net model shown in Figure 6.16 has places

6.3 Modeling Resource Busyness 153

Start

1

CASEID

State
List

OutOut

[]

STATES

Completed
Case

InIn
CASEID

Waiting

CASEIDxTIME

Case

CASEIDxTIME

Queue
OutOut

[]

QUEUE

Generate
Cases

Add

Measure
Flow time

cid

cid

(cid,t)

(cid,Mtime()-t)

states^^[(cid,initial)] states

cid+1@+IAT()

q^^[cid]

q

(cid,Mtime())

(cid,t)

1 1`2@1

1

1 1`(1,0)@0

1 1`[1]

Figure 6.24: The Work Creation page. Generate Cases transition populates the Queue
place with new cases. It also adds the case and its initial state to the State List place.

in the model where alternative paths are taken (as discussed in Section 6.2.4). During
the simulation we generate probabilities used for selecting particular paths to take from
each decision point in the model (cf. Figure 6.17).

q

cid::q

states

wi^^(addResource(cid,tids))

pd

(cid,ran)

(cid,ran)

Add Parameters

Add Parameters

Generate
Random

input ();
output ran;
action
discrete (0, 100)

Create
Work Item

[tids =
getTask(cid,pd,states,ran)]

Queue

In

[]

QUEUE

Process
Declaration

Declaration

pinitial

DECLARATION

Case

CASEIDxNO

Work Item
List

[]

WIList

Completed
Case

Out
CASEID

State
List

In

[]

STATES

wi

1 1`[]

1

1
1`[(1,"Register Application","r3",20)]

1

Figure 6.25: The Create Work Item page. New work items for each case are created
using the Create Work Item transition.

Therefore, Generate Random transition takes the case that is at the top of the queue
and generates a random number using the discrete function. The product of the case
and the random number are added to the Case place. After which Create Work Item
transition takes the token from the Case place and creates a task to be executed using

154 Chapter 6. Modeling Resource Behavior in Simulation Models

the getTask function. This transition obtains the task(s) using the information in the
the State List and Process Declaration places. This transition also assigns a resource
to execute the work item (resources are obtained using predefined resource roles). The
duration of the created task is also sampled at this point from a probability function.
This is carried out using the addDetails function.

Create Work Item transition creates a new work item which is a product of four pa-
rameters: (a) case id, (b) task, (c) resource, and (d) task duration. For example, from
Figure 6.25 the new work item that is created is for case 2, the task to be executed is
Send Acknowledgment, which is scheduled to resource r3, and the task duration is 33.
The work item is added to the Work Item List place which is sent to the Add Parameters
substitution transition where resource busyness parameters are calculated.

Add Parameters Page

The Add Parameters page of the CPN model is shown in Figure 6.26. Once there is a
new work item on the Work Item List place, then Update List transition obtains this work
item and adds it to the Scheduled Work Items place. Moreover, the Length Queue place
is updated with information about the work items that have been scheduled to each
resource. This is done using the updateResource function. The Length Queue place
has a list which contains the product of each resource and a value which represents the
number of work items that have been scheduled to each resource. For example, according
to the information on place Length Queue resource r2 has been scheduled to execute two
work items. The information in the Length Queue place will be used to determine the
workload present in the model based on the queue length perspective.

lq

updateResource(r,lq)

wi

(cid,tid,r,w)

(cid,tid,r,w)::wi

busy

Measure
Workload

Measure Workload

Execute
Work Item

Execute

Update
List

Length
Queue

[]

LENGTHQUEUE

Queue
Out

[]

QUEUE

Busyness
Queue

[]

BUSYNESSQUEUE

WI

State
List

I/O

[]

STATES

WL
Work Item

WIxWL

Busy
Resources

[]

RESOURCES

Work Item
List

In
WIList

Completed
Case

Out
CASEID

OutIn

I/O

Out

ExecuteMeasure Workload

Scheduled
Work Items

1

1`[("r1",2),("r3",0)]
1 1`[]

1

1`[("r1",[87,137])]

1

1 1`["r3","r1"]

1 1`[(2,"Send Acknowledgement","r3",
33)]

2

1`(3,"Register Application","r1",92)+
+
1`(4,"Register Application","r1",65)

Figure 6.26: The Add Parameters page. The Length Queue place is updated with
information about the work items that have been scheduled for each resource.

6.3 Modeling Resource Busyness 155

The Add Parameters page also connects the Measure Workload page and the Execute
Work Item page. A work item from the Measure Workload page (where its workload
is measured) is sent to the Execute Work Item page (where it is actually executed).
Moreover, if the work item that has been completed in the Execute Work Item page is
the last one for the case, the case sent back to the Work Creation page through the
Completed Case place.

Measure Workload Page

The Measure Workload page is shown in Figure 6.27. Here, each work item from the
Scheduled Work Items place is assigned to a resource to start its execution. This is
only possible if the resource is not currently busy, i.e., is not in the Busy Resources
place. When Allocated Work Item transition fires, a work item is taken from the list of
Scheduled Work Items place and added to the Work Item place. Moreover, the assigned
resource will be added to the Busy Resources place. For example, in Figure 6.27 tran-
sition Allocate Work Items transition is not enabled because the resources scheduled to
execute the work items belonging to cases 2, 3 and 4 are all currently busy, i.e., resources
r3 and r1 are in the Busy Resources place. As soon as there is a token in the Work Item
place, Measure Workload transition calculates the workload present before the assigned
resource starts execution of the work item. Measure Workload transition uses the infor-
mation in the Length Queue and the Busyness Queue places to calculate the workload
present in the model.

busy

increase busy r

(cid,tid,r,w)

bq
100

INT

WI

[]

RESOURCES

WI

[]

LENGTHQUEUE

BUSYNESSQUEUE

Measure
Workload

Allocate
Work Item Work Item

[(mem busy r) = false]

Length
Queue

I/OI/O

Horizon
Period

Horizon

((cid,tid,r,w),(ql,bu))

lq

WL
Work Item

OutOut

removeResource(r,lq)

Busy
Resources

I/OI/O

(cid,tid,r,w)

Scheduled
Work Items

InIn

Horizon

WIxWL

h

(cid,tid,r,w)

Busyness
Queue

I/OI/O

[ql = countQueue(r,lq),
bu=countBusy(h,r,bq)]

[]1 1`[("r1",2),("r3",1)]

1 1`100

1

1`["r3","r1"]

3

1`(2,"Send Acknowledgement","r3",3
3)++
1`(3,"Register Application","r1",92)+
+
1`(4,"Register Application","r1",65)

1

1`[("r1",[87,137])]

Figure 6.27: The Measure Workload page. The workload present in the model is mea-
sured from the Length Queue and the Busyness Queue places.

The Length Queue place stores the number of work items assigned to each resource.
Therefore, function countQueue(r,lq) will return the number of work items that have
been scheduled for each resource (i.e., r) from the Length Queue place (i.e., lq). This
function is based on earlier definitions of workload calculation introduced in Chapter 5

156 Chapter 6. Modeling Resource Behavior in Simulation Models

(cf. Definition 5.1 on page 110). Therefore, function ql(r, t) calculates all the work items
that are waiting to be executed by resource r at time t. This can be computed on-the-fly
and the number of work items scheduled for the resource is decremented when a new
work item is started. For example, if the assigned resource to execute a work item is r1,
then the number of work items from the Length Queue place (shown in Figure 6.27) that
have been scheduled for r1 are 2.

The Busyness Queue place holds the number of work items that each resource has
executed in the past. This place will have a list per resource which contains a value
indicating when a specific work item was completed. For example, from Figure 6.27,
Busyness Queue place contains a token with a value indicating that resource r1 has
completed two work items at times 87 and 137. In our simulation model, we can also
specify periods of time (i.e., horizon period) over which we measure workload. The work-
load calculation is done by the countBusy(h,r,bq) function which returns the number of
work items from the Busyness Queue place (bq) that have been completed in a specified
period of time (h) for a resource (r).

The calculation is based on the workload definition from the how busy perspective intro-
duced earlier in Chapter 5 (cf. Definition 5.2 on page 110). Therefore, function hb(r, t, h)
calculates all the work items that were started and completed before a resource starts the
execution of a specific work item. For example, if we specify a horizon period of h = 200,
the hb(r, t, h) function will return the number of work items completed during the pre-
vious 200 time units from the current time. If the current time in the simulation is 240
(given by Mtime() function), and h = 200, then all the work items that were executed in
the interval h, i.e., 40 ≤ h ≤ 240 are considered as the number of work items that have
been completed in the recent past.

The workload information measured in this page of the CPN model is added to work
item in the WL Work Item place and sent to the Execute Work Item page. The number
of work items scheduled for the current resource are also reduced by 1 from the Length
Queue place.

Execute Work Item Page

The Execute Work Item page of the CPN model is shown in Figure 6.28. Here, the
execution of the work item is started and eventually completed. The duration of work
item processing is now dependent on the sampled duration from the Create Work Item
page and the workload parameters from the Measure Workload page.

In this section, we model the relationship between workload and processing speeds of
resources based on the “Yerkes-Dodson Law of Arousal” that was discussed previously in
Chapters 2 and 5. The Yerkes-Dodson Law models the relationship between arousal, i.e.,
human performance as an inverse U-shaped curve as depicted in Figure 6.29 introduced
earlier in Section 2.3.5 (on page 29).

As discussed earlier, we represent stress/pressure as the number of work items based
on the two workload perspectives. From the first half of the “Yerkes-Dodson Law”, we
see that as the work pressure increases, this affects the performance of people, i.e., their

6.3 Modeling Resource Busyness 157

[tid=finaltask]%cid

Start
 Execution

Complete
Execution

[]

[]

[]

RESOURCES

[]

STATES

CASEID

(cid, tid,r)@+done

DECLARATION

pinitial

Queue
OutOut

q

Completed
Case

OutOut

if tid<>finaltask
then q^^[cid] else q

updateBusy(r,bq,Mtime())

bq

Busyness
Queue

I/OI/O

Busy
Resources

I/OI/O

busy

states

Busy

WIxWL

states

newState
(tid,cid,states,pd)

dropState
(cid,states)^^
[update(tid,cid,states,pd)]

pd pd

(cid,tid,r)

Process
Declaration
DeclarationDeclaration

State
List

I/OI/O

remove
busy r

[done =
 DurWL(w,ql,bu)]

((cid,tid,r,w),(ql,bu))

BUSY QUEUE

BUSYNESSQUEUE

WL
 Work Item

InIn

1 1`[]

11`[("r1",[87,137])]

1 1`["r3","r1"]

2

1`(1,"Send Acknowledgement","r3")
@160+++
1`(5,"Register Application","r1")@154

1

1

Figure 6.28: The Execute Work Item page. A work item in the WL Work Item place
will be started and eventually completed. The duration of execution now depends on the
work item duration and the workload in the model.

PRESSURE

Low

P
E
R
F
O
R
M
A
N
C
E

High

High stress
Anxiety

Optimum
stress

Low pressure
Boredom

Medium High

Figure 6.29: Yerkes-Dodson Law of Arousal modeled as an inverse U-shaped Curve
(adapted from [84]).

processing speeds also increase. This goes on up to an optimum stress level, beyond which
the performance drops. In our experiments, we focus on the first half of this curve, and
we model the situation where we have the speed of processing of work items (denoted
as service time) increase as the workload increases. We expect that when the workload
is low, the service times are higher and as the workload increases this also increases
the speed which we model here that the service times are lower. The processing speeds
modeled will inversely affect the flow times of cases.

We define a workload function execT ime(w, ql, bu) that takes the work item duration
(w), the queue length parameter (ql), and the how busy parameter (bu) to determine
how long a resource will take executing a work item.

execT ime(w, ql, bu) = w ∗ 0.8((ql+bu)−1) (6.1)

158 Chapter 6. Modeling Resource Behavior in Simulation Models

The function execT ime(w, ql, bu) uses the the power function to model the workload
relationship and this implies with higher workload values the time of execution will be
low. Moreover, the execution times will be higher if the amount of workload is low.

Start Execution transition will move the work item from the WL Work Item place to the
Busy place. The length of work item processing, i.e., done is given by the DurWL(w,ql,bu)
function which is expressed in the CPN model but is equivalent to function shown in
Equation 6.1. The current state for the case is updated in the State List place based on
the information in the Process Declaration place.

When the Complete Execution transition fires, the resource is removed from Busy Re-
sources place and is made available to execute scheduled work items (if any). The State
List place is also updated with a new state for the case. The new state will have the num-
ber of tokens increased by 1 for the input place of task that will be executed next. If the
task that has been completed is the last one for the case (given by finaltask), i.e., “Send
Reply” from the Petri model in Figure 6.16, the case is sent back to the Work Creation
page where its flow time is measured. Otherwise, it is added to the Queue place and sent
to the Measure Workload page where a new work item for the case is created.

The CPN model described provides an environment where we can analyze the impact
of existing workload on the processing speeds of resources. Next, we discuss experiments
carried out to determine the effect of varying workload on the processing speeds of re-
sources.

6.3.3 Simulation Experiments

This subsection discusses experiments carried out to investigate the effect of incorporating
workload on processing speeds of resources. We extracted numerical information during
simulations using the monitor concept of CPN Tools. The experimental results discussed
here are based on simulations with 10 subruns, each subrun having 1,000 cases. For each
performance indicator measured, we calculated the so-called 95% confidence interval.

Experiment 1: Effect of Varying Arrival Rate on the Flow Time

The number of cases in the simulation model can be controlled by their arrival rates. In
the first experiment, we investigate what the effect of varying arrival rates of cases is on
the flow times. The aim of this experiment is to compare different arrival rates values
(i.e., λ) on the flow time values while keeping the service rates constant (i.e., µ = 1

15). For
example, if µ = 1

15 and λ = 1
100 , then the expected utilization value is ρ = 0.15 without

taking workload into account. We expect that as the arrival rates of cases increase, the
flow times should increase as well. Moreover, if workload is taken into account as part of
the processing speeds we expect this to influence the flow times of cases. We also assume
that initially resources work slower but increase their speed as the number of cases in the
model increases. Therefore, workload in the simulation model can be accounted for the
number of work items that have to be executed which in turn is affected by the arrival
rates of cases.

6.3 Modeling Resource Busyness 159

The results from this experiment are shown in Figure 6.30. We measured the effect of
varying arrival rates (x-axis) on the average flow time values in minutes (y-axis) based
on the process model shown in Figure 6.16. The graph shows the values of the average
flow times and the 95% confidence intervals. The average flow time values are shown for
the two situations.
• In the first case, we consider a model where we have assumed values for the arrival
rate (λ) and the service rate (µ). Here, the processing speeds of resources depend on
µ and are only sampled from a probability distribution. In this experiment, we do
not take workload into account and the results are denoted as NoWL in Figure 6.30.

• For the second scenario we use the model where the processing speeds of resources
are dependent on the workload present in the system. We consider workload based
on the queue length and the how busy perspectives. The results from this experiment
are denoted as WithWL.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.01 0.02 0.03 0.04 0.05 0.06

F
lo

w
 T

im
e

(m
in

ut
es

)

Arrival Rate

NoWL

WithWL

Figure 6.30: Graphs comparing the effect of varying arrival rates (λ) on flow time.
The results are from two experiments (a) without workload (NoWL) and with workload
(WithWL).

The results from the first experiment shown as NoWL show that as the arrival rates
increase, the flow time values increase. Typically, the flow times dramatically increase as
the measured utilization values (i.e., ρ) get close to 1. From the second experiment shown
as WithWL, as the arrival rates increase the flow time values also increase. However, if

160 Chapter 6. Modeling Resource Behavior in Simulation Models

we compare the curves for the experiments from NoWL and WithWL, we see that when
workload is taken into account, initially the flow time values are much higher compared
to the situation without workload. In such WithWL experiment, initially resources work
slower since the workload in the system is low (lower arrival rates of cases). However, as
seen in Figure 6.30 when the arrival rate values increase the flow time values also increase
and eventually the resource works much faster and this leads to lower flow time values
compared to the situation where workload is not taken into account.

Experiment 2: Effect of Varying Arrival Rates on the Utilization

The aim of the second experiment is to investigate the effect of varying arrival rates on
the utilization values of resources. The utilization rate is defined as the fraction of time
that a resource is expected to be busy. For comparison purposes, we also obtained values
for two scenarios: (a) without workload (NoWL) and (b) with workload (WithWL). The
process model in Figure 6.16 has multiple tasks and resources that are allowed to execute
these tasks. Therefore, the utilization values reported in this section are averaged over all
the resources in the model. The results from this experiment are shown in Figure 6.31.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.01 0.02 0.03 0.04 0.05 0.06

U
til

iz
at

io
n

Arrival Rate

NoWL

WithWL

Figure 6.31: Graphs comparing the effect of varying arrival rates (λ) on utilization (ρ).
The results are from two experiments (a) without workload (NoWL) and with workload
(WithWL).

The results from this experiment are shown in Figure 6.31. In the first experiment (i.e.,
NoWL), we expect the utilization values to follow a straight line and this experiments is
used as a basis for comparison with the results from the second experiment. Theoretically,

6.3 Modeling Resource Busyness 161

we expect the utilization values (ρ = λ
µ) to range from ρ = 0.15 (where µ = 1

15 and
λ = 1

100) to ρ = 0.8 (where µ = 1
15 and λ = 1

18.75).

The results in Figure 6.31 show that the utilization values without workload (NoWL)
increase linearly as the arrival rate increases. As expected, the utilization values with
workload (WithWL) are initially higher because resources are working slower compared
to the situation without workload. However, as the workload increases based on the
increase in the arrival rates, resources work much faster and we see lower utilization
values with workload as compared to the situation without workload.

Experiment 3: Effect of Varying Arrival Rates on the Flow Time for Different
Horizon Periods

The third experiment aims at exploring the effect of varying arrival rates on the flow time
for different horizon lengths. From the definition used to calculate workload based on
the how busy perspective (discussed in the Measure Workload page of the CPN model),
we can specify a horizon period (h) over which we measure the number of work items
that a resource has executed in the past. In this experiment, we are only interested in
what the effect of workload is on the average flow time values over different horizon
periods. Therefore, we abstract from the workload measured based on the queue length
perspective. We focus entirely on the effect of the workload for the how busy perspective
with different horizon lengths.

We expect that with a shorter horizon period, the number of work items that have been
executed by resources are few and so in such cases the resource will initially work slower
thus higher flow time values. When the horizon period is longer, we expect that the
resource will work much faster because (s)he has been executed more work items in
the past, and this will influence the speed at which the resource will work. The results
from this experiment are shown in Figure 6.32. We carried out experiments for different
horizon lengths (a) h = 10,(b) h = 50, (c) h = 100, and (d) h = 500.

Figure 6.32(a) shows graphs depicting the effect of varying arrival rate on the average
flow time values over four horizon lengths (h = 10, 50, 100, and 500). When the horizon
period over which we measure workload is short, i.e., 50, as the arrival rates of cases
increase, this also influences the flow times of cases. However, we can see when the
horizon periods over which workload is measured are much longer, as the arrival rates of
cases increase resources work faster and this in turn affects the average flow times.

To compare the results of the last three horizon periods, we plotted these on a separate
graph shown in Figure 6.32(b). This graphs shows the results when the horizon periods
are h = 50, 100, and 500. With shorter horizon lengths (h = 50), we observe that as the
arrival rates increase the processing speeds of resources also increase which influence the
average flow time values shown here. When the period over which we measure workload
is shorter, there is less information about the number of work items that a resource has
executed in the past. As the arrival rates increase, this will inversely affect the average
flow time values. However, when the horizon periods over which workload is measured
are longer (i.e., h = 100 and h = 500), as the arrival rate values increase the speed at

162 Chapter 6. Modeling Resource Behavior in Simulation Models

 0

 200

 400

 600

 800

 1000

 1200

 0.01 0.02 0.03 0.04 0.05 0.06

F
lo

w
 T

im
e

(m
in

ut
es

)

Arrival Rate

10

50

100

500

(a)

 0

 50

 100

 150

 200

 0.01 0.02 0.03 0.04 0.05 0.06

F
lo

w
 T

im
e

(m
in

ut
es

)

Arrival Rate

50

100

500

(b)

Figure 6.32: Graphs showing the effect of varying arrival rates on flow time values over
different horizon lengths. The graphs shown in (a) show results for four horizon periods,
i.e, 10, 50, 100 and 500. The graphs shown in (b) take the values shown in (a) and we
focus on the results for horizon lengths of 50, 100 and 500.

which resources work also increases and this in turn affects the average flow time values
as shown in Figure 6.32(b).

If we assume that the working speeds of resources are dependent on the workload present
in the model, then our results from the experiments indeed confirm the effect of workload
on the processing speeds of resources.

6.4 Conclusion

Simulation is a powerful technique that can be used to analyze, and improve business
processes. However, the use of simulation in practice is often limited. In Chapter 2 we
mentioned various potential pitfalls of current simulation approaches. In this chapter, we
have addressed one problem in detail, the modeling of resources in simulation models.
We have investigated the effect of incorrectly modeling resources in simulation models.
It is shown that resources are typically modeled in a naive way and this highly influences
simulation results. The fact that people may be involved in multiple processes, they tend
to work part time and in batches, and that their working speeds are influenced by the
workload present, has dramatic effects on the key performance indicators of a process.

In Section 6.2, we discussed a CPN model that we use to characterize resource availability
based on a number of parameters. Using this model important insights into the effec-
tiveness of resources are provided. Moreover, it has been shown how these characteristics
can be embedded in existing simulation approaches based on a workflow process model.
In Section 6.3, we have shown how to incorporate workload-dependent working speeds in

6.4 Conclusion 163

simulation models. The workload parameters are discussed in the context of a workflow
process model with multiple tasks and resources. The results from this section indicate
that the effective capacity of a resource for a given process is not only influenced by the
distribution of resource attention over various processes, however, workload-dependent
speeds also affect performance of resources.

In this chapter, we have not directly focused on the quality of people and their work.
The internal quality measure from the resource’s point of view cannot be easily expressed
in metrics. The way people work and how they react to complexity and the challenge
of work is determined by the differences between human resources [79, 94]. However,
there are several aspects that can be used to measure internal quality which include: the
number of tasks that a resource was able to executed in a given time period, the number
of different groups/teams that a resource participates in, the number of decisions that
have been authorized to a resource, etc. [94]
The work discussed in this chapter complements earlier approaches in the discovery
of simulation models from event logs [155, 157]. The simulation models shown in this
chapter provide a better modeling for the resource perspective, thus making sure that
the right resource characteristics are represented in the models. Part of this can be
addressed by the automatic use of existing information from event logs to populate
simulation models. This is particular relevant when dealing with human resources. In our
opinion, by incorporating better resource characterizations in contemporary simulation
tools, business process simulation can finally deliver its outstanding promise of being a
truly useful and versatile tool.

Chapter 7

Providing a Unified View of Event Logs

Both simulation and process mining can be used to analyze operational business pro-
cesses. Simulation is a model-driven approach used for performance analysis at design-
time. Process mining is driven by event data and can be used for performance analysis
of observed behavior at run-time. Both approaches can be used to show actual/potential
bottlenecks and other performance related problems. Using such techniques, performance
analysis can be done on both the control-flow and resource perspectives of models in a
detailed manner.

Often times, simulation and process mining are used independent of each other. In this
chapter, however, we propose the use of information obtained during simulation by pro-
cess mining techniques. We discuss an approach and setting in which we bridge the
gap between these two techniques. Moreover, we discuss how simulation models can be
used to generate synthetic event logs. Given that we have the resource perspective of
simulation models as discussed in Chapter 6, we can generate synthetic logs from such
simulation models. These synthetic logs can be loaded in ProM, and analyzed/visualized
using process mining in the same way as event logs obtained from a real life process. For
example, process mining techniques can be used to analyze resource behavior aspects of
synthetic logs using techniques discussed in Chapters 4 and 5.

Figure 7.1 shows the focus of this chapter in relation to Chapters 4, 5 and 6. This chapter
focuses on providing a unified view of event logs.

The remainder of this chapter is structured as follows. First, we discuss how to bridge the
gap between simulation and process mining in Section 7.1. In Section 7.2, we discuss how
to generate synthetic logs from simulation models. Section 7.3 concludes the chapter.

166 Chapter 7. Providing a Unified View of Event Logs

Chapter 2

Testing Operational
Support Algorithms

Chapter 9

Mining Resource
Availability

Chapter 4

Mining Resource
Busyness

Chapter 5

Operational Support

Chapter 8

Modeling Resource
Behavior

Chapter 6

Providing a Unified
View of Event Logs

Chapter 7

Resource
Availability

Resource
Busyness

Operational
Support

historic
data

current
data

Conclusion

Chapter 10

Figure 7.1: Overview of the structure of the thesis highlighting Chapter 7.

7.1 Bridging the Gap Between Simulation and Pro-
cess Mining

Simulation is a powerful technique used for performance analysis of process models during
design-time. As discussed in the previous chapter, based on a colored Petri net we can
use simulation to explore effects of model parameters on key performance indicators of
the process, for example, flow time, resource utilization, service times. Although many
of the simulation models typically focus on the process models, in our approach we have
provided for approximations of resource behavior by modeling resource availability and by
incorporating workload-dependent working speeds in simulation models. Process mining
on the other hand is a technique used to analyze models at run-time from observed
behavior recorded in event logs. In Chapters 4 and 5, we have extended the focus of
process mining to cover the performance analysis of resources.

7.1 Bridging the Gap Between Simulation and Process Mining 167

Therefore, it is important that there is a link between simulation and process mining.
This is because often simulation models are built from scratch and they do not use exist-
ing information, for example, event logs. Instead of building such models from scratch,
simulation models can benefit from the information contained in event logs which is based
on the actual execution of the business process. As presented in [150, 158], process min-
ing techniques can be used to generate simulation models that can be run CPN Tools,
from event logs. The goal here is to extract a simulation model that reflects the behavior
in the real process based on the information available in event logs. During simulation,
it is possible to obtain event logs that can be analyzed by process mining techniques.
Moreover, CPN Tools can also be used to load the current state of a given process model
thus allowing for transient analysis [156, 157, 159].

Consider Figure 7.2 that shows a comparison of traditional simulation and advanced
simulation which was introduced in Chapter 1 (cf. page 22). As we can see, advanced
simulation can be used to generate synthetic event logs which is shown as the top most
eclipse in this figure. Such logs are similar to the logs generated by a process-aware
information system. The events in the both logs are referenced to some process instance,
an activity, a resource, a timestamp and other attributes. As shown in this figure, both
the synthetic and real event logs can be viewed using the same tools and in this case, we
can use the process mining tool, ProM for such analysis [6].

describe
configure

interact

record
use

real event
logs

analysisenactment

process
state

process
model

resource
model

PAIS

operational process

organization
/resources

traditional simulation
(steady state, naive view of
resources, only indirect use

of historic information)

synthetic
event logs

unified view on
synthetic and
real event logs

advanced simulation
(transient and steady state,
refined view of resources,
use of historic and state

information)

Figure 7.2: Comparison of traditional and advanced simulation during the analysis
stage. Real event logs obtained from a PAIS and synthetic event logs from a simulation
model can be analyzed using the same process mining tools thus providing a unified view
on simulated and real event logs [6].

In order to view both reality and simulated behavior in the same way, event logs generated
play a very important role. Consider Figure 7.3 which shows the relationship between
reality and the simulated world. On the one hand, simulation is based on built process
and resource models and can be used to generate synthetic event logs. On the other
hand, workflow systems supporting real life business process are also able to generate
event logs.

168 Chapter 7. Providing a Unified View of Event Logs

Reality

Simulated
World

(resource)

models
 event logs

analysis
results

Process
 Mining

Figure 7.3: Both reality and simulation world can generate event logs. Process mining
can be used to analyze event logs from different sources to generate analysis results.

Process mining can be used to analyze and visualize event logs from real behavior and
simulated behavior in the same way. The analysis information obtained can be used to
improve or extend process models. Using process mining, decision makers can view any
given real process and simulated process using the same type of dashboard thus allowing
for operational decision making and “what-if" analysis. Furthermore, process mining can
be used to automatically populate simulation models with timing information, probabili-
ties, resources and activities from the log [159]. Given that we can obtain such parameters
about resource behavior from event logs, this ensures that built simulation models are
more realistic. Therefore, simulation can benefit from the information obtained using
process mining techniques. In this way, more faithful simulation models can be built.
Event logs generated from simulation models can have the same format as the logs ob-
tained from a real life process model which allows for unified analysis of these logs using
the ProM framework.

In the next section, we discuss how to generate synthetic logs from simulation models
and also provide potential areas where synthetic logs can be used.

7.2 Generating Synthetic Logs from Simulation Mod-
els

Given a simulation model, we can generate log files that can be transformed into event
logs. Such event logs can be analyzed based on a number of perspectives, for example,
the control-flow, data, and resource performance perspectives. In Chapter 6, we discussed
process models that cover: (a) the control-flow perspective describing the tasks in the
process model, and (b) the resource perspective showing detailed human behavior. The
simulation models discussed in this chapter are created manually and not populated with
information obtained from event logs. However, the resource perspective tries to capture
several aspects about the way resources actually work. Therefore, we not only capture
the control-flow perspective but we try to model resources in a more realistic way.

7.2 Generating Synthetic Logs from Simulation Models 169

Given such a simulation model, simulation can be done while generating event logs that
can be transformed into a format readable by ProM. There are earlier approaches that
were used in the generation of event logs from simulation models as discussed in [74]. In
this approach, execution logs in the MXML format are generated using logging functions
described in the Standard ML language. However, it is also possible to generate logs
during a simulation based on user defined monitors as discussed in [150, 158]. In our
approach, we are able to automatically generate simulation reports which can be loaded
in the ProM framework as CPN Tools simulation logs which can be translated into an
event log in the XES format.

Given that we have several approaches to log generation from simulation models, the
question now is that what can we do with such logs. Therefore, we discuss potential
ideas of the use of logs generated during simulation runs.

Use of Synthetic Logs

Consider Figure 7.4 that shows the relationship between the different uses of event logs
generated from a simulation model and from reality. Simulated and real event data can
be used for a number of purposes: (a) generate models, (b) enhance simulation models,
(b) provide a unified view of past and future of a process, and (c) for operational decision
making.

Given an event log from a real life process, we can generate models focusing on the
control-flow perspective. Such models can be used for various purposes, for example,
check conformance with what was observed in the log. The same process can be applied
to process models that are obtained from a simulated world. When changes are made in
simulation models eventual effects of such changes can be observed and quantified based
on the analysis of simulation logs using process mining techniques.

For any simulation setup, the arrival rate of cases, the service rate of tasks can be defined
from a probability distribution. Furthermore, resources can be represented and different
parameters about their behavior estimated. However, in most simulation approaches all
of this information is added manually to the models. A more efficient approach to build-
ing simulation models is to have such parameters populated based on actual information
from event logs obtained from reality. Given a process model obtained from an a sim-
ulation log, this model can be populated with actual values about execution times of
activities, waiting times, utilization levels, distributions of arrival rates of new cases, re-
source availability and workload parameters. Furthermore, the resource parameters, for
example, the availability of resources, their working speeds can also be populated by
mining such characteristics from event logs from real life processes. This is similar to
the approach that is presented in [158], except that now the resource perspective of such
models is modeled more accurately. The resource perspective of such simulation models
can also be added automatically based on analysis of resource performance perspective
from event logs. Therefore, models from simulation logs can be enhanced with better
information from real life event logs.

As discussed in [150], the past execution of a business process can be combined with

170 Chapter 7. Providing a Unified View of Event Logs

historic data
(event logs)

current data

(partial trace)

(simulation)

models

synthetic event

logs

Unified view of
a process

Enhancement of
simulation models

Operational
decision making

Figure 7.4: Overview of uses of historic data (i.e., event logs), current data (i.e., partial
trace), simulation models and synthetic event logs. Simulation models can be used for
the generation of synthetic event logs. Such logs together with the historic data provide a
unified view of a given business process. Furthermore, simulation models can be enhanced
using the information obtained from historic data, for example, service times, resources,
routing probabilities, arrival rates, etc. The information in the event logs, partial trace
and the simulation models can be used for providing support for operational decision
making.

the future of such a business process. Given that we have event logs from a given past
of a business process, for example, for the last six months, such information can be
combined with the logs describing the future of this business process. When carrying
out simulations we can focus on predicting what the eventual effects of any simulation
decision made are on the future of the process. For example, if we increase the number
of resources in the process model we can estimate how the model will perform in the
next six months. During the simulation, synthetic logs can be generated that focus on
the changes made in the simulation model. The synthetic logs depicting the future of the
process can be combined with event logs from the past behavior of the same process to
provided a unified view of the process.

Simulation models can also be used for operational decision making instead of focusing
on steady-state analysis. Given event logs from simulation models, such models can be
used as input for operational support based on process mining. Based on the approach
discussed in [156, 157, 159] transient analysis can be supported instead of steady-state
analysis. During transient analysis, the current state of a workflow model can be loaded

7.3 Conclusion 171

into a simulation model and such information can be used to support operational decision
making. This is based on the current partial trace and historic data (event logs) that can
be generated from a simulation model. Under operational support, it is possible to check
the performance of the current partial trace, to compare the performance of the current
partial trace with other similar traces from an event log, to predict the future of a current
trace, and to recommend the best next action to take from the current trace (cf. discussion
in Chapter 8). Therefore, synthetic logs obtained from event logs can be used as input
during operational decision making. In this way we can better integrate the simulation,
mining and operational environments together.

Therefore, there are a number of uses of event logs obtained during simulation models
and moreover, simulation models built can benefit from the information that is obtained
from real life event logs using process mining techniques.

7.3 Conclusion

In this chapter, we have discussed how to bridge the gap between simulation and reality
by providing a unified view on recording behavior. Event logs can be used to analyze
real-life processes and simulated processes in a unified way. Simulation models can be
used to generate event logs with resource parameters and reality which can be used to
provide event logs. Both types of logs can be analyzed using process mining to allow for
performance analysis.

However, in more general aspect there are significant differences between simulation and
process mining. A recent article [151] highlights these differences which we discuss here.
• The usefulness of simulation stands and falls with the validity of the model. This
means that all the relevant information needed to model the behavior of the process
has to be known and represented in the simulation model. For simple processes this
can work, but for many complex processes this might not be achievable. Moreover,
this often comes close to “modeling the world” which may be complex and difficult
to achieve.

On the other hand, when using process mining techniques bottlenecks and problems
with the process model do not need to be known in advance. Such information can
be discovered and analyzed based on event logs. A number of questions can be
asked, for example, “Why is work always accumulating before activity X?” The
root cause of such problems may lie in the structure of the process model, but it
might also be that there are issues with resource availability, resource busyness etc.

• In simulation, everything needs to be captured in a single simulation model. The
model should address the control-flow, resource, and data perspectives. This is all
in addition to the requirement that a simulation model should be “complete”. This
all adds up to the complexity of the simulation model because it is always easier
to model different processes in isolation instead of all the inter-dependencies.

However, when using process mining techniques multiple models can be obtained

172 Chapter 7. Providing a Unified View of Event Logs

from an event log to gain insights into different perspectives of the process, i.e., the
control-flow, organizational, and data flow. These models can be separate and just
as detailed as they need to be to understand problems in the process.

Although both simulation and process mining tend to consider the process from different
perspectives, we can bridge the gap between process mining and simulation based on
the analysis of event logs. Simulation can benefit from process mining because the built
models can be populated using information from event logs. This can be done semi-
automatically based on recorded information in event logs.

Therefore, process mining can be used to build more accurate and better simulation
models and also used to support operational decision making instead of focusing on
strategic decision making. Any changes on a given process can be observed based on pro-
cess mining by analyzing synthetic models obtained from simulation models. Moreover,
we advocate an amalgamation of simulation and process mining techniques to better
understand, model, and improve real-life business processes.

Chapter 8

Operational Support

Process mining techniques focus on the analysis of events belonging to cases that are
already completed and this is usually done in an off-line manner [5, 26]. However, many
PAISs are able to update data sources with events in an almost real-time fashion. This
makes it possible to carry out the analysis of cases that are still running in a workflow
system. Therefore, in this chapter we move beyond such traditional use of process mining
and address the issue of using process mining in an online setting by providing for oper-
ational support. We do this based on a meta-model for operational support [117]. Under
operational support it is possible to have simple queries that check the performance of
current (partial) trace, to compare the performance of the current trace with other sim-
ilar traces, to make predictions about the future of the current trace and to recommend
specific actions in order to achieve a goal.

Figure 8.1 shows the focus of this chapter in relation to the other chapters of this thesis.
In this chapter, we focus on defining four main operational support queries. The input to
this chapter is a partial trace (cf. current data) and event logs (cf. historic data).

The remainder of this chapter is structured as follows. First, we provide an introduction
to the use of process mining for operational decision making in Section 8.1. In Section 8.2
we discuss an architecture for operational support. In Section 8.3, we discuss a running
example which describes a study process of a student based on the Declare language.
We describe and formally define the operational support queries in Section 8.4. In Sec-
tion 8.5, we discuss implementation considerations for the operational support service
and provider in the ProM framework and Declare workflow system. We discuss related
work in Section 8.6 and Section 8.7 concludes this chapter.

174 Chapter 8. Operational Support

Chapter 2

Testing Operational
Support Algorithms

Chapter 9

Mining Resource
Availability

Chapter 4

Mining Resource
Busyness

Chapter 5

Operational Support

Chapter 8

Modeling Resource
Behavior

Chapter 6

Providing a Unified
View of Event Logs

Chapter 7

Resource
Availability

Resource
Busyness

Operational
Support

historic
data

current
data

Conclusion

Chapter 10

Figure 8.1: Overview of the structure of the thesis highlighting Chapter 8.

8.1 Introduction

Workflow management systems aim at automating business processes by supporting col-
laboration, coordination and decision making [67, 184]. These systems can offer different
degrees of flexibility and support in business processes. Furthermore, workflow systems
exert a particular way of working to users, for example, adaptive systems [139, 146], case-
handling systems [78, 141] or constraint-based approaches [132] which all aim at shifting
decision making from systems to users. However, it is not always possible to provide
flexibility to users because the more flexible a workflow system is, the less support it is
able to provide to its users as depicted in Figure 8.2. If users are given full flexibility
this implies that they need to have knowledge about the business process and this can
eventually lead to a slow decision making process. On the other hand, if full support is
provided for the business processes this comprises on the provision for flexibility. There-
fore, it is important to provide balance between flexibility and support by aiding the

8.1 Introduction 175

decision making process of users.

Low

Users

High

System

decision
making

su
pp
or
tflexibility

Figure 8.2: Trade off between flexibility and support [61, 127]. High flexibility leads to
low support for users whereas high support provided by a system leads to low flexibility
for users.

One way of providing support to users is referred to as Operational Support [26, 117,
119, 164, 165]. Under operational support past user executions are analyzed to gain
knowledge about the way users worked. This information is given to users that execute
tasks in an online manner. At the point when users have to make decisions about the
next task to execute, their decision making can be supported on a better understanding
of what they did in the past and any possible future results of their decisions. Under
operational support users are able to make more informed decisions and their behavior is
not restricted but supported. Therefore, operational support is an online process mining
that considers current data recorded by a PAIS. This means that during operational
support only running cases are considered for which decisions can be made.

As a case is running in a PAIS, it generates events that can be recorded and we refer
to them here as partial execution trace. A partial trace will contain information about
a known past of a running case and such information can consist of a number of event
properties, for example, the name of activity, the resource who executed the activity,
the time when an activity was started and completed, etc. During operational support, a
client sends a partial execution trace along with a query to the process mining framework.
A query is simply a question to which a response is received.

Given a partial execution trace it is possible to support four main types of operational
support queries: (a) simple query, (b) compare query, (c) predict query, and (d) rec-
ommend query. In this chapter, we introduce and discuss a generic way to operational
support based on these queries. This approach uses information in a partial execution
trace and a model of the running business process. A model is simply a data source of
the past executions of a user for the current running process. The operational support
queries are formally and concrete implementation details are given for each query. To
archive this, the approach discussed is entirely based on open standards, including XML,
XES, and XQuery. Moreover, these ideas have been implemented in Declare workflow
system and the ProM framework. Declare provides flexibility for users and is used as
the workflow system providing interaction between a process mining framework and a

176 Chapter 8. Operational Support

Declare client. However, the same architecture can be achieved by any other workflow
system that provides some degree of flexibility to its users and any other process mining
tool.

8.2 Operational Support Architecture
Operational support involves the active use of process mining for cases that are still
running in a workflow system. Recent work in operational support focuses on either pre-
dicting the future of a current execution [28, 65] or on providing recommendations to
users [80, 164, 175, 178]. Such predictions or recommendations are typically very special-
ized and a user has to interact with different systems in order to make use of different
algorithms. However, this is not always efficient when the number of users and algo-
rithms increase. For example, if a new prediction or recommendation algorithm is added
all the users currently interacting with the workflow system have to be communicated to
with the information about the new algorithm. Moreover, the users now have to decide
whether to communicate with this new algorithm or not.

A more adequate approach when using process mining for operational support, is to have
a common platform where different operational support algorithms interact. It should be
easier to add, modify and/or remove algorithms without interfering with the communi-
cation between users and operational support algorithms. A user may not be interested
in the individual algorithms but rather in the responses from such algorithms providing
operational support. In [187], a protocol and architecture for operational support is pre-
sented. Based on this implementation, it is possible for users to interact with and access
different algorithms using a common protocol without any knowledge of the algorithms
providing answers.

An infrastructure for operational support shown in Figure 8.3 is implemented in the ProM
framework. A Client communicates with a Workflow System, and an operational
support service (OS Service; OSS in the following). The Client sends one of the four
queries to OSS. Once the OSS receives messages from the client, it forwards them to a
number of operational support providers (OS Providers; providers in the following).
The OSS will communicate with providers that have been started up and registered with
it. Providers implement different algorithms and forward responses to the OSS depending
on the queries they have received. Once the OSS receives responses from the providers,
it forwards them to the Client.

The user sends one of the four operational support queries and a model to the operational
support service. The model contains past executions related to the running process model.
The model can be represented by: (i) an event log, (ii) a Petri net model mined from
an event log [17], (iii) a finite automaton from a Declare model, (iv) a transition system
generated from an event log [27]. In this chapter, we use an event log as an example
of a model. Initially, a client sends a partial execution trace to the operational support
service. However, it might be the case that after while the client can provide an extension
to the trace during task execution. This means that each time a user sends a request to
the OSS the entire trace has to be sent and not the updates made to it. This introduces

8.3 Running Example 177

ProM

OS Service

O
S

 P
ro

vi
d

er
 1

Client

O
S

 P
ro

vi
d

er
 n

...

O
S

 P
ro

vi
d

er
 2

Workflow
System

Figure 8.3: Architecture of the operational support in ProM. A Client interacts with
a Workflow system, for example, Declare and the OS Service in ProM.

a lot of overhead computationally. This problem is solved by the use of sessions . In this
way the OSS is stateful and it is able to keep the information about the partial trace and
any computations made on it in a session [187]. Therefore, if any updates to the partial
trace are made, they can be handled and communicated to the appropriate providers by
the operational support service. The OSS handles sessions for all the providers that are
started up. Furthermore, the OSS handles all activities related to session management,
for example, serializing sessions on service shutdown and session garbage collection when
clients complete their communication with the OSS.

8.3 Running Example
Consider Figure 8.4 which models a simple study process for a student based on the
Declare language [24].

BSc

MSc, BIS

MSc, ES

Master of
BPM

precedence

reponse =not co-existence

Young

0…1

Figure 8.4: Simple study process model consisting of five different tasks that can be
executed.

Initially, a person is young (shown as Young) and later on they should get an education.
An education consists of a person doing a bachelor’s degree and one of the master’s

178 Chapter 8. Operational Support

degrees offered, i.e., Master’s degree in Embedded Systems (MSc,ES) and a Master’s
degree in Business Information System (MSc,BIS). A person can only be Young once
(shown by the annotation 0 . . . 1). After which they can be admitted for a BSc degree
(shown by the response constraint). The student can also be enrolled for one of the
master’s degrees that are offered, i.e., MSc,ES, and MSc,BIS. Out of the two master’s
degrees offered, only one can be completed (for financial reasons). This is shown by the
not co-existence constraint in Figure 8.4. Only after completing an MSc,BIS can
a student become a true Master of BPM (shown by the precedence constraint). In
the following, we simply refer to MSc,ES as ES, MSc,BIS as BIS, and Master of BPM

as BPM.

Example of a Model

A user interacting with the Declare workflow system can generate events for the process
model shown in Figure 8.4. These can be recorded in an event log which we use as an
example of a model in the remainder of this chapter. Consider Figure 8.5 which shows
a compact view of an example of an event log taken from the study process. The model
consists of six traces and each trace has a number of events that were executed. Each
trace consists of a sequence of events and the events in each trace occurred in the given
order.

Case Id Trace
1 〈Young18

start,Young
123
complete,BSc

278
start,BSc

390
complete,BIS

569
start,BIS

720
complete〉

2 〈Young50
start,Young

72
complete,BSc

86
start,BSc

130
complete,BIS

150
start,BIS

180
complete,

BSc200
start,BSc

310
complete,BPM

360
start,BPM

500
complete〉

3 〈Young11
start,Young

40
complete,BSc

46
start,BSc

80
complete,ES

130
start,ES

220
complete〉

4 〈Young90
start,Young

110
complete,ES

150
start,ES

240
complete〉

5 〈Young30
start,Young

80
complete,BSc

120
start,BSc

200
complete,BIS

230
start,BIS

250
complete,

BPM300
start,BPM

380
complete〉

6 〈Young10
start,Young

90
complete,BSc

150
start,BSc

180
complete,ES

210
start,ES

280
complete〉

Figure 8.5: Example of a model. Each line represents a trace consisting of a sequence
of events. Each event has a name, a timestamp and a transactional type. For example,
Young18

start denotes the start of activity Young at time 18 while Young27
complete indicates

that activity Young was completed at time 27.

From the model shown in Figure 8.5, we can denote each trace as σ which consists of a
sequence of events. The first event of a trace σ can be denoted as e such that e = σ(0).
Each event in a trace has a number of properties, i.e., activity name, transactional type,
and timestamp which are based on the attributes defined by the XES event log format. In
Chapter 3, we discussed several functions assigning properties to events (cf. Definition 3.6
on page 39). We use these functions to define a number of event attributes for an event e.

8.4 Operational Support Queries 179

Given the first trace shown in Figure 8.5, we can specify the attributes of the first event
belonging to this trace as:
• act(e) = Young is the name associated to the event e,
• time(e) = 18 specifies the time of occurrence of event e, and
• type(e) = start is the transactional type of an event e.

The model shown in Figure 8.5 abstracts away from resource names, however, we can
also specify the resource names associated to event e by the function res(e).

In the next section, we formally define the four main operational support queries.

8.4 Operational Support Queries

Given the operational support setting shown in Figure 8.3, a user executing the study
process shown in Figure 8.4 in Declare sends a partial execution trace and query to the
OSS. For example, given that a user has completed the execution of BIS, (s)he may need
to make a decision about which of the two master’s courses to execute. Therefore, the
OSS should be able to provide advice to the user about the next action to take. The
decision made by the OSS can be based on a specific goal, e.g., if a user is interested in
eventually executing BPM the OSS can recommend that a user starts the execution of
BIS instead of ES.

Figure 8.6 illustrates the four main operational support queries.

a) Simple Query

b) Compare Query

c) Predict Query

d) Recommend Query

A

B

Figure 8.6: Four operational support actions: simple, compare, predict and
recommend.

(a) A simple query checks the performance of the current partial execution trace.
This is shown by the wide arrow in Figure 8.6(a). For example, from the study
process shown in Figure 8.4, it might be the case that a user has executed events
for activities Young and BSc which yields a (partial) execution trace. An example
of a simple query on this partial trace is to calculate how long a user has spent on
the execution of these two activities.

(b) A compare query compares the performance of the current partial trace to other

180 Chapter 8. Operational Support

similar traces from the model. This query considers traces from the model that have
similar prefixes or which are at the same position of the execution as the current
trace, as shown by the narrower arrows of the same length in Figure 8.6(b). An
example of such a query would compare the total execution time of the current trace
to other similar traces from the model. If a user has executed Young and BSc in
the partial trace, then all the traces from the model where these two activities
have been executed, are selected as similar traces and used during this comparison.
An example of a model was shown in Figure 8.5 and using this information, the
compare query obtains similar traces from the model, i.e., traces 1,2,3,5 and 6.
The compare query can inform the user that the execution time of the current trace
up to the execution of BSc is higher or lower than the average from other similar
traces.

(c) A predict query considers the future of traces similar to the current trace and
uses that to provide predictions about the current trace. This query not only looks
at prefixes of similar traces from the model, but the entire traces. This is indicated
by the longer lines with no arrowhead to indicate they are not partial prefixes of
traces, but finished executions in Figure 8.6(c). An example of a predict query
would be that after the execution of BSc a user is interested in the expected total
execution time for the partial trace. The predict query uses the information about
all the similar traces in the model, i.e., traces where both Young and BSc were
executed in the past and obtain their total execution times.

(d) A recommend query gives the best possible next action to be done based on
the current partial trace. This query expands the current trace with all possible
events (e.g., A and B), and makes predictions for such expansions. This is shown
by the lines expanding each of the two possible extensions. The recommend query
recommends the expansion that yields the best prediction according to a given goal
as shown in Figure 8.6(d). The recommend query also uses traces from the model
that have a similar past as the current partial trace. An example of a recommend
query would return the best activity to execute next in order to complete the
execution as fast as possible. If a user has completed a BSc according to the study
process in Figure 8.4, a best next action to take would be to execute a ES because
all the traces in the model where this was executed returned the shortest total
execution times.

The simple query uses the information from the partial trace. However, all the other
queries, i.e., compare, predict and recommend need more information about traces similar
to the current trace. In such situations, a model is used for obtaining similar traces used
by these queries. In this chapter we use an event log as an example of a model.

The first thing we need to define is the partial execution trace sent by the client and
the model that consists of past executions of the current running process. The partial
execution trace can be similar to a trace in the XES format and a model can also be
similar to an event log in the XES format. The trace and event log were defined formally
in Definition 3.7 (on page 39). Given that we know what a trace and model is, we now
formally define the four operational support queries.

8.4 Operational Support Queries 181

The remainder of this section is organized as follows. In Section 8.4.1 we formally define
simple queries, Section 8.4.2 discusses the compare queries. The predict queries are dis-
cussed in Section 8.4.3. Finally, we discuss the recommend queries in Section 8.4.4. In
each of the sections defining the queries, first a textual example of the query is described.
Secondly, we give a formal definition of each query and finally the formal definition is
exemplified.

8.4.1 Simple Query

A makes arbitrary computations on the current partial execution trace. This query, in
particular, does not require an underlying model. Examples of simple queries for the
simple study model in Figure 8.4 are:
(i) the number of degrees a student has completed so far,
(ii) the degree that a student spent the longest time on,
(iii) how long it has taken for a student to complete a BIS,
(iv) the average execution time for all the degrees so far, and
(v) the total time since the start of the current execution.

Each of these queries will make a calculation on a given (partial) trace. Therefore, we
can define a simple query SQ as a function evaluating a trace to an element of a given
set.

Definition 8.1 (Simple Query) Let Σ be an alphabet, we can define a trace σ over
Σ as a finite string over the alphabet (i.e., σ ∈ Σ∗). A simple query over Σ is a pair
SQ = (q, α), where α is a result set and q : Σ∗ → α is a function mapping traces into
the result set.

We can formally define examples for a simple query. For example, to compute the total
execution time of a trace, we define a function returning the difference between the
timestamps of the last and first events of this trace. The result of this function is a real
number (the number of minutes). Furthermore, if we are interested in computing the
number of degrees that a student has completed so far, we can use a function counting
the number of events in each trace with a transition attribute equal to complete and a
name attribute matching one of the three degrees. This query returns natural numbers.
We define a simple query that computes the time spent since the start of trace execution.

Example 8.1 (Simple Query: Time Since Start of Execution)
Given a trace σ we can compute the total time spent (ignoring possible idle time) on
this trace. We define the function totalT ime(σ) that computes the time since the start
of execution as:

totalT ime(σ) =
{

0 if |σ| < 2, and
time(last(σ))− time(σ(1)) otherwise.

182 Chapter 8. Operational Support

The time function extracts the value of the time when each event occurred in the trace.
We use the function totalT ime(σ) in defining the simple query as:

SQtotalT ime = (totalT ime(σ),R).

This query will return 0 if the length of the trace is less than two otherwise, it will return
the difference between the last and the first timestamps of the events that are executed
as part of the partial trace.

From the example process model shown in Figure 8.4, we can define an event universe
consisting of all the possible activities that can be executed as:
Σ = {Young,BSc,ES,BIS,BPM}. Furthermore, we can define a possible partial execu-
tion trace over this event universe as: σ = {Young,BSc}. The trace σ has a length of
2 (i.e., |σ| = 2) such that σ(1)=Young and σ(last(σ))=BSc. The partial trace can be
expanded to include information about the start and complete events for the activities
and their timestamps as:

{Young20
start,Young

80
complete,BSc

120
start,BSc

160
complete}

Figure 8.7: An example of a partial trace showing the execution of activities Young
and BSc.

Given this partial trace, we calculate the total time since the start of execution as:

totalT ime(σ) = time(last(σ))− time(σ(1)).

The simple query for returning the time since start of execution for the partial trace
shown in Figure 8.7, i.e., 160− 20 = 140 is defined as:

SQtotalT ime = (totalT ime(σ), 140).

8.4.2 Compare Query

Often, the user might be interested in having comparisons made with traces in a model
that have a similar prefix as a given (partial) execution trace. An example of such a query
is to compare the performance of the current execution to other similar executions. A
compare query makes such comparisons between a current partial execution trace and
similar traces from a model.

Compare queries need a partial execution trace and a model as input. In a compare
query, we only consider traces from the model that have a similar past as the current
partial trace. We can define a filter criteria that we use for obtaining similar traces from
the model. Similar traces can be obtained based on a resource name, activity name, data
attribute, transition type or other attributes from the partial trace. Examples of use cases
for the process model in Figure 8.4 that can be handled by a compare query are:
(i) in how many similar traces has BPM already been executed,

8.4 Operational Support Queries 183

(ii) how long (on average) have other similar traces spent to finish a BSc,
(iii) how long (on average) have similar executions spent to get to where the current

execution is, and
(iv) how many similar traces are slower or faster than the current partial trace.

Projection Mapping

To capture what we mean by similar traces, we introduce a notion of a projection mapping.
A projection mapping allows us to abstract away events from the model that are not
interesting for the current comparison (such as removing Young or BPM from the model)
or to abstract away information from the original trace (such as the timestamps or
resource names). Projection mappings essentially remove any uninteresting attributes
and events, for example:
(i) name: consider only event names and ignore all other event attributes,
(ii) name and resource: consider only event and resource names and ignore all other

attributes,
(iii) name and transition: consider only the name and transactional types of events and

ignore all other attributes,
(iv) name of complete events: consider names of events whose transactional type is

complete and ignore all other attributes, i.e., this mapping removes all events which
are not complete events, and

(v) name and resource of start events: consider the event and resource names of all
start events and ignores all other attributes.

To support online computation, the application of a projection mapping more than once
should not remove further information. Moreover, the application of the projection map-
ping should be compositional, i.e., that the projection does not depend on the entire
trace, but only on the events that it is applied to. A projection mapping can be formally
defined as:

Definition 8.2 (Projection Mapping) A mapping p : Σ∗ → Σ∗ is a projection
mapping if it is homomorphism wrt. trace composition. Given two traces σ1, σ2 ∈ Σ∗
then p(σ1σ2)=p(σ1)p(σ2).

Due to the compositional nature of projection mappings, it is important to specify how
to map traces of length 1 to traces of length 0 or 1 in a specific model.

We can specify an example of a projection mapping that projects onto the name and
transactional types of events from a given trace. This mapping will return a set of all
the event names and transactional types and will ignore all the other attributes for each
event.

Example 8.2 (Projection Mapping: Name and Transition)
Given that a trace σ consists of a number of events, i.e., e ∈ σ. For a trace σ we can
define a function pnameTransition(σ) that projects onto the names and transactional types

184 Chapter 8. Operational Support

of events from the trace as:

pnameTransition(σ) =
{
ε if |σ| = 0, and
(act(e), type(e)) otherwise.

This projection mapping pnameTransition(σ) takes a trace as input and will return an
empty string if the length of the trace is zero otherwise it returns all the event names
(i.e., act(e)) and transactional types (i.e., type(e)) from the trace σ. In Figure 8.5, we
displayed an example of a model which we refer to here asM. The model consists of 6
traces based on the study process model shown in Figure 8.4. The projection mapping
defined earlier can be applied to the traces in the model to project onto the activity
names and transactional types of the events from the traces in Figure 8.4. If we apply
the projection mapping pnameTransition(σ) on the first two traces from the model shown
in Figure 8.5, we obtain a set of the names and transactional types for each trace as
shown in Figure 8.8.

Youngstart,Youngcomplete,BScstart,BSccomplete,BISstart,BIScomplete,
Youngstart,Youngcomplete,BScstart,BSccomplete,BISstart,BIScomplete,

BScstart,BSccomplete,BPMstart,BPMcomplete

Figure 8.8: The result of the projection mapping pnameTransition(σ) on the model M
displayed in Figure 8.5.

We can specify a second example of a projection mapping that projects onto the names
of only the complete events from the model. Here, we consider only the names of events
from a trace that have a transactional type of complete while ignoring all the other event
attributes.

Example 8.3 (Projection Mapping: Name of Complete Events)
Given a trace σ consisting of a number of events (i.e, e ∈ σ), we define a function
pnameComplete(σ) that projects onto the names of only the complete events as:

pnameComplete(σ) =
{
ε if type(e) 6= complete, and
act(e) otherwise.

This projection mapping will either return an empty string if there are no complete
events in the trace, otherwise it returns the names of all the events whose transition
type is complete. We can apply the projection mapping pnameComplete(σ) on the first two
traces in the model shown in Figure 8.5. Based on this projection, we can obtain a set of
the names of complete events for each trace as shown in Figure 8.9. It is also important
to see that different traces from the model can have the same projection.

Young,BSc,BIS,Young,BSc,BIS,BSc,BPM

Figure 8.9: The result of the projection mapping pnameComplete on the model M dis-
played in Figure 8.5.

8.4 Operational Support Queries 185

Similar Prefixes

As stated before, a compare query makes comparisons between a current partial execution
trace and similar traces from a model. A model can be formally defined as :

Definition 8.3 (Model) Given that Σ is an alphabet, we can define a model over Σ
as a setM⊆ Σ∗.

Given that we know what a projection mapping and a partial trace are, we can define
the notion of all similar traces from the model. We do this by introducing all prefixes
matching the trace under the projection mapping and we formally define them as a
similar prefixes.

Definition 8.4 (Similar Prefixes) Given a trace σ, a projection mapping p, and a
modelM⊆ Σ∗, we can define the similar prefixes of σ inM as the multiset (or bag)
of events: prefixesM(p, σ) := {σ′ | σ′σ′′ ∈M, p(σ) = p(σ′)}.

Sometimes, prefixesM(p, σ) may be infinite for some partial trace σ of a model M, for
example, if the model used is a finite automaton or transition system. In such cases, it
is not necessarily possible to provide a closed expression for a compare query. Instead, a
compare query can be given as an estimate in the form of a probability function.

Based on the notion of notion of similar prefixes, a compare query can be formally defined
as:

Definition 8.5 (Compare Query) Given an alphabet Σ, a compare query is a triple
CQ = (M,SQ, p), where M is a model, SQ = (q, α) is a simple query, and p is a
projection mapping over Σ. For a trace σ ∈ Σ∗, if prefixesM(σ) 6= ∅, the result of a
compare query (the comparison), CQ(σ), is a probability function CQ(σ) : α → [0, 1]
such that for a ∈ α, then CQ(σ)(a) is the probability that SQ(σ′) = a for a random
similar trace prefix σ′ ∈ prefixesM(p, σ).

The probability function CQ(σ) should indeed be a probability measure, however, we
do not require that the function assumes that all traces in M are equally probable. In
some cases the traces in the model may be the same while in other cases they might be
different depending on the process model that was executed.

Given that we have a partial trace, we might be interested in the average time taken to
reach the current position in the partial trace based on similar traces from the model.
This compare query can be formally specified as:

Example 8.4 (Compare Query: Average Time to Reach Current Position)
Given that M is the model, SQtotalT ime is the simple query (defined in Example 8.1)
and pnameComplete is a projection mapping (defined in Example 8.3), we can define a
compare query as:

CQaverageT ime = (M,SQtotalT ime, pnameComplete)

186 Chapter 8. Operational Support

The average of all similar traces from the model is obtained by computing the expectation
for the returned probability function.

We now describe an example of a compare query that computes the average time of
similar traces from a model, to current position in the partial trace. Given the partial
trace, σ shown in Figure 8.7, a simple query, SQtotalT ime defined in Example 8.1, a
projection mapping, pnameComplete(σ) defined in Example 8.3, and a model, M, shown
in Figure 8.5, we define the set of similar prefixes of σ inM as shown in Figure 8.10.

Case Id Prefixes
1 {Young,BSc}

2 {Young,BSc}

3 {Young,BSc}

5 {Young,BSc}

6 {Young,BSc}

Figure 8.10: Examples of similar prefixes of the trace σ from the model shown in
Figure 8.5.

Figure 8.10 does not contain information about trace 4 because this trace does not have
a similar prefix as the partial trace (i.e., the activities executed in this trace are Young
and ES). In a compare query, we can estimate the average time taken to reach the current
position in the partial trace (i.e., act(σ(|σ| − 1)) = BSc as shown in Figure 8.7). The
simple query SQtotalT ime is used to make a computation on the prefixes in Figure 8.10.
It will calculate the average time taken since the start of execution to reach the current
position in the partial trace on similar trace prefixes. For example, from the prefixes of
the first trace shown in Figure 8.10 the simple query will return:

SQtotalT ime = (totalT ime(1), 372).

The simple query makes computations using the values of the timestamps shown in
Figure 8.5. Therefore, CQaverageT ime returns the expectation of the values given by the
result of SQtotalT ime. The result of the comparison query can be sent as an alert to
the user, for example, informing the user that they are too slow or that they will finish
execution in time.

8.4.3 Predict Query

A predict query is similar to a compare query, except instead of just considering prefixes
of similar traces of a model, it considers all possible futures or completions of such traces.
The predict query focuses on the future of the current partial trace. Predict queries also
requires as input a partial execution trace and a model. Examples of predict queries for
the process model in Figure 8.4 include:
(i) total execution time after obtaining a BPM,

8.4 Operational Support Queries 187

(ii) probability of obtaining a BPM,
(iii) the next group of activities to be executed, and
(iv) expected total execution time of the current trace.

Under predict queries we can provide two kinds of classification, i.e., discrete and numeric.
An example of discrete prediction is one that provides information about resource(s) that
can execute a set of enabled activities. Numerical prediction focus on, for example, the
total execution time of the trace, or remaining costs that have to incurred to complete
the current trace execution.

Completions

Predict queries use the information about projection mappings (cf. Definition 8.2) to
define similar traces from the model. However, under predict queries we do not consider
prefixes of similar traces but rather focus on the completions of such trace executions.
Therefore, we need to define the possible completions of a partial execution trace σ, in a
modelM.

Definition 8.6 (Completion) Given a trace σ, a projection mapping p, and a model
M ⊆ Σ∗, the completion of σ in M is defined as all traces of M sharing a simi-
lar prefix with σ under a projection p, i.e., completionM(σ) = {σ′|σ′σ′′ ∈ M ,σ′ ∈
prefixesM(p, σ)}.

Given a model, M (cf. Figure 8.5), a partial trace, σ (cf. Figure 8.7), the projection
mapping, pnameComplete (cf. Example 8.3), we can define the completion of the partial
trace, σ in the model,M as shown in Figure 8.11.

Case Id Completion
1 {Young,BSc,BIS}

2 {Young,BSc,BIS,BSc,BPM}

3 {Young,BSc,ES}

5 {Young,BSc,BIS,BPM}

6 {Young,BSc,ES}

Figure 8.11: Example of completionM(pnameComplete, σ) based on the model shown in
Figure 8.5.

The study process model shown in Figure 8.4, gives the possibility to execute two master’s
courses, i.e., BIS or ES. During process execution it is crucial which of the master’s degree
is selected (since they are mutually exclusive). For completions of the partial trace in the
model, the focus would be checking if one of these tasks was executed. For example,
the probability of executing BPM would be greatly affected if an ES is executed or not.
If a BIS is executed, this probability increases because this task is a prerequisite for
executing a BPM.

188 Chapter 8. Operational Support

A predict query therefore, builds on the earlier definitions of a model, M and simple
query, SQ(σ). The predict query is similar to the compare query expect that completions
of traces instead of similar prefixes are considered.

Definition 8.7 (Predict Query) Given an alphabet Σ, a predict query is a triple
PQ = (M,SQ, p), where M is a model, SQ = (q, α) is a simple query, and p is a
projection mapping over Σ. For a (partial) trace σ ∈ Σ∗, the result of a predict query
(the prediction), PQ(σ), is a probability function PQ(σ) : α → [0, 1] such that for
a ∈ α, PQ(σ)(a) is the probability that SQ(σ′) = a for a random similar trace σ′ ∈
completionM(p, σ).

Given a partial trace and a model, we can obtain all the traces from the model with similar
prefixes as the current partial trace. The completions of such traces (e.g., Figure 8.11)
can then be returned and used for making predictions. As an example, of a predict query
we can return the total expected execution time of the current trace based on similar
traces from the model. We can use the previous projections and return the names of all
complete events from the model. These events are used for calculating the expected total
execution time.

Example 8.5 (Predict Query: Expected Total Execution Time)
Given that M is the model, SQtotalT ime is the simple query (defined in Example 8.1),
and pnameComplete is a projection mapping (defined in Example 8.3), we can define a
predict query as:

PQtotalT ime = (M,SQtotalT ime, pnameComplete).

This query is similar to the compare query shown in Example 8.4 expect that PQtotalT ime
has to consider all the completions of the partial trace σ in the modelM. From the result
of the completion of σ in the modelM shown in Figure 8.11, the simple query SQtotalT ime
will make computations on such traces. The simple query will calculate the average time
taken since the start of execution, i.e., the total time for all the traces in this figure. For
example, for the first trace 1 shown in Figure 8.11, the simple query will return:

SQtotalT ime = (totalT ime(1), 702).

Therefore, PQtotalT ime will return the expectation of the total execution time for all the
traces with a similar prefix of complete event names as the partial trace, σ. The predict
query uses the information that we have described in the previous two queries. However,
instead of considering the prefixes as used by the comparison query the predict query
considers the completions of these similar traces.

8.4.4 Recommend Query

A recommend query tries to recommend the best next action to take to achieve a desired
goal. Examples of recommend queries for the process model in Figure 8.4 include:
• the next activity to execute after completing a BSc,

8.4 Operational Support Queries 189

• the resource to execute a given activity

The recommendation query gives recommendations based on a given goal. For the running
example shown in Figure 8.4, examples of such goals can include:
(i) to have the highest chance of obtaining a BPM,
(ii) to finish BIS in the cheapest possible way, or
(iii) finish execution as fast as possible.
These goals can also be extended to include other aspects in the business process, for
example, looking at costs (i.e., minimize costs incurred during process execution), consid-
ering resources (i.e., maximize availability of a specialist resource), or even time intervals
(i.e., maximize the number of cases a resource handles in a specific time period).

Given an initial partial trace σ and a model M , the basic steps taken when looking at a
recommend query are:
• extend a given trace σ with all possible next events. This is based on the completions

of σ in the modelM,
• predict the goal in each trace generated for all the possible trace completions, and,
• recommend actions resulting in the best prediction.

Evaluation

We need to define which prediction is the best given a specific goal. This could be done
by having a user impose a total order of probability functions from the predict query,
but instead we assign a value to predictions and use this value to order the next events
or recommendations. We do this because we expect most of the predicted values to be
either numerical values or non-numerical values from a small finite set, and assigning a
value is easier for a user to understand than defining a total order. Therefore, given a set
of predictions we need to define an evaluation over which we order and recommend the
obtained predictions. Examples of evaluations would be:
(i) highest median (value would be the median),
(ii) lowest average (value would be the expectation times minus one), or
(iii) highest 95% percentile (value would be 95% percentile).
Formally, an evaluation just assigns a real value to a probability function and we can
define it as:

Definition 8.8 (Evaluation) Given a set of values, α (from the simple query), an eval-
uation over α is a function E : [0, 1]α → R assigning to a probability measure a real
number, which is the value of the probability measure.

For example, if we consider all the traces from the model,M, that are completions of the
trace σ, we can obtain the total execution times per trace. An example of an evaluation
for a numeric prediction would be to check the trace with the lowest average and it be
given as:

Example 8.6 (Evaluation: Lowest Average)
Given that P is a prediction, an evaluation optimizing for the lowest average of a numer-

190 Chapter 8. Operational Support

ical prediction can be defined as:

ElowestAverage(P) = −E(P).

We now formally define a recommend query based on our earlier definitions of simple
and predict queries.

Definition 8.9 (Recommend Query) Given an alphabet Σ, a recommend query
is a pair RQ = (PQ, E), where PQ = (M,SQ, p) is a predict query over Σ with SQ =
(q, α) and E is an evaluation over α. Given a random similar trace σ′ ∈ completionM(p, σ),
we let next(σ) := {e ∈ σ | σeσ′ ∈ M} ∪ {ε | σ ∈ M} denote all possible continuations.
We can define predictionsM(σ) = {PQ(σσ′) | σ′ ∈ next(σ)} as all predictions of pos-
sible continuations. We let mσ = max{E(P) | P ∈ predictionsM(σ)} be the maximal
evaluation of a prediction. The result of the recommend query (the recommendation)
is RQ(σ) := {σ′ ∈ next(σ) | E(PQ(σσ′)) = mσ}. If the trace contains no valid continu-
ation, ∅ is returned.

In the definition, we need to include an empty trace in the set of all possible continua-
tions if terminating the current partial trace is a valid choice for the recommendation.
Moreover, there may have multiple continuations of the partial trace that can yield to
the highest evaluation. It is also possible to compute a maximum over a possibly infinite
set which is finite in practice. This is in such situations where the result of similar traces
from a model results in an infinite set. Moreover, we can compute the set of enabled
actions using a model as a small finite set. The client should be able to provide candi-
dates among which the continuations should be found, for example, the list of enabled
activities or a list of available resources. We note that as Σ is finite, the maximum used
to define m is computed over a finite set, and hence always it is well-defined and RQ(σ)
will be non-empty. Supposing that the desired goal of recommend query is to complete
the execution of the current partial trace as fast as possible. Therefore, from the list
of all the completions of the partial trace, the recommend query can obtain the trace
that leads to the fastest execution. An example of a recommend query that yields to the
fastest execution is displayed in Example 8.7.

Example 8.7 (Recommend Query: Fastest Execution)
Given that PQtotalT ime be the predict query (defined in Example 8.5) that returns the
expected total time, and ElowestAverage is an evaluation optimizing for lowest average
(defined in Example 8.6). To optimize for the fastest execution we can define a function:

RQfastest = (PQtotalT ime, ElowestAverage).

Hence RQfastest will consider the total time of all similar traces from the model and
recommend the trace with the lowest average. Another desired goal of a recommend
query can be to execute a BPM from the current partial trace. This implies that from
the list of completions of the partial trace, σ, in the model shown in Figure 8.5 (cf.
Figure 8.11), the predict query will only use the completions of traces where BPM was
executed, i.e., traces 2 and 5 from Figure 8.11. Moreover, if the goal is to execute BPM,

8.5 Implementation Considerations of the Operational Support Service 191

then the next possible actions that can be recommended are BIS and BSc. It is still
possible to execute a BSc according to the process model. Furthermore, if we execute
BIS, then we will eventually execute BPM.

As shown in Definitions 8.1, 8.5, 8.7 and 8.9 all types of operational support actions can
be expressed in terms of queries. Next, we discuss how these ideas are realized using
XQuery.

8.5 Implementation Considerations of the Operational
Support Service

In the previous section, we defined the four main operational support queries, i.e., simple,
compare, predict and recommend. In Section 8.5.1, we discuss concrete implementation
considerations for the operational support service and provider that support these queries.
Further on, we discuss how to represent the data required by the four operational support
queries in Section 8.5.2. We show an example of a client interacting with the operational
support service, namely Declare, and discuss how the simple queries are handled in
Section 8.5.3. Finally, Section 8.5.4 discusses how advanced queries (i.e., compare, predict
and recommend) are handled and represented.

8.5.1 Operational Support Service and Provider

In Figure 8.3, we showed an architecture of the operational support service in the ProM
framework. The operational support service interacts with a number of providers that
provide responses to user requests. Operational support providers can be implemented
in many ways. For example, a user may request for a recommendation about the next
task to be executed from the list of enabled tasks. One approach to this would be that a
task can be randomly selected from the list of enabled tasks but another way might be
to look at what was executed before from the partial trace and recommend this task if it
is among the enabled tasks. In order to support any present and future algorithms in a
coherent way, we rely on the architecture for operational support shown in Figure 8.3.

The exact protocol used for communication between clients and providers based on the
OSS is explained in [187]. In this section, we only explain parts relevant for understanding
the implementation considerations for the operational support queries. Once the opera-
tional support service is started, a number of available providers can be started as shown
in Figure 8.12. Figure 8.13 shows a screen-shot of the Operational Support Service in
ProM. There are two providers that have been started up and registered with the OSS,
i.e., the Batch Provider and Simple XQuery Checker. For each provider regis-
tered with the OSS a session is also created as shown in Figure 8.13. The OSS handles
the communication between multiple clients and providers through a specified session.

192 Chapter 8. Operational Support

Figure 8.12: Operational Support Service in ProM. In the middle panel we see the
available providers that can be connected to the Operational Support Service
(on the left).

Figure 8.13: Operational Support Service in ProM. The Batch Provider and
Simple XQuery Checker providers have been registered with the OSS.

Provider Interface

In order to implement a provider algorithm for the operational support service, the
interface in Figure 8.14 has to be followed. The Provider interface shown in Figure 8.14
reflects the four main queries handled by operational support service.

The interface provides methods for session management, i.e., accept, destroy and

8.5 Implementation Considerations of the Operational Support Service 193� �
1 public interface Provider extends Serializable {
2 boolean accept(Session session, List<String> modelLanguages,
3 List<String> queryLanguages, Object model);
4 void destroy(Session session);
5 String getName();
6 OSService getOwner();

8 <R, L> R simple(Session session, XLog availableItems, L query,
9 boolean done);

10 <R, L, P> Prediction<R> compare(Session session, XLog availableItems,
11 L query, P projection, boolean done);
12 <R, L, P> Prediction<R> predict(Session session, XLog availableItems,
13 L query, P projection, boolean done);
14 <R, L, P, E> Recommendation<R> recommend(Session session,
15 XLog availableItems,
16 L query, P projection, E evaluation, boolean done);

18 void updateTrace(Session session, XTrace trace);
19 }� �

Figure 8.14: Provider interface.

updateTrace. At the top of the interface (l. 2-3) the provider decides whether to
accept or ignore a session given by the accept method. If the communication between
the client and the provider is completed, the session is destroyed which is given by the
destroy method which accepts the particular session as input (l. 4). The accept and
destroy methods control the life-cycle of a provider.

The interface also provides methods for handling the actual queries. The simple query
is handled by the simple method (l. 8-9) that takes as input the particular session
created by the OSS, the availableItems which represents the enabled activities sent
by the client, the query to optimize towards, and a boolean value done which in-
dicates whether the trace is complete or not. The compare query is handled by the
compare method (l. 10-11) that takes as input the session created by the OSS, the
availableItems, the query, the projection corresponding to the projection map-
ping defined in Definition 8.2, and the boolean value done.

The predict query is similar to the compare query and is handled by the predict

method (l. 12-13). This takes as input the session, the availableItems, the query,
the projection and the boolean value done. The recommend query is handled by the
recommend method (l. 14-16) which takes as input the session created by the OSS,
the availableItems, the query, the projection, the evaluation corresponding
to the evaluation defined in Definition 8.8 and the boolean value done.

Since the compare, predict and recommend queries requires the model, this is pro-
vided once in the accept method (l. 3). If there are new activities executed by the
user, then the current trace is built incrementally in the given session using the
updateTrace method (l. 18). This takes as input the current session and the partial

194 Chapter 8. Operational Support

trace that consists of any new executed activities. Therefore, updateTrace is called
whenever the client has executed more activities. All the queries described get a set of
all availableItems to pick among and a query to optimize towards. These queries
use the session parameter to store case-local data.

8.5.2 Data Representation

If we consider the four main operational support queries discussed in Section 8.4, there
a number of data types that we use for representation during the build up of these
queries. These are from the four main operational support queries and in this section, we
describe how we logically represent each of these types. Therefore, we need to represent
the following data types:
• partial traces used by the four queries,
• queries themselves sent by the client,
• model required by the compare, predict and recommend queries,
• result sets produced by the simple queries and their values,
• probability functions for the results of compare, predict and recommend queries,
• projection mappings used by the compare, predict and recommend queries, and
• evaluations for recommend queries.

As a user executes tasks, events are recorded in the (partial) trace sent to the OSS along
with a query. The traces can be represented using the XES event log format. For the
compare, predict and recommend queries, we need a model in addition to the partial
trace. If the model comprises of a finite set of traces, for example, an event log, it can be
represented using the XES format. In Figure 8.5 we showed an event log that was used as
an example of a model. Alternatively, the model can be represented as a finite automaton
[107], Petri net or an annotated transition system [26, 28]. The exact representation of a
model is left up to each individual provider, but we can logically view any process model
as a (possibly infinite) XES log.

The queries sent by a user to the OSS have to be represented and this also applies to the
result sets of simple queries and the values of these result sets. It is possible to use a new
language to describe the queries, however, this can be tedious and error-prone. Hence, in
the implementation we rely on pre-existing standards for providing a representation of
these types. As we have discussed already, we can represent traces and models using XES
log format and essentially since it is based on XML we can use the XQuery language
[47] to efficiently represent queries, result sets and the values of result sets. By using
XQuery, we can directly inherit the descriptions for these three types. Moreover, we
can provide representations of projection mappings and evaluations using the XQuery
language. Using XQuery, we can specify parts of an XML document, in particular we
can use a set of traces from an event log for implementing projections. Furthermore,
computations can be made on the results of projections thus implementing evaluations.

The representation of probability functions is not straight forward and depending on the
model used the result sets can be infinite. Instead of representing probability functions
explicitly, we distinguish between two kinds of observations: continuous values and ob-

8.5 Implementation Considerations of the Operational Support Service 195

servations from a finite set. For the continuous values we can rely on common statistical
notions, such as the mean, median, the 25% and 75% quartiles, as well as various confi-
dence intervals. Whereas, for finite sets we represent the probability of each element of
the set. It is possible that the providers can have more information, for example, the sta-
tistical distribution assumed and the parameters of this distribution. However, the OSS
requires some basic information which can be represented finitely from each individual
provider.

8.5.3 Simple Queries

A simple query considers the performance the current partial trace. The partial trace is
sent to operational support service by an operational support client. For our implementa-
tion, we rely on the Declare workflow system and implement an operational support client
that interacts with the Declare workflow system and the operational support service.

Declare Client

An example of a Declare client with the study process model (cf. Figure 8.4) is shown
in Figure 8.15. The Declare client executes tasks from a given process model and can at
any point during the execution, send one of the four queries to the operational support
service in ProM. The results from the operational support service are displayed on the
right hand side for each of the queries.

If we consider the study process from Figure 8.4, a partial execution trace is displayed in
Figure 8.16. The partial trace shows events executed for two activities (Young, BSc).
For example, activity Young was started at 2011-10-17 at 8:05 (l. 9) by resource
user1 (l. 8). The same activity was completed by user1 (l. 14) at 2011-10-17 at

8:11 (l. 15).

As an example of a simple query, we may be interested in checking how long we have
taken since the beginning of the execution. We can write a simple XQuery expression
doing this, shown in Figure 8.17.

The implementation corresponds to the simple query given in Example 8.1. The XQuery
expression extracts the timestamp of the first event (given by last() in l. 1) and
last event (given by position()=1 in l. 2). It returns the difference between these
two timestamps expressed in minutes (in l. 3). In the query shown in Figure 8.17, we
divide by the result by one day (1440 minutes) to obtain a result expressed in days. The
result of executing this query is shown in the main screen in Figure 8.15. This query is
executed after performing one task (i.e., Young) and the time shown on the right hand
side corresponds to the time taken to execute this activity.

The results shown are based on a Java implementation of a Simple XQuery Checker

provider in ProM. Moreover, we also see that Declare provides a set of other standard
queries for the simple queries, for example, for calculating the detailed event information,
returning the resources that executed activities in the partial trace etc.

The query shown in Figure 8.17 is simple and we do not need to use the FLWOR syntax

196 Chapter 8. Operational Support

Figure 8.15: Declare client showing results for the simple query from Figure 8.17 and
Figure 8.19 (inset).

because we are just computing a single value. It is possible to use a simplified syntax for
logs, where we have direct access to attributes of events instead of having to go through
the string elements as shown in Figure 8.18. The current trace is referred to using the
variable $trace.

A more interesting query is shown in Figure 8.19 which computes the execution time of
all activities in the partial trace. This query uses the XQuery FLWOR syntax . In the
query we iterate two variables ($e and $f) over all events in the trace (l. 1). We ensure
that of the two events, one is a start event (l. 2), the other is a complete event (l. 3)
and that these events belong to the same instance and have the same name (l. 4-5). For
each pair, we construct an XML tree (l. 6-13) with a root element of item. The tree
contains a tag activity with the name of the event (l. 12) and a tag time which is
computed similarly to Figure 8.17. However, here we use the events $e and $f which
returns the difference between the timestamps of the complete and start events (l. 8-9)
divided by one day (l. 10) and rounded to two digits (l.7-10). Declare uses heuristics for
displaying tabular data, and it automatically shows such data as seen in the inset at the
bottom left of Figure 8.15. Note that for the inset at the bottom we have additionally
executed the BSc task which corresponds to the example of the partial trace shown in

8.5 Implementation Considerations of the Operational Support Service 197� �
1 <?xml version="1.0" encoding="UTF-8" ?>
2 <log xes.version="1.0" xmlns="http://www.xes-standard.org"...>
3 <trace>
4 <string key="concept:name" value="Case1"/>
5 <event>
6 <string key="concept:name" value="Young"/>
7 <string key="lifecycle:transition" value="complete"/>
8 <string key="org:resource" value="user1"/>
9 <date key="time:timestamp" value="2011-10-17T08:05:00.000+02:00"/>

10 </event>
11 <event>
12 <string key="concept:name" value="Young"/>
13 <string key="lifecycle:transition" value="complete"/>
14 <string key="org:resource" value="user1"/>
15 <date key="time:timestamp" value="2011-10-17T08:11:24.000+02:00"/>
16 </event>
17 <event>
18 <string key="concept:name" value="BSc"/>
19 <string key="lifecycle:transition" value="start"/>
20 <string key="org:resource" value="user1"/>
21 <date key="time:timestamp" value="2011-10-18T10:30:00.000+01:00"/>
22 </event>
23 <event>
24 <string key="concept:name" value="BSc"/>
25 <string key="lifecycle:transition" value="complete"/>
26 <string key="org:resource" value="user1"/>
27 <date key="time:timestamp" value="2011-10-18T10:34:37.000+02:00"/>
28 </event>
29 </trace>
30 </log>� �
Figure 8.16: Partial execution trace showing the execution of two activities from the
study process model shown in Figure 8.4.� �

1 (xs:dateTime($trace/event[last()]/time:timestamp) -
2 xs:dateTime($trace/event[position() = 1]/time:timestamp))
3 div xs:dayTimeDuration('PT1440M')� �

Figure 8.17: Simple XQuery extracting the duration of a trace in days.

Figure 8.16.

8.5.4 Advanced Queries

In the previous section, we discussed examples of simple queries where computations
are done on a single partial trace. To perform other queries (i.e., compare, predict and
recommend), we need to consider the model used to obtain similar traces. A model can be
conceptually considered as a (possibly infinite) set of traces. Moreover, it is also possible
to construct queries over the model using the exact same syntax as for simple queries.

198 Chapter 8. Operational Support� �
1 <?xml version="1.0" encoding="UTF-8" ?>
2 <log xes.version="1.0" xmlns="..." xmlns:concept="..." ...>
3 <trace concept:name = "Case1" >
4 <event
5 concept:name = "Young"
6 lifecycle:transition = "start"
7 org:resource = "user1"
8 time:timestamp = "2011-10-17T08:05:00.000+02:00" />
9 <event

10 concept:name = "Young"
11 lifecycle:transition = "complete"
12 org:resource = "user1"
13 time:timestamp = "2011-10-17T08:11:24.000+02:00" />
14 <event
15 concept:name ="BSc"
16 lifecycle:transition = "start"
17 org:resource = "user1"
18 time:timestamp = "2011-10-18T10:30:00.000+01:00" />
19 <event
20 concept:name = "BSc"
21 lifecycle:transition = "complete"
22 org:resource = "user1"
23 time:timestamp = "2011-10-18T10:34:37.000+02:00" />
24 </trace>
25 </log>� �

Figure 8.18: Simplified representation of the partial trace shown in Figure 8.16.

� �
1 for $e in $trace/event, $f in $trace/event
2 where $e/lifecycle:transition='start' and
3 $f/lifecycle:transition='complete' and
4 $e/concept:instance=$f/concept:instance and
5 $e/concept:name=$f/concept:name
6 return <item>
7 <time>{ round-half-to-even (
8 (xs:dayTimeDuration(xs:dateTime($f/time:timestamp)-
9 xs:dateTime($e/time:timestamp))

10 div xs:dayTimeDuration('PT1440M')), 2)
11 }</time>
12 <activity>{ $e/concept:name }</activity>
13 </item>� �

Figure 8.19: Simple XQuery extracting the execution time of tasks.

In this section, we provide examples of results from the predict and recommend queries
in Figures 8.20 and 8.22 respectively. As described in the Section 8.4, the predict and
recommend queries require a projection mapping. In Figure 8.21 we give an example of
a projection mapping that projects onto the activity names of all complete events. This
projection mapping is an XQuery function that maps each event from the model to a

8.5 Implementation Considerations of the Operational Support Service 199

given domain. It takes each event and checks if the transition type is complete (l. 1). If
this is true then it returns the event name (l. 2), otherwise an empty string is returned
(l. 3). The mapping considers events that are equivalent to the partial trace, i.e., if they
share the same name. This mapping ignores all the other events that are not complete
events and all the other event attributes which is similar to the example of a projection
mapping given in Example 8.3.

Figure 8.20: Declare client showing results from the predict query using XQuery ex-
pression shown in Figure 8.17.

The predict query provides an estimate and a confidence interval for each predicted
item. For example, the predict query that shown in Figure 8.20 returns the expected
total execution time. This is shown as an estimate of the execution times. The results
in these queries are based on a java implementation of a log-based provider (i.e., Log
XQuery Provider) in ProM.

From the study process model introduced in Figure 8.4, given that we have executed ac-
tivities Young and BSc (cf. Figure 8.16), it is still possible to execute activities BSc, BIS
and ES. At this point, a client can send a recommendation query to the OSS requesting
for advice about the next activity to execute in order to achieve the fastest execution.
An example of an evaluation that we can use is one that optimizes for the lowest average
(defined in Example 8.6). The result of the recommendation query received from the OSS
is shown in Figure 8.22. This lists all the activities that can be executed next with an
estimate and a confidence interval value.

The log-based provider presented here uses a historical log as model, and simply computes
values for all matching traces of the log, assuming a standard distribution of the results
for computation of confidence intervals. As we see, the confidence intervals are very
large compared to the predicted values, indicating that the predicted values are not very
trustworthy. This can be improved by discovering or enhancing a model from the log

200 Chapter 8. Operational Support� �
1 if ($event/lifecycle:transition = 'complete')
2 then $event/concept:name
3 else ()� �
Figure 8.21: An example of a projection mapping that projects onto the activity names
of all complete events.

Figure 8.22: Declare client showing results from the recommend query using XQuery
expression shown in Figure 8.19.

(this can, e.g., be a Petri net or a transition system). However, this may lead to mined
models which comprise of infinitely many possible executions.

The exact interpretation of how to compute the probability distribution is left to the
provider. If the model used is finite, for example, an event log, then the providers can give
an exact response from the log. Alternatively, the providers can use statistical analysis
of the queries and derive a closed expression for the result over an infinite model. The
providers can assume that the result of the query is absolutely convergent since it is
possible that the execution is carried out over loops. The provider can iterate over the
loops until a desired accuracy is achieved, or they may use sampling based on some
heuristics.

If the model is infinite, this would imply that computations are performed over an in-
finite data set which may not be generally possible. To accommodate for such models,
we can introduce our own extension to XQuery. The basic idea is to generalize node
sets of XQuery to infinite node sets and extend simple types of XQuery to probability
functions. Instead of allowing arbitrary iterations over infinite node sets, we allow for

8.6 Related Work 201

specific aggregators to perform the computations. Examples of such aggregators include:
minimum, maximum, average, sum and confidence interval which evaluate a function
over an infinite node set. Operations such as filtering, projection and selections can be
done using standard XQuery selectors. This allows us to use our own function namespace,
i.e., oss. Here, regular node sets and primitive values are special cases of infinite node
sets and probability functions. Using this approach it is possible to use our functions to
return the same values as the simple queries based on finite input values. This should all
be handled by the specific providers depending on the input format that they accept, for
example, Declare models, Transition Systems, Petri nets. Moreover, it is possible that
the model is updated with more information as the executions are taking place and this
can assist in making better informed decisions when giving recommendations.

8.6 Related Work

Work related to operational support focuses on either providing predictions or recom-
mendations about the future based on a current execution. One example is the prediction
engine of Staffware [173] which uses simulation to complete audit trails with expected
information about future steps. This approach is however, unreliable since it is based on
one run through the system using a copy of the actual engine and it does not provide a
means of learning to make better predictions over time. A more refined approach focusing
on transient behavior is presented in [157]. It supports operational decision making using
process mining techniques and simulation in the context of YAWL. In [26] a concrete ap-
proach to operational support using process mining is given. Here, process mining is used
in an active way to check the performance of cases that have not completed, predict the
future from the current execution, and provide recommendations about the next steps to
take in order to achieve a specific goal. This is supported by learning a transition system
annotated with time information from an event log. Similarly, in [28], the authors use
process mining to show how discovered process models, i.e., transition systems can be
extended with information to predict the completion time of running instances. This is
related to the prediction service presented in [55, 65] which predicts the completion time
of cases using non-parametric regression.

In the context of the world wide web, there are a number of approaches to run time sup-
port. Examples include the monitoring based on business rules [104], event calculus [108]
etc. Further on, there are various recommender systems that support users in decision
making [145]. These systems generate recommendations based on the user’s preferences
and are becoming an essential part of e-commerce and information seeking activities.
In [175] a recommendation engine implemented in ProM is presented which learns his-
toric information from event logs for guiding a user about the next work item to select.
Here, a workflow system is able to provide flexibility while still supporting user deci-
sions. Similarly, the authors in [80] extend the recommendation strategies introduced in
[165] with additional ones and also study the effect of log quality on the quality of the
recommendations.

The work in the area of operational support is also related to the case-based reasoning

202 Chapter 8. Operational Support

approach presented in [178]. Here, a prototype CBRFlow able to adapt a process model
to changing situations at run-time and provide the workflow system with learning ca-
pabilities, is discussed. Recommendations can also be based on a Product Data Model
as discussed in [175] however, such recommendations are specifically for product based
workflows. The authors in [38] propose a recommendation system based on a constraint-
based approach extended to consider not only the control-flow, but also the resource
perspective in order to optimize performance goals of business processes. In [66], a self-
adjusting approach for building context-sensitive recommendations on the most suitable
next steps based on user behavior analysis, crowd processes, and its application to process
detection is proposed.

In all these approaches presented, the focus is on either predictions or recommendations
to users. These are specialized and a user has to interact with different systems in order
to make use of different algorithms. In this chapter, we provide a concrete view to oper-
ational support based on the four main operational support queries. This is based on a
common platform, i.e., the operational support service that provides interaction between
a number of clients and providers.

8.7 Conclusion
In this chapter, we have presented and discussed four main kinds of operational support
queries. The queries are of increasing complexity, including simple queries providing
statistics about the current execution, compare queries which compare the current partial
execution to similar partial executions, predict queries yielding predictions about the
outcome of the current execution based on the outcome of completed executions with
similar prefixes, and recommend queries providing recommendations of what to do to
achieve a goal. As shown in Figure 8.23, we can use process mining in an active way
to support the four operational support actions. If process mining is used in a passive
manner, we can only be able to check the execution of full completed cases but not
provide support for all the other operational support actions.

operational support queries

simple compare predict recommend

active use (online, partial traces) X X X X

passive use (offline, completed traces) X

Figure 8.23: Overview of the operational support actions showing the active use of
partial execution traces and passive use of completed traces.

The approach discussed here is based on an implementation of a real workflow system,
(i.e., Declare) interacting with the operational support service in ProM. Declare users
are not forced to follow the recommendations given to them but rather, they can freely
decide what to do. In this way, Declare can offer support to users without compromising
on flexibility. Given that we have a common platform for accessing operational support

8.7 Conclusion 203

providers through the operational support service, it is possible to add more operational
support techniques related to, for example, costs, quality and compliance. Moreover,
these techniques can be used in combination with the resource perspective, for example,
to recommend the next resource to allocate work to, or even recommend an activity that
maximizes the availability of resources. In this chapter, we have discussed implemen-
tations considerations based on open standards for all concepts used in the definitions.
While Declare has been used as example of a modeling formalism, the approach presented
in this chapter is applicable to a number of concrete modeling languages.

Chapter 9

Testing Operational Support Algorithms

As a user is interacting with a workflow system and working on a case, (s)he can send a
partial execution trace and query to the OSS requesting for a recommendation about the
next step to take. As discussed in the previous chapter, recommendations guide users in
making decisions about the best next action to take from the current partial trace. Often
times, such recommendations are based on a specified goal, for example, to complete
the case as fast as possible. In the previous chapter, we discussed four main operational
support queries (i.e., simple compare, predict and recommend as shown in Figure 8.6 on
page 179).

While it is easy to test the simple, compare and predict queries, it is not easy to test
recommend queries. This is because any recommendation received by the user can in-
fluence the execution of the trace currently running in a workflow system. It is only
possible to test recommendations if we have real users interacting with real workflow
systems and such users work based on the advice received from the operational support
service. However, in most cases it maybe expensive to have real users using systems for
testing purposes. In this chapter, we propose a way of simulating user behavior using
colored Petri nets. The approach we present in this chapter makes it possible to have
simulated users interacting with real workflow systems and generating event logs that can
be evaluated. This provides a cost-effective way of testing recommendation algorithms.

In this chapter, we discuss an infrastructure for testing of operational support algorithms
based on colored Petri nets [119]. In particular, we focus on the testing and evaluation of
a setting for algorithms used in the recommend action of operational support. As shown
in Figure 9.1, recommend queries require information about the current partial trace
(represented as current data) and event logs (shown as historic data).

The remainder of this chapter is organized as follows. First, we provide an introduction
to evaluating operational support algorithms in Section 9.1. In Section 9.2, we discuss
a running example which centers around a detailed study process of a student based
on the Declare language. Section 9.3 discusses the user behavior model implemented
as a colored Petri net while focusing on the modeling of the time needed to execute
tasks. In Section 9.4, we discuss the recommendation algorithms tested in this chapter.
This includes presenting a generic colored Petri net model that can be used as a starting
point for developing of operational support algorithms. Section 9.5 discusses experiments

206 Chapter 9. Testing Operational Support Algorithms

Chapter 2

Testing Operational
Support Algorithms

Chapter 9

Mining Resource
Availability

Chapter 4

Mining Resource
Busyness

Chapter 5

Operational Support

Chapter 8

Modeling Resource
Behavior

Chapter 6

Providing a Unified
View of Event Logs

Chapter 7

Resource
Availability

Resource
Busyness

Operational
Support

historic
data

current
data

Conclusion

Chapter 10

Figure 9.1: Overview of the structure of the thesis highlighting Chapter 9.

carried out to evaluate the recommendation algorithms (discussed in Section 9.4) using
various user models (described in Section 9.3). Finally, Section 9.6 discusses results and
concludes this chapter.

9.1 Evaluating Operational Support Algorithms

During operational support, a workflow system client communicates with a workflow
system and an OSS. The user sends one of the four (simple, compare, predict and recom-
mend) queries to the OSS. Once the OSS receives messages from the client, it forwards
them to a number of operational support providers. Providers implement different algo-
rithms and they forward responses to the OSS depending on the type of query they have
received. When the OSS receives responses from the providers, it forwards them to the
client (cf. Figure 8.3 on page 177).

9.1 Evaluating Operational Support Algorithms 207

The simple and compare queries (described in Sections 8.4.1 and 8.4.2 respectively)
consider the past execution of the current partial trace. A number of algorithms can be
implemented to test such queries. Examples include: query to calculate the total time
spent on the current execution, query to measure the average time of the current partial
trace in relation to other similar traces from a specified model etc. Evaluating algorithms
for the simple and compare queries is easy. All that is needed are functions that can
be used to check the partial trace combined with standard operators that can count,
compute averages, maximum, variance etc.

The predict query (discussed in Section 8.4.3) compares the execution of the current
partial trace with executions of similar traces from a model. In this chapter, a model
is represented as an event log that contains past executions of the current process. As
discussed in [28, 164], it is possible to evaluate the quality of predictions using cross-
validation. Cross-validation is a statistical approach used to partition a sample data set
into two subsets such that analysis is initially performed on one subset (i.e., “training
set”) while the other subset is used for validation (i.e., “test set”). In this approach, an
event log can be used as the sample data and using the K-fold cross validation the test
set of process instances is partitioned into K sets of equal size. Of the K sets, one set
is used for test data and the rest of the sets, i.e., K-1 are used as training data. The
cross-validation process is then repeated K times (folds), with each of the K sets used
exactly once as validation data. The K results from the folds can be combined to produce
a single estimation. Since parts of the event log are used as test data, it is possible to
obtain the reliability of the algorithms used for making predictions.

The recommend query (discussed in Section 8.4.4) suggests the best next action based
on the past execution of the current trace. When a user receives a recommendation
from the OSS (s)he can decide to execute the recommended activity. This implies that
a recommendation influences the current execution of the partial trace. Therefore, the
evaluation of recommendations is more difficult compared to predictions. It is not possible
to simply use historical data recorded in event logs. In some situations the event logs can
be generated from a business process that did not receive any recommendations from the
OSS (or any other tool that is able to provide recommendations). Therefore, we propose
a general platform that can be used for testing recommendations as shown in Figure 9.2.

At the bottom right we have a User executing a process. The process may be imple-
mented using a Workflow System (as shown on the left). The user interacts with the
Operational Support to get advice about the next step to execute. This platform
is equivalent to the operational support architecture shown in Figure 8.3 except that
instead of having a real user interacting with the OSS, we simulate and model different
user behavior models.

The general idea presented in this chapter is to model the user using a colored Petri net
(CPN) model (using CPN Tools) and have the user interact directly with a real workflow
system (using Declare) and an implementation of operational support service (using
ProM) as shown in Figure 9.2. That way it is not necessary to have real users and this
makes the approach more affordable and realizable. Using real systems instead of modeled
counter-parts also makes it much easier to do the modeling, as we only have to focus

208 Chapter 9. Testing Operational Support Algorithms

z

Figure 9.2: Abstract testing platform for operational support algorithms. A User based
on a colored Petri net model interacts with a Workflow System, Declare and the
Operational Support service in ProM.

on the user behavior, and not on replicating already existing systems and algorithms.
Moreover, this approach allows for developing of algorithms by implementing them using
a CPN model and directly integrating them in a real tool for operational support. It
becomes easy to use such algorithms directly in tools acting as clients for operational
support, including workflow systems and the testing platform.

9.2 Running Example

In this section, we discuss a running example of a model based on the Declare lan-
guage. This is an extended model of a study process of a student that was introduced
in Section 8.3 (on page 177). A student can choose either an academic or a practical
path to obtaining a degree. The student can initially choose to either go to high school
(HighSchool) or to get a job (Work). Going to high school allows a student to be
admitted for a bachelor’s degree (BSc) thus follows the academic path. Alternatively,
a student may decide to get a job. Having worked before allows the student to enter
two practical supplementary courses (PCourse1 and PCourse2). In order to be admit-
ted to the four theoretical courses (TCourse1–TCourse4), a student must have had
a job and also been to high school. Having completed all six supplemental courses is a

9.2 Running Example 209

prerequisite to meet the requirements (Qualify) for starting a master’s study. A stu-
dent is also allowed to start a master’s study if (s)he has completed a bachelor’s degree
(BSc). There are two available master’s degrees that a student can undertake, i.e., MSc,
BIS and MSc, ES. After completing an Master’s degree in Business Information System
(MSc,BIS), a student can obtain a Master of BPM (Master of BPM).

0..1

0..1

precedence

precedence

precedence

precedence

precedence

precedence
0..1

0..1

PCourse2

0..1

TCourse2

TCourse4

TCourse1

0..1

PCourse1

Qualify

0..1

TCourse3
Work

0..1

0..1 not
co-existence

precedence

precedence
precedence

1 of 2

Master
of BPM

MSc,BIS

0..1

BScHigh
School

MSc,ES

precedence

not
co-existence

0..1

Academic

Practical

Figure 9.3: Study process model in the Declare language. A student can follow either
an academic or a practical path to obtaining an education.

The model is rather large compared to the study process model shown in Figure 8.4. First,
we want to model two possible paths that a student can take to obtaining a degree, i.e.,
the academic and practical paths. Moreover, it should be possible to optimize towards
two goals: (a) getting a master’s degree as fast as possible, and (b) becoming a Master
of BPM. As is with any Declare model the study model shown in Figure 9.3 allows for
a lot of freedom during process execution. For example, a student can at any point in
time decide to get a job which may open new possibilities in terms of the courses that
(s)he can do to qualify for a masters degree. During process execution many tasks may
be allowed, for example, after going to high school and working, then (i) BSc, (ii) the 6
courses (practical and theoretical) and (iii) Work are all allowed actions. This makes it
difficult to select the best next action to take in order to achieve a certain goal. Therefore,
operational support can be used to assist users in making such decisions. For example,
if the goal that is to be achieved is to obtain a masters degree as fast as possible, then
an alternative recommendation from the operational support service would be that the

210 Chapter 9. Testing Operational Support Algorithms

user executes a BSc instead of executing activity Work again.

After executing a BSc, the user might be interested in achieving a different goal, i.e.,
obtain Master of BPM. This means that after a BSc the available options in the model
would be: to execute Work, to do an MSc,BIS, or to execute an MSc,ES. Since the goal
is to become a Master of BPM the best recommendation from the list of available
activities would be to execute an MSc,BIS. According to the process model, executing
an MSc,BIS eventually leads to the execution of a Master of BPM. Therefore, based
on historic information in an event log it is possible to recommend particular actions in
a given context.

9.3 User Behaviour Modeling
As discussed already, we need to test and evaluate recommendation algorithms. From
the general setting shown in Figure 9.2, we have to represent a user executing a business
process and interacting with both the workflow system and the operational support
service. We therefore require a way to model and simulate different user behavior. This
implies that we have to cater for the way users actually work in real life while executing
tasks. In this section, we describe the CPN model that handles different user behavior
models.

9.3.1 Top Page of the CPN Model

The CPN model we discuss in this section is a concrete implementation of the abstract
testing platform shown in Figure 9.2. The model is parameterized and allows for different
user behaviors. While we allow the use of probabilities for completing or canceling a
current task to be configured, more interesting configuration options include which timing
model to use and whether a user uses operational support or not. The examples used in
this model are based on the study process model shown in Figure 9.3.

The top level (Top page) of the CPN model is shown in Figure 9.4. It consists of two
subpages, i.e., Workflow System substitution transition (shown on the left) and the User
substitution transition (shown on the right). The Workflow System page models the
behavior of the workflow system, i.e., Declare and it generates a number of instances of
the process to be executed (e.g., instance 1 for the Study process) which are received on
the Top page through the Instances place. For each instance, it is also indicated whether
the instance is consistent, i.e., if the instance can be terminated. This is shown on the
Consistent place which holds tokens that are a product of the instance and a boolean
value, e.g., (1,true) indicates that instance 1 can be terminated. The Workflow System
page also generates a number of work items (i.e., concrete tasks that can be executed
by users) for each instance shown as tokens on the Offers place. For example, from the
study model in Figure 9.3 the possible offers that can initially be sent for each instance
are HighSchool and Work.

A user from the User page can pick an offer and inform the workflow system about the
work item that has been selected. This is indicated by a token on the Selected place.

9.3 User Behaviour Modeling 211

User

User

Workflow
System

Declare

Instances

NAMEDINSTANCE

Close

NAMEDINSTANCE

Consistent

INSTANCExBOOL

Cancelled

WI

Completed

WI

Offers

WIu

Approved

WI

Rejected

WI

Selected

WI

Declare User

1 1`(1,"Study")

1 1`(1,true)

2 1`(1,"HighSchool")++
1`(1,"Work")

1 1`(1,"Work")@0

Figure 9.4: The Top page connects the Workflow System page (on the left) and the
User page (on the right).

Once the workflow system has received a request from the user, it can either approve
or reject it. If the request is rejected, i.e., if there is as a token on the Rejected place,
the request is dropped. If the request is approved, the workflow system informs the user
and this is indicated by a token on the Approved place. Eventually, the user starts the
execution of the work item. From Figure 9.4, the work item belonging to task Work has
been approved by the workflow system, i.e., there is a token on the Approved place. At
some point during the execution, the user can either cancel the work item execution or
complete it. If this happens, the workflow system is informed using either the Cancelled
place or the Completed place. When an instance is consistent, i.e., all the required work
items offered to the user have been completed then the user can close the instance which
is indicated by a token on the Close place. The places Selected, Approved, Cancelled,
and Completed hold tokens of type WI which is equivalent to a work item in the schedule,
assign, abort_activity and complete states (cf. Figure 6.6 on page 131).

9.3.2 User Page

The User page of the CPN model is shown in Figure 9.5. Users are produced on demand
(depending on the instances that have sent from the workflow system) from the Assign
substitution transition. This page generates users as needed up to a certain threshold

212 Chapter 9. Testing Operational Support Algorithms

shown on the Vacancies place. Initially, a user is idle which is shown as a token on
the Idle place. An user in the idle state can decide to pick a work item from the list of
available work items in the Offers place. The selection of work items is done in the Pick
Item substitution transition. After selecting a work item the user can start its execution
in the User Behaviour substitution transition. The execution of a work item is carried
out based on a given user behavior model and this is controlled in the User Behaviour
substitution transition. This depends on the available work items sent via the Offers
place from the workflow system.

()

(i,name)

i i

(i, name)

(i, true)

Assign

Assign

User Behaviour

User Behaviour

Pick Item
Pick

Operational
Support

OSService

Close
InstanceVacancies

total`()

UNIT

RESPONSE

Recommend

QUERY

End
Session

INSTANCE

Close
Out

NAMEDINSTANCE

Consistent
Instances

I/O INSTANCExBOOL

Instances
I/O

NAMEDINSTANCE

Cancelled
Out

WI

Approved
In

WI

Selected
Out

WI

Completed
Out

WI

Offers
I/O

WIu

Rejected
In

WI

Requested

WIxRESOURCE

Idle

RESOURCE

In

I/O

Out

Out

In

Out

I/O

I/O Out

OSService

Pick

User Behaviour

Assign

Response

Add
Event

WI

1 1`(1,true)

1
1`(1,"Study")

1

1`(1,"Work")@0

2

1`(1,"HighSchool")++
1`(1,"Work")

1

1`(1,"Work",1)@0

Figure 9.5: The User page connects the Assign, Pick Item, Operational Support and
the User Behaviour pages.

The user interacts with the operational support service shown as the Operational Support
substitution transition in Figure 9.5. The user can select the available work items from
the Offers place and send a request to the operational support service about the next
work item to execute. The user sends the recommendation request via the Recommend
place. When the operational support service receives a request it provides responses back
to the user via the Response place. For example, the user shown in Figure 9.5 can decide

9.3 User Behaviour Modeling 213

to consult the operational support service for a recommendation about the next work
item to execute. Given that there are two work items on the Offers place, i.e., HighSchool
and Work, an operational support provider can recommend that the user starts with the
execution of Work which will be sent back to the user as a token on the Response place.

After a user has requested a work item (e.g., Work on the Requested place), this work
item can either be executed or cancelled. In turn, the workflow system has to be informed
of the decision made by the user. Alternatively, an idle user can close a consistent instance
which is shown as a token on the Close place. An instance is consistent if all the required
work items have been completed. When a user either cancels or completes the execution
of a work item, (s)he is released back to the idle state (shown as token on the Idle place).
Moreover, the operational support service can be notified when the user has decided to
end the current session. The notification is sent to the OSS via the End Session place.
This corresponds to when an instance is closed which is useful for clean-up purposes
[187]. After a user has completed the execution of a work item, it is sent via the Add
Event place to the OSS (cf. Operational Support substitution transition). This is used by
the OSS to construct a execution trace. The execution trace is updated with each new
event completed by the user. In the test platform, the Operational Support substitution
transition is replaced with the actual implementation of the operational support service
in ProM as discussed in Chapter 8. The operational support service is implemented in
ProM as a Java module and the communication between ProM and the user model in
CPN Tools is made possible using Access/CPN 2.0 [189].

9.3.3 Pick Item Page

Once there are available offers from the workflow system, the user needs to decide whether
to use operational support or not in order to pick one of the offered work items. The
Pick Item page of the model is shown in Figure 9.6. Here, a user in the Idle place needs
to first decide on whether to use operational support or not. This is done by the Decide
on Support transition. For efficiency of the simulation, the use of support is decided
before actually using either the Ignore Support or Use Support substitution transitions.
A more realistic approach would be to ask for support and use that as a guide for making
decisions. However, this can be seen as another recommendation algorithm for support. It
is also possible to model a completely clueless user picking at random from the available
offers in the Ignore Support substitution transition.

The probability of if support is used or not, is configurable and is based on the value
of the token in the Support Probability place. This is done by the Decide on Support
transition using the discrete probability function. In this model, we use four different
support probabilities, i.e., 0, 50, 90 and 100.
(i) A support probability of 0 implies that the user ignores operational support and

picks a work item randomly from the list of offered work items.
(ii) A support probability of 50 means that in 50% of the cases, the user consults the

operational support service and the other 50% a work item is randomly selected.
(iii) A support probability of 90 implies that in 90% of cases the user consults the

operational support service and the other 10% a work item is randomly selected.

214 Chapter 9. Testing Operational Support Algorithms

sp

res

Ignore
Support

No Support

Decide on
Support

Use
Support
Support

0

INT

RESOURCE

Offers

I/O

Requested
OutOut

Selected
OutOut

Response
InIn
RESPONSE

RESOURCE

[ran < sp]%res

RESOURCE

Support
Probability

Support ProbabilitySupport Probability

No
Support

Use
Support

No Support

input ();
output ran;
action
discrete (0, 100)

Idle
InIn

Recommend
OutOut

[ran >= sp]%res

Support QUERY

WIxRESOURCE

WI

WIuI/O

2

1`(1,"High School")++
1`(1,"Work")

1 1`0

1 1`1@0

Figure 9.6: The Pick Item page. This page connects the Ignore Support and Use Support
substitution transitions. These model situations where a user can decide to either ignore
operational support or use operational support respectively.

(iv) The last support probability of 100 implies that for all the instances the user will
rely on the operational support service to make decisions about the next work item
to execute.

From Figure 9.6, we have a support probability of 0 which means the user will ignore
operational support and just randomly select a work item using the Ignore Support
page. This is signalled by a token put on the No Support place. Otherwise, a token will
be placed on the Use Support place. However, no matter whether the user decides to
use operational support or ignore operational support, a new work item will be selected
and put on the Selected and Requested places. Only when the user decides to use
the operational support service, is a recommendation request sent as a token on the
Recommend place. The operational support service sends responses back as tokens on
the Response place.

Use Support Page

When a user decides to use operational support, a list of all enabled work items for a
given instance has to be built as shown Figure 9.7. Initially, Select Instance transition
takes a user from the Resource place and the instance of the process to work on from
the available work items in the Offers place. Since the available work items in the Offers
place are for the instance 1 as shown in Figure 9.7, Selected Instance place will have a

9.3 User Behaviour Modeling 215

(i, a)

(i, a)

(i, a)

(i,a, res)

res

(i,a)

res

(i, aa," recommend")

(i,a::aa)

(i,aa)

(i, [a])

Pick
Recommended

P_HIGH

Perform
Query

[res = i]

Populate
Offers

[not (member a aa)]

P_HIGH

Select
Instance

[res = i]

Selected
Out

WI

Response
In

RESPONSE

Resource
In

RESOURCE

Requested
Out
WIxRESOURCE

Offers
I/O WIu

Waiting

Recommend

Out QUERY

Selected
Instance

WIs

Out

I/O

Out

In

In

Out

RESOURCE

res

(i,aa)

2

1`(1,"HighSchool")++
1`(1,"Work")

1 1`1@0

1

1`(1,["Work","HighSchool"]," recomm
end")

Figure 9.7: The Use Support page showing an implementation of user a work item
using operational support.

token for this instance when transition Select Instance fires.

In the next step, a list of all work items enabled for each instance are built. Here,
an instance in the Selected Instance place is populated with the available work items
from the Offers place. This is done by the Populate Offers transition. From Figure 9.7,
Selected Instance place will be populated by High School and Work which are the
available work items from the Offers place. Once we have all the offered work items
added to the Selected Instance place, then Perform Query transition fires. Here, we
simply send the list of enabled work items in the Recommend place to the operational
support service (cf. token on the Recommend place in Figure 9.7). Recommend place
now contains the instance id (1), the available offers (HighSchool, Work), and a string
value which corresponds to one of the four queries that we expect the operational support
service to handle (“recommend” query). After which, the user is put as a token in the
Waiting place. The user expects a response from the operational support service. Once
there is a token on the Response place, then Pick Recommended transition fires which
adds tokens to the Selected and the Requested places. The workflow system has to
be informed which work item has been selected. This is sent as a token on the Selected
place. The user moves to the requested state which is shown as a token on the Requested

216 Chapter 9. Testing Operational Support Algorithms

place and here the user waits for feedback from the workflow as to whether the selected
work item has been approved or not.

Ignore Support Page

The Ignore Support page is similar to the Use Support page as shown in Figure 9.8. First,
Select Instance transition takes a user from the No Support place and the instance of the
process to be worked on from the available work items in the Offers place. The instance
will be put on the Selected Instance place. The list of all work items enabled for each
instance are then built by the Populate Offers transition based on the available work
items on the Offers place.

res
(i, a)

res (i, a)

(i, aa)

(i, a)

(i, a, res)

(i, a)

(i, aa)

(i, a::aa)

(i, a)(res, [a])

res

Perform
Selection

[res = i] input aa;
output a;
action
pick aa

Pick
Selection

[res = i]

P_HIGH

Populate
Offers

[not (member a aa)]

P_HIGH

Select
Instance

[res = i]

Waiting

RESOURCE
Response

RESPONSE

Selected
Instance

WIs

No
Support

In
RESOURCE

Offers
I/O WIu

Selected
Out

WI

Requested
Out

WIxRESOURCE
Out

Out

I/O

In

2 1`(1,"HighSchool")++
1`(1,"Work")

1 1`(1,"Work")@0

1 1`(1,"Work",1)@0

Figure 9.8: The Ignore Support page showing a user randomly selecting a work item
from the list of available offers.

Perform Selection transition takes the list of available work items (aa) as input and
returns a work item (a) based on the pick function. The selected work item is added
to both the Waiting and Response places. Since, the user is not using the operational
support service at this point Pick Selection transition takes a user from the Waiting
place and a selected work item from the Response place and then informs the workflow
system of which task has been selected. This is sent as a token on the Selected place. Pick
Selection transition then adds a token to the Requested place which is a combination of

9.3 User Behaviour Modeling 217

the selected instance, the work item and a resource, for example, (1,“Work”,1) as shown
in Figure 9.8.

9.3.4 User Behaviour Page

When a user has either received a recommendation from the operational support service
(cf. Use Support Page in Figure 9.7) or has randomly selected a work item (cf. Ignore
Support page in Figure 9.8) (s)he will inform the workflow system about the task that
has been selected. The workflow system can either approve or reject the user request.
If the work item is approved, this will trigger the user to start its execution. Therefore,
the task execution of a user begins at an abstract level when a requested work item is
available as a token on the Requested place as shown in Figure 9.9. We see that the
work item belonging to task Work on the Requested place has been approved by the
workflow system (shown as a token on the Approved place).

res

(i, a) (i, a, res)

Abort

WIu

Rejected
In

WI

Idle
Out

RESOURCE

Add
Event

Out WI

Approved
In

WI

WI

In

Out

Out

In

Execute

ExecuteExecute

Requested

InIn

Offers
I/OI/O

Completed
OutOut

Cancelled
OutOut

WI WIxRESOURCE

1 1`(1,"Work")@0

1

1`(1,"Work",1)@0

2

1`(1,"HighSchool")++
1`(1,"Work")

Figure 9.9: The User Behaviour page models an abstract task execution.

However, if the workflow system has rejected the user request (shown as token on the
Rejected place) Abort transition fires and the user is sent back to the Idle place. When
the user request is approved (shown as a token on the Approved place), the work item
is executed (cf. Execute substitution transition). Moreover, the workflow system will be
informed of success, i.e., a token will be placed on the Completed place or failure with
a token put on the Cancelled place after execution. The operational support service is
also notified if a activity was executed through a token on the Add Event place.

The Execute page of the CPN model actually shows four different implementations of
simple user behavior models: (a) constant execution times, (b) execution times sampled
from a probability distribution, (c) execution times dependent on the previously executed
task, and (d) execution times dependent on the stress levels of the user .

218 Chapter 9. Testing Operational Support Algorithms

We now describe the CPN pages for each of these user behaviour models.

User Model for Constant Time or Sampled from a Probability Distribution

The first user behaviour model considers the execution times to be constant for each
of the specified tasks from the process model in Figure 9.3. The constant time model
is merely used as a basis for comparison with the other models because in practice we
expect that users can execute tasks sampled from, for example, a specific probability
distribution.

The second user behaviour model selects execution times from a probability distribution.
Therefore, we treat these two user behaviour models together because the constant time
can be seen as a specific probability distribution. The execution times of users are in-
dependent of what was executed in the past or the available work available that a user
has to do. The user behaviour model based on a probability distribution is shown in
Figure 9.10.

(i,a)

cancel

PROB

[ran < cancel]%
(i,a, res)@++DurProb(t3,t4)

(a,t3, t4)(a,t1, t2)

(i,a)

(i,a)res

(i,a,res)

[ran >= cancel]%
(i,a, res)@++DurProb(t1, t2)

(i,a,res)

(i,a)
res

(i,a,res)

Complete
Work

[transtype="complete"]

Start
Work

[transtype="start"]

output ran;
action
discrete(0,100)

Cancel
Work

[transtype="ate_abort"]

Approved
In

WI Cancel
Rate

Cancel

5

INT

Timing
Model
Timing TIMING

Add
Event

Out
WI

Completed
Out

WI

Cancelled
Out

WI

Cancel

WIxRESOURCE

Cancel
Database
Cancels ACTIVITYxTIMES

In
Progress

WIxRESOURCE

Time
Database

Times ACTIVITYxTIMES

Idle
Out

RESOURCE

Requested
In

WIxRESOURCE

1 1`5

1 1`PROB

13

1`("BIS",365,365)++
1`("BSc",356,365)++
1`("ES",365,365)++
1`("HighSchool",365,365)++
1`("Master",365,365)++
1`("PCourse1",30,15)++
1`("PCourse2",30,15)++
1`("Qualify",0,0)++
1`("TCourse1",30,15)++
1`("TCourse2",30,15)++
1`("TCourse3",30,15)++
1`("TCourse4",30,15)++
1`("Work",182,91)

1 1`(1,"Work",1)@31536109115

13

1`("BIS",730,365)++
1`("BSc",1095,365)++
1`("ES",730,365)++
1`("HighSchool",1460,365)++
1`("Master",1095,365)++
1`("PCourse1",180,30)++
1`("PCourse2",180,30)++
1`("Qualify",0,0)++
1`("TCourse1",180,30)++
1`("TCourse2",180,30)++
1`("TCourse3",180,30)++
1`("TCourse4",180,30)++
1`("Work",365,182)

Figure 9.10: The task execution page based on a probability distribution. The Time
Database place contains timing information for each activity execution and the Cancel
Database place specifies the time taken if an activity is cancelled.

9.3 User Behaviour Modeling 219

Given that there is a work item in the Requested place and we have received an approval
from the workflow system (seen by a token in the Approved place) the user can start the
execution of the work item. However, before Start Work transition fires a decision has
to be made whether to complete the work item or to cancel it. In practice a work item
can be started and eventually completed or it can be started and cancelled (cf. the work
item life cycle shown in Figure 6.6 on page 131). For example, among the control-flow
patterns discussed in [14] there is a Control-flow Pattern 19 called Cancel Activity. This
pattern models the situation where an enabled task can be withdrawn prior to or during
its execution.

Therefore, Start Work transition selects a random number from a discrete uniform distri-
bution with parameters 0 and 100. If the number selected is below a specific configurable
threshold (e.g., value of 5 on the Cancel Rate place in Figure 9.10) then the user moves
to Cancel place, otherwise the user transitions to the In Progress place (e.g., user 1 is
executing Work). The execution based on a probability distribution is enabled only if
the Timing Model place has a token of type PROB which corresponds to a probability
distribution timing model.

For each of the user behaviour models, we use the timing information on the shared Time
Database and Cancel Database places. These places contain the timing information
for successfully executing an activity, i.e., a user moves to the In Progress place and
the penalty for canceling an activity, i.e., a user moves to the Cancel place. The Time
Database and Cancel Database places have values for each of the tasks from process
model shown in Figure 9.3. For example, it will take approximately 2 years for a user
to complete a BIS course, and 6 months to execute each of the practical and training
courses (e.g., PCourse1, PCourse2, TCourse1).

When a user decides to cancel work signalled by Cancel Work transition placing a token
on the Cancelled place, the workflow system is informed about the work item that has
been cancelled. Moreover, the user moves back to the Idle place. However, if a user
decides to complete the execution of the work item then Complete Work transition puts
a token on both the Add Event and Completed places. The operational support service as
well as the workflow system are informed and the user moves to the Idle place. The three
transitions on this page all have guards that bind the variable transtype. Transition Start
Work binds transtype to “start” specifying when a user starts the execution of a work
item, Cancel Work transition binds transtype to “cancel” specifying when a user cancels
the work item and Complete Work transition binds transtype to “complete” signifying
when a user completes the work item execution. This is used to subsequently import a
simulation log into ProM for further analysis.

User Model for Batch Processing

Under batch processing user model we consider the situation that if a user executes a
similar task as the previously executed task, then (s)he works faster. This implies that the
step-up time is minimized and any learning effects about the new task are also reduced.
If a user has executed a similar activity in the past (s)he has more experience and is
expected to work faster if the same activity has been recommended as the next one that

220 Chapter 9. Testing Operational Support Algorithms

has to be executed. The user behaviour model based on batch processing is shown in
Figure 9.11.

((i, a), 1)

((i, a'), n)

((i, a), n+1)

((i, a'), n)

(i,a,res)

[ran >= cancel]%
(i,a, res)@++
DurBatch(t1, t2, n+1)

[ran < cancel]%
(i,a, res)@++DurProb(t3,t4)

(i, a) (i,a)

[ran < cancel]%
(i,a, res)@++DurProb(t3,t4)

(i,a)

(i,a)res

(i,a,res)

[ran >= cancel]%
(i,a, res)@++DurProb(t1, t2)

(i,a)

res

(i,a,res)

Start
Batch Work[same (a, a')]

Complete
Work

Start
New Work [not (same (a, a'))]

Cancel
Work

Last
Last

LAST

Approved
In

Add
Event

Out
WI

Completed
Out

WI

CancelledOut

WI

Cancel

WIxRESOURCE

In
Progress

WIxRESOURCE

Idle
Out
RESOURCE

RequestedIn

WIxRESOURCE

WI

1 1`((1,"TCourse4"),1)

1

1`(1,"TCourse2")@15551940304

1

1`(1,"TCourse2",1)@15551940304

Figure 9.11: The task execution model showing an implementation of batch processing.

To model this “conveyor belt effect”, it is important to keep track of the last executed
task and how many times we have executed the same task. From the running example
shown in Figure 9.3 we consider all the practical and theoretical courses to be similar
enough to use batch processing. For example, tasks PCourse1 and TCourse2 are similar
while Work and High School are considered as different tasks.

In Figure 9.11, instead of just one start transition as seen in the probability distribution
user model (cf. Figure 9.10), this model has two start transitions. These two transitions
signify that:
(a) a user start work based on a previously executed task and
(b) a user starts work based on a new task.

This is modelled by the Start Batch Work transition which executes an activity when the
tasks are similar and the Start New Work transition which is only executed if tasks are

9.3 User Behaviour Modeling 221

not similar. The apparent complexity of this model is due to the two transitions doing
almost the same thing. The two transitions have access to Requested, Approved, Timing
Database, Cancel Database, Cancel Rate and the specific Time Model places. This is
similar to what Start Work transition does as shown in Figure 9.10.

The Last place keeps track of which task a user executed last and how many times a
similar task has been executed. Before either Start New Work transition or Start Batch
Work transition fires, the previously executed task is read from Last place and is compared
to the current task in the Approved place, i.e., the current task to be executed. If these
two tasks are the same then Start Batch Work transition fires and if the tasks are not
the same then Start New Work transition fires. Moreover, in both situations Last place
is updated accordingly. For example, from Figure 9.10 Start Batch Work transition is
enabled because the work item on the Approved place (TCourse2) is similar to the work
item that was last executed by the user (TCourse4). If the Start Batch Work transition
fires then the time taken to execute the activity is dependent on how many times a similar
task has been executed. The rest of the model is similar to the probability distribution
model shown in Figure 9.10 where a user will either start and complete an activity or
the activity execution will be canceled.

User Model with Execution Time Influenced by Workload

As discussed in Chapter 6 (cf. Section 6.3 on page 149), people work at different speeds
depending on existing workload. Therefore, for a given individual and set of tasks, there
exists an optimal arousal level which is the level where the performance has its maximal
value, beyond which performance collapses (cf. the “Yerkes-Dodson Law of Arousal”).
Since, we know that workload influences the processing speed of resources we use this
as a basis for this user model. Therefore, the execution times of a user in this model are
dependent on the workload that is in the system. The CPN model for the user where
execution time is influenced by workload is shown in Figure 9.12.

In the workload model page the model construction is the same as in Figure 9.10. How-
ever, the user starts the execution of a work item by first counting the work items in
the Offers place from the Count Tasks substitution transition shown in Figure 9.13. For
example, if according to the study model (cf. Figure 9.3) the user has previously exe-
cuted activities Work and HighSchool, then the enabled activities that can be executed
are BSc, the 6 courses (practical and theoretical) and Work (shown as tokens on the
Offers place in Figure 9.13). Given that there is a work item in the Requested place
(e.g., PCourse2), then Start Counting transition fires. This transition builds a list for
each of the available instances in the Requested place. After which, the available work
items in the Offers place are added to Count place by the Add Work Items transition.
For example, the 6 courses, Work and BSc have been added to Count place for instance
1 as shown in Figure 9.13.

When all the work items have been added to the Count place, the user starts the execution
of the work item as shown in Figure 9.12. This gives an extra parameter, i.e., the number
of available work items (e.g., ct which will be equal to 8). This is now considered as part
of the execution time in this model given by the DurWL function which measures how

222 Chapter 9. Testing Operational Support Algorithms

(a,t3, t4)

(i, aa)

(i,a)

(a,t1, t2)

cancel

WL

(i,a)

(i,a)

res

(i,a,res)

[ran < cancel]%
(i,a, res)@++DurWL(t3, 4, ct)

[ran >= cancel]%
(i,a, res)@++DurWL(t1, t2, ct)

(i,a,res)

(i,a)

res

(i,a,res)

Count Tasks

Count Tasks

Complete
Work

Start
Work

[ct = Length(aa)]
output ran;
action
discrete(0,100)

Cancel
Work

Cancel
Database
Cancels ACTIVITYxTIMES

Count

WIs

Time
DatabaseTimes

ACTIVITYxTIMES

Cancel
Rate

Cancel

5

INT

Offers
I/O

WIu

Time
Model
Timing

WL

TIMING

Add
Event

Out WI

Completed
Out

WI

Cancelled
Out WI

Cancel

WIxRESOURCE

In
Progress

WIxRESOURCE

Approved
In

WI

Idle
Out
RESOURCE

Requested
In

WIxRESOURCE
13

1
1`(1,["TCourse3","TCourse2","BSc","
TCourse4","PCourse1","Work","TCour
se1"])

13

1
1`5

7

1`(1,"BSc")++
1`(1,"PCourse1")++
1`(1,"TCourse1")++
1`(1,"TCourse2")++
1`(1,"TCourse3")++
1`(1,"TCourse4")++
1`(1,"Work")

1 1`WL

1
1`(1,"TCourse1")@6613497049

1
1`(1,"TCourse1",1)@6613497049

Figure 9.12: The task execution model taking the available workload into account.

(i, a, res)

(i, aa)(i, a::aa)
(i, a', res)

(i, [a])

(i,a)
Add

Work Items

[not(member a aa)]

P_HIGH

Start
Counting

P_LOW

Requested
I/O

WIxRESOURCE

Count
I/O

WIs

Offers
I/O WIuI/O

I/O I/O
1

1`(1,"PCourse2",1)@0

1

1`(1,["TCourse4","TCourse1","TCours
e2","Work","BSc","TCourse3","PCours
e1","PCourse2"])

8

1`(1,"BSc")++
1`(1,"PCourse1")++
1`(1,"PCourse2")++
1`(1,"TCourse1")++
1`(1,"TCourse2")++
1`(1,"TCourse3")++
1`(1,"TCourse4")++
1`(1,"Work")

Figure 9.13: The Count Tasks page of the workload timing user behaviour model.

long the execution of a specific activity will take. A user will start execution of work item
in the Approved place (e.g., TCourse1 in Figure 9.12). The user will either complete the
execution or cancel it, after which the user moves back to the Idle place. The execution
based on a workload timing model is enabled only if the Time Model place has a token
of type WL.

9.4 Recommendation Algorithms 223

9.4 Recommendation Algorithms
In the previous section we have discussed several user behavior models. As shown in
Figure 9.7 (cf. the Use Support page), a user sends a recommendation request to the
operational support service. Once the operational support service receives a request from
a user it forwards it to an appropriate provider. The response from the provider is re-
ceived by the operational support service and sent back to the user. In this section we
describe four recommendation algorithms that we evaluated using simulation: (a) random
recommender, (b) batch recommender, (c) model-specific recommender, and (d) log-based
recommender. The first three recommenders are implemented as CPN models while the
last recommender is implemented as a Java provider in ProM.

A recommendation algorithm can be directly implemented based on the interface shown
in Figure 8.14 which is the provider interface that was discussed in Chapter 8 (cf.
page 193). For simple algorithms, such an implementation would require a lot of over-
head, which may not be needed for quick testing. For this reason, we created a generic
implementation of the Provider interface using Access/CPN 2.0. This implementation
requires that a simple CPN model made corresponds to a provider. To make it simple
to get started with implementing a recommendation algorithm, we developed a template
model which can be used to prototype operational support algorithms. The reason for
going through the operational support service instead of just incorporating the providers
directly in the user behaviour model is to improve reusability. First of all, it is now
possible to use any provider from any other model and it is not necessary to copy one
algorithm from one test model to another. Secondly, different algorithms can be used
immediately and directly from any tool and not specifically using CPN Tools. This de-
coupling makes it easy to test algorithms on humans interacting with a workflow system
in case we want to move beyond using simulation tools.

In the remainder of this section, we introduce a generic provider template model in
Section 9.4.1 which is used to implement three simple recommenders. Finally, we discuss
a more advanced log-based recommender in Section 9.4.2.

9.4.1 Provider Model

The provider part of the CPN model handles different queries that a client can send as
shown in Figure 9.14. The Query page separates each of the four kinds of queries to their
own pages. Hence it is now possible to handle simple, compare, predict and recommend
queries however, we only focus on the recommend query. The recommend query requires
the partial trace in the Trace place and the recommendation request in the Recommend
Query. The Handle Recommend substitution transition shown in Figure 9.14 uses the
Recommend page as shown in Figure 9.15.

This page receives a recommendation request on the Recommend Query place and the
partial trace on the Trace place from the operational support service which are forwarded
to the specific provider. In response the Handle Recommend substitution transition
gets a response on the Recommend Response place which is forwarded back to the
operational support service. We implement three providers: (a) Random Recommender,

224 Chapter 9. Testing Operational Support Algorithms

trace

trace
Idle

[false]

Handle
Simple

Simple

Handle
Compare

Compare

Handle
Predict

Predict

Trace
I/O EVENTS

Simple
Query

In QUERY

Predict
Query

In QUERY

Predict
Response

Out PREDICTION

Recommend
Query

In QUERY

Simple
Response

Out SIMPLE

Recommend
Response

Out RESPONSE

Compare
Query

In QUERY

Compare
Response

Out COMPARISIONOutIn

Out

Out

In

OutIn

In

I/O

Predict

Compare

Simple

Handle
Recommend

RecommendRecommend

Figure 9.14: The Query page handles requests for the simple, compare, predict and
recommend queries.

MODEL

()

Setup

Model-Specific
Recommender

Model-Specific Recommender

Batch
Recommender

Batch Recommender

Random
Recommender

Random Recommender

Initial

()

UNIT

Identifier

ID

TraceI/O

EVENTS

Recommend
Response

Out

Recommend
Query

InIn Out

I/O

Random Recommender

Batch Recommender

Model-Specific Recommender

QUERY RESPONSE

1 1`MODEL

Figure 9.15: The Recommend page shows the substitution transitions for the three
CPN based recommendation algorithms, i.e., the Random Recommender, Batch Rec-
ommender and Model-Specific Recommender.

9.4 Recommendation Algorithms 225

(b) Batch Recommender, and (c) Model-specific Recommender for the running example.
The models for these recommenders are shown in Figure 9.15.

Random Recommender

The random recommender selects a random task from the list of enabled tasks. It is
expected that this provider will have the same behavior as using no operational support
at all (cf. Section 9.3.3). The full implementation of this model is shown in Figure 9.16.
We receive a request on Recommend Query place. It is only possible to use the random
recommender page if the value of the token on the Identifier place is equal to RANDOM.

The request sent to the provider contains events (evts) (i.e., a list of available tasks).
Therefore, the Random Recommender transition will pick a random event (evt) using
pickRandomEvent function from the list of events (evts). If the response exists then
an event (evt) is returned as a token on the Recommend Response place otherwise a
dummy response is sent (so we always provide an answer). This is sent back as a response
to the operational support service through the Recommend Response place.

RANDOM

(q, evts, done) evtRandom
recommender

input evts;
output evt;
action
if evts = []
then event ""
else pickRandomEvent(evts)

Identifier
I/O ID

Recommend
Query

In
QUERY

Recommend
Response

Out
RESPONSE

OutIn

I/O
1 1`MODEL

Figure 9.16: The Random Recommender page. The next event to be executed is ran-
domly selected from the list of available events (evts).

Batch Recommender

The batch recommender shown in Figure 9.17 always recommends, if possible, the same
event as the one executed last. This is similar to Resource Pattern 9 called History Based
Allocation [160, 162]. Here, work items are allocated to resources based on their previous
history and this considers the allocation of a work item to a resource with the most expe-
rience. However, if it is not possible to obtain a similar task then Batch Recommender
transition will recommends a random event from the list of enabled events.

226 Chapter 9. Testing Operational Support Algorithms

BATCH

(q, evts, done)

trace

evtBatch
recommender

input (evts, trace);
output evt;
action
if evts = []
then event ""
else pickBatchEvent(trace,evts)

Identifier
I/O ID

Recommend
Query

In QUERY

Trace
I/O EVENTS

Recommend
Response

Out
RESPONSE

Out

I/O

In

I/O
1 1`MODEL

Figure 9.17: The Batch Recommender page. The batch recommender picks an event
from the list of available events (evts) that is similar to the last executed event in the
trace (trace).

The purpose of implementing a Batch Recommender is to enhance working together
with the batch timing model shown in Figure 9.11. Therefore, executing similar tasks
together is faster than executing them interleaved with others. The implementation of the
batch provider in Figure 9.17 is very similar to the random provider. The only difference
is that now we also make use of the execution trace. The Batch Recommender transition
takes as input the list of available events (evts) from the Recommend Query place and
a partial trace (trace) from the Trace place. The transition picks an event (evt) from the
available events using the pickBatchEvent function.

The event that is picked is similar to the last executed one from the partial trace if one
exists. Otherwise, a random event is obtained and sent back to the operational support
service as a token on the Recommend Response place. It is only possible to use the
batch recommender page if the value of the token on place Identifier is equal to BATCH.
For example, if the last executed event in the trace is TCourse2 and the list of enabled
events consists of BSc and TCourse3, the batch recommender will choose TCourse3
over Work. Moreover, we consider all the practical and theoretical courses to be similar
according to the batch recommender.

Model-Specific Recommender

The model-specific recommender is tailored for the running example shown in Figure 9.3.
While the random and batch recommenders would work with any process model, they
are also not very intelligent or good at finding optimal executions. The model-specific
recommender shown in Figure 9.18 is a more intelligent recommender however, it is less

9.4 Recommendation Algorithms 227

applicable with a different process model.

MODEL

MODEL

event task

task

trace

(q, evts, done)

evt

(q,evts,done)

Preferred
Activity

[check (evts, task)]

P_HIGH

Other
Activity

input evts;
output evt;
action
if evts = []
then event ""
else List.hd evts

Preferred

1`"HighSchool"++
1`"BSc"++
1`"BIS"++
1`"Master"

TASKS

Identifier
I/O ID

Trace
I/O

EVENTS

Recommend
Query

In
QUERY

Recommend
Response

Out
RESPONSE

OutIn

I/O

I/O

4

1`"BIS"++
1`"BSc"++
1`"HighSchool"++
1`"Master"

1 1`MODEL

Figure 9.18: The Model-Specific Recommender page. If one of the events in the Pre-
ferred place is in the list of available events (evts), it is selected and recommended to
the user.

Therefore, for the model-specific recommender we prefer to take an academic route in-
stead of a practical route as discussed in the Section 9.2. The strategy implemented is
that we take the academic route directly as shown in Figure 9.18 which is given by hav-
ing a list of preferred tasks. The implementation has a set of events that should always
be recommended with high priority if offered as part of the events (evts) sent in the
Recommend Query place. The preferred events are shown on the Preferred place, i.e.,
HighSchool, BIS, BSc and Master. Transition Preferred Activity will check if a preferred
event is among the available ones and if so then recommend it. The transition has high
priority (cf. P_HIGH) and will be selected before Other Activity transition. If no preferred
activity is available in the available events, then the first activity is selected by the Other
Activity transition from the list of available events, i.e., the head (hd) of the available
events (evts). It is only possible to use the model-specific recommender page if the value
of the token on place Identifier is equal to MODEL. Therefore, this exploits a known best
implementation and the fact that all the events are only offered once in this model based
on the running example.

228 Chapter 9. Testing Operational Support Algorithms

9.4.2 Log-based Recommender

There are situations when it is better to have a recommender that provides better advice
than randomly guessing from the list of available events. However, we also want to avoid
recommenders that are situation specific and which may not be applicable if a different
process model is used. To provide a balance in these situations we designed a log-based
recommender . This recommender uses the information in a “historical log”, i.e., event
log as guidance for providing recommendations. The idea is that there is a predicate
selecting traces from the log which are considered to be the same as the current one.
This recommender therefore does not consider individual events from the trace as the
random, batch, and model-specific providers instead it looks at full traces from the log.
It is possible to compute a value on such similar traces and return the next event of the
trace which yields the best result. In the example, we would consider all traces with the
same sequence of completed events similar to the current trace. The computation can
return the complete execution times and the order would prefer shorter execution times.

The log-based recommender is implemented in Java and it depends on a complicated
library for querying XML documents using XQuery [47]. It is more efficient to implement
the provider in Java other than having the implementation in CPN Tools. Moreover, it
is possible for a provider to directly connect to the operational support service and
receive queries from it (as discussed in Chapter 8). So if we are using the log-based
recommender we have to use the operational support service in ProM. For the log-based
recommender it is important to specify a query that will be handled by the provider.
The Recommend place shown in Figure 9.7 will have the instance, the available events
and a query sent to the operational support service. Since the log-based provider queries
over XML documents, we can specify a query in the XQuery language. An example of
such a query that extracts the total time taken for each trace is shown in Figure 8.17
(cf. Section 8.5.3). The log-based provider can use such a query to optimize for the the
shortest time taken and will recommend an event from the available events that leads to
the shortest execution times as observed from the log.

We have discussed how a CPN model is able to directly interact with a Declare workflow
system and the operational support service in ProM. The interaction between these tools
is made possible by use of Access/CPN 2.0. Next, we discuss experiments carried out to
evaluate the recommendation algorithms.

9.5 Experiments
In this section we discuss experiments used to test the recommendation algorithms dis-
cussed in this chapter. The first set of experiments discussed in Section 9.5.1 is used to
test the random provider (cf. Section 9.4.1) for all the four timing models. The aim of
this experiment is to demonstrate that the random provider results in a process similar to
the process not using operation support (cf. Figure 9.8). In Section 9.5.2 we evaluate the
batch provider (cf. Section 9.4.1) for the three user behavior models. Section 9.5.3 dis-
cusses results for the three user behavior models while using the model-specific provider
(cf. Section 9.4.1). Finally, Section 9.5.4 discusses results from the log-based provider

9.5 Experiments 229

that uses “historical logs” generated by the random provider.

In the experiments, we evaluate the providers while focusing on two main goals:
• the shortest execution time and
• the highest success rate. A trace is successful if the task Master of BPM is exe-

cuted according to the process model in Figure 9.3.
This is possible because CPN Tools is able to generate simulation logs which can be
exported to ProM for analysis. The results discussed in this section are execution time of
traces measured in days and the success rate is the percentage of traces in the log where
a Master of BPM is executed.

9.5.1 Random Recommender

In this section, we describe results of experiments done to test the random recommender.
The aim of the experiments isto check if tasks are picked at random with the same prob-
ability when:
(i) a task is selected at random from the list of available offers as shown in the Ignore

Support page (cf. Figure 9.8) and
(ii) a task is selected from the list of enabled activities in the Random Recommender

page (cf. Figure 9.16).
As discussed in Section 9.3.3, at some point the user has to specify whether to use oper-
ational support or not based on a support probability. Here, we discussed four different
support probabilities that we use in our experiments, i.e., 0, 50, 90, and 100. A 0% sup-
port percentage means that the user always chooses tasks randomly while 100% support
implies that the user always asks the operational support service for advice. In this ex-
periment, we use the support probability as the variable input in the model and analyze
how the user performs under these four different support probabilities.

Furthermore, we compare the execution times of activities in traces for the four differ-
ent user behaviour models discussed in Section 9.3.4 where: (a) execution times have a
constant time (CONST), (b) execution times are sampled from a probability distribution
(PROB), (c) execution times are dependent on whether the user has done the same task
more than once in the past (BATCH), and (d) execution times are dependent on the work-
load in the model (WL). We expect that the execution times should be the same for the
timing models using constant time and those using a probability distribution. Moreover,
we expect the success rate from the experiments to be nearly the same for all executions,
independently of how much support is used and which user behavior model is used.

Table 9.1 shows results of the first experiment. The results presented in this table are
for 1000 traces in 5 different experiments. For each experiment, we also calculated the
so-called 95% confidence interval values. The table is split in two: the top part shows
the average execution time for traces in each of the four timing models and the bottom
part of the table shows the success rate which is a percentage of obtaining a Master of

BPM. The table shows results for the four timing models, i.e., CONST, PROB, BATCH and
WL.

230 Chapter 9. Testing Operational Support Algorithms

Table 9.1: Results from the Random Recommender. The results in this table show with
a 95% confidence interval, the average execution times of activities (Time) and the per-
centage of traces where a Master of BPM is obtained (Success). These results are shown
for the four user behavior models (Time Model) and also for the four different support
probabilities (Support). A 0% support percentage means that the user always chooses
tasks randomly while 100% support implies that the user always asks the operational
support service for advice.

Support Time Model

CONST PROB BATCH WL

T
im

e

0 4050 ± 30 4012 ± 26 3893 ± 27 2204 ± 9
50 4048 ± 15 4021 ± 33 3942 ± 25 2206 ± 12
90 4003 ± 30 4011 ± 24 3919 ± 31 2196 ± 18
100 4008 ± 44 4009 ± 30 3963 ± 46 2206 ± 15

Su
cc
es
s 0 9.5 ± 0.7 10.4 ± 0.3 10.3 ± 0.8 11.1 ± 0.8

50 11.3 ± 0.4 9.2 ± 0.9 10.5 ± 0.8 10.8 ± 0.5
90 11.5 ± 0.8 10.1 ± 0.6 9.9 ± 0.3 11.3 ± 0.3
100 11 ± 0.5 10.5 ± 0.5 11.1 ± 0.6 10.9 ± 0.4

The results shown in Table 9.1 indicate that random recommenders have no significant
effect on either the execution time or the success rate for the tasks with the same user
behavior model. Furthermore, the results for the CONST and PROB time models have the
same behavior in terms of the execution time and the success rate. Therefore, we use this
experiment to eliminate the simplest timing model based on the constant time from the
rest of the tests described in this section.

The results from the BATCH time model are similar though have slightly lower execution
time values. This is found in situations where a randomly selected task is similar to a
previously executed task. According to the batch processing user model (cf. Figure 9.11)
it is expected that the user works faster in such scenarios. Furthermore, the results from
the WL time model have a significantly shorter average execution time. The reason is
that with the workload model resources are allowed to execute tasks faster. This is in
situations where the number of task offers to a user are higher. However, in all the models
the success rate does not change because we only expect the execution times of the models
to change and not how they are selected. This is because we are randomly selecting tasks
in the model or using the random provider.

9.5.2 Batch Recommender

In the second experiment, we want to evaluate the simple batch provider. The aim of the
experiments is to compare situations where:
(i) a task is selected at random from the list of available offers as shown in the Ignore

Support page (cf. Figure 9.8) and
(ii) a task is selected from the list of enabled activities using the batch recommender

9.5 Experiments 231

shown in the Batch Recommender page (cf. Figure 9.17).
In this experiment, we use three different support probabilities, i.e., 50, 90, and 100. A
50% support percentage implies that in 50% of the cases tasks are randomly selected
while in the other 50% the user asks the operational support service for advice based on
the batch recommender. We do not need to perform executions for 0% support (as it is
the same as the results shown in Table 9.1). Moreover, since the CONST timing model
yields the same results as the PROB model it is removed from this experiment.

The results for the average execution time and success rate are shown in Table 9.2. The
results presented in this table are for 1000 traces in 5 different experiments. For each
experiment, we also calculated the so-called 95% confidence interval values. The top part
of the table shows the average execution time for traces in each of the three timing models
and the bottom part of the table shows the percentage of obtaining a Master of BPM.

Table 9.2: Results from the Batch Recommender. The results in this table show with
a 95% confidence interval, the average execution times of activities (Time) and the per-
centage of traces where a Master of BPM is obtained (Success). These results are shown
for three user behaviour models (Time Model) and also for three support probabilities
(Support).

Support Time Model

PROB BATCH WL

T
im

e 50 4162 ± 34 3971 ± 29 2382 ± 28
90 4248 ± 35 4113 ± 24 2588 ± 24
100 4277 ± 20 4108 ± 33 2629 ± 13

Su
cc
es
s 50 12.3 ± 0.5 10 ± 0.5 12.6 ± 1.3

90 12 ± 1.3 13.1 ± 0.6 14.2 ± 0.8
100 14 ± 0.8 14.3 ± 0.7 13 ± 1

We see generally observe larger execution times using the batch provider compared to us-
ing the random provider (from Table 9.1). Moreover, the average execution time increases
when the support rate goes up for all the support percentages. Also if we consider the
BATCH time model this also shows similar characteristics in the results, i.e., the increase
in the average execution times yet we expect that the execution time values should be
decreasing since we are using the batch timing model.

The reason for the increase in the execution times is because the batch provider rec-
ommends batching together similar tasks and it also suggests repeating work. From the
study model in Figure 9.3, we see that Work and Master of BPM are the only tasks
that can be executed more than once (because they do not have the annotation 0 . . . 1).
Therefore, the batch provider does encourage doing of similar tasks but according to the
process model it does not force progress or it may even prevent it. This leads to longer
execution times of the traces in the log even though individual tasks within each trace
are executed faster.

232 Chapter 9. Testing Operational Support Algorithms

9.5.3 Model-specific Recommender

As discussed previously, the model-specific recommender is tailored for the running ex-
ample shown in Figure 9.3. The aim of the third experiment is to compare situations
where:
(i) a task is selected at random from the list of available offers as shown in the Ignore

Support page (cf. Figure 9.8) and
(ii) a task is selected from the list of enabled activities using the model-specific recom-

mender in the Model-Specific Recommender page (cf. Figure 9.18).
In this experiment, we also use the three support probabilities, i.e., 50, 90, and 100. A
50% support percentage implies that in 50% of the cases, tasks are randomly selected
while in the other 50% the user asks the operational support service for advice about the
next task to execute based on the model-specific recommender.

The results for the average execution time and success rate are shown in Table 9.3.
The results presented in this table are obtained from running 5 experiments with each
experiment having 1000 traces. For each experiment, we also calculated the so-called 95%
confidence interval values. The top part of the table shows the average execution time
for traces in each of the three timing models and the bottom part of the table shows the
percentage of obtaining a Master of BPM.

Table 9.3: Results from the Model-specific Recommender. The results in this table
show with a 95% confidence interval, the average execution times of activities (Time)
and the percentage of traces where a Master of BPM is obtained (Success). These
results are shown for three user behaviour models (Time Model) and also for three
support probabilities (Support).

Support Time Model

PROB BATCH WL

T
im

e 50 4053 ± 11 3946 ± 17 2413 ± 9
90 3849 ± 10 3760 ± 12 2799 ± 4
100 3776 ± 11 3659 ± 15 2933 ± 11

Su
cc
es
s 50 31.6 ± 0.3 31.6 ± 0.3 31.7 ± 0.2

90 45.0 ± 1.5 45.5 ± 0.5 46.9 ± 0.6
100 47.3 ± 1.1 46.3 ± 1.4 48.3 ± 0.3

From the results of simple user behavior models it is visible that the model-specific
recommender significantly outperforms the batch and random providers. This provider
is able to successfully pick the shortest path to taking an education path hence increasing
the success rate. However, if the timing model is workload-dependent (WL), the model-
specific provider performs worse than the BATCH and the PROB timing models. For
example, if a user decides to take a practical route as shown in Figure 9.3 the sum
of the time to take get a job (takes 1 year to work) and also execute the 6 courses (takes
half a year for each course) is 4 years. However, if a user decides to take an academic

9.5 Experiments 233

route then the expected time to get a BSc is 3 years. This implies that a user will only
work faster if (s)he takes the 6 courses when using the WL timing model. Therefore, the
model-specific provider for the WL model is sub optimal as it will also recommend that a
student takes an academic route.

For the results measuring the success rate we observe that following the recommendations
from the model-specific provider always leads to higher success rate compared to the
random or the batch provider. However, the success rate results approach 50% and not
100% because after making a choice whether to execute MSc, BIS or an MSc, ES (if
we do not follow the recommendations from the provider) we have no control when the
execution ends, i.e., if a Master of BPM is eventually executed. We therefore always
have a 50% chance of terminating the execution and a 50% chance of continuing and
executing a Master of BPM.

9.5.4 Log-based Recommender

The log-based recommender needs “historic data” (event logs) for making any recommen-
dation decisions. Since CPN Tools is able to generate simulation logs, we rely on such
logs when using the log-based recommender. The aim of this experiment is to compare
situations where:
(i) a task is selected at random from the list of available offers as shown in the Ignore

Support page (cf. Figure 9.8), and
(ii) a task is selected from the list of enabled activities using the log-based recom-

mender.

In the first two experiments, we use an event log generated by randomly selecting an
event. Furthermore, we ensure that we use a log generated using the same time model as
the one used to generate the results, i.e., if we are testing a PROB timing model in this
experiment we use an event log that was generated by the PROB timing model where
events where randomly selected or if we are using a WL timing model we will an event log
that was generated by the WL timing model. As discussed in Chapter 8, a recommend
query always tries to recommend the next action to take in order to achieve a goal.
Therefore, in this section we use the log-based recommender to optimize for two goals:
(a) the shortest execution time (cf. Table 9.4) and (b) for highest chance of obtaining a
Master of BPM (cf. Table. 9.5).

Optimizing for Running Time

In the first experiment in this section we optimize for the shortest execution time. Ta-
ble 9.4 shows results for the running time using the log-based recommender.

From Table 9.4, we observe that when optimizing for shortest running time we always
obtain significantly shorter running time when using support (when Support is equal to
100) than when we do not use operational support (when Support is equal to either 50
or 90) for all the timing models. This is because it is better to follow recommendations
from the log-based recommender than randomly selecting tasks. If a user randomly selects
tasks there is a possibility that they will end up executing activities that lead to longer

234 Chapter 9. Testing Operational Support Algorithms

Table 9.4: Results from the Log-based Recommender while optimizing for the shortest
running time. The results in this table show with a 95% confidence interval, the average
execution times of activities (Time) and the percentage of traces where a Master of
BPM is obtained (Success). These results are shown for three user behaviour models
(Time Model) and also for the three support probabilities (Support).

Support Time Model

PROB BATCH WL
T
im

e 50 3032 ± 11 2956 ± 17 1636 ± 19
90 2050 ± 15 1874 ± 10 1079 ± 13
100 1797 ± 11 1628 ± 11 950 ± 7

Su
cc
es
s 50 7.2 ± 0.6 7 ± 0.3 7.5 ± 0.2

90 3.0 ± 1.1 7.6 ± 0.2 1.4 ± 0.1
100 0.1 ± 0.1 12 ± 0.5 0

execution times.

Moreover, the running time is also much shorter compared to the previous three recom-
menders, i.e., random, batch, and model-specific. However, the success rate based on the
results for running time is very low compared to the results from the previous recom-
menders. Since we are optimizing for the shortest running time the provider will always
recommend that we do an MSc,ES as this does not enable Master of BPM according
to the process model in Figure 9.3. However, we observe that compared to the results
of all the other timing models shown here, the BATCH timing model has a significantly
higher success rate when operational support is used. This is because we expect to work
faster with the BATCH timing model if we do similar things. Therefore, there is a possibil-
ity that the log-based recommender will recommend that Master of BPM is executed
a couple of times (as this is allowed according to the process model). Thus, by executing
Master of BPM several times this leads to lower running times but also increases the
success rate (executing Master of BPM) compared to all the other timing models.

Optimizing for Success Rate

Table 9.5 shows the results obtained using the log-based recommender while optimizing
for a higher success rate (i.e., the execution of Master of BPM).

When optimizing for success as shown in Table 9.5, the results show that the success
rate is much higher than optimizing for shortest running time. Moreover, the results are
as good as the model-specific provider (cf. Table 9.3). As expected, the running time is
now much higher than when we optimize for shortest running time. However, the success
rate for the workload timing model (WL) is surprisingly low. This is because the workload
path favors the practical path (cf. Figure 9.3) which leads to the execution of more tasks.
It might also be the situation that the historical data may not contain a trace with the
same interleaving of both the practical and theoretical courses.

9.5 Experiments 235

Table 9.5: Results from the Log-based Recommender while optimizing for the highest
success rate. The results in this table show with a 95% confidence interval, the average
execution times of activities (Time) and the percentage of traces where a Master of
BPM is obtained (Success). These results are shown for three user behaviour models
(Time Model) and also for the three support probabilities (Support).

Support Time Model

PROB BATCH WL
T
im

e 50 4057 ± 15 4058 ± 17 2310 ± 13
90 3926 ± 12 4570 ± 11 2273 ± 9
100 3825 ± 5 4935 ± 11 2258 ± 6

Su
cc
es
s 50 21.3 ± 0.3 12.7 ± 0.8 15.7 ± 0.7

90 44.0 ± 0.4 26.3 ± 0.7 18.2 ± 0.8
100 48.0 ± 0.4 48.6 ± 0.7 23 ± 0.5

Using Event Logs from Different Timing Models

In this experiment, we use event logs that were obtained by randomly selecting an event
from the list of enabled events. However, unlike the first two experiments here we use
different input logs for various timing models. For example, if we are testing a PROB

timing model we can either use an event log obtained from a BATCH timing model or
from a WL timing model as input. The aim of this experiment is to have a good indication
of how well a recommender with randomly generated data performs while using the correct
timing model. For example, when using a PROB time model with data obtained from a
WL model. Here, we are using the correct timing model but with the wrong assumptions
about the user behavior model. Basically, we are testing the stability of the simulation
results that we have obtained. In Table 9.6 we see results of runs using logs generated
using a different timing model.

Table 9.6: Results from the Log-based Recommender. The results in this table show
with a 95% confidence interval the average execution times of activities. The results
shown here are for the three user behaviour models (Time Model) while using an event
log as input from one of these user behaviour models (Source). For example, the results
shown in the first row and the second column, are for a user behaviour model BATCH
which uses as input an event log from the PROB timing model.

Source Time Model

PROB BATCH WL
PROB 1797 ± 11 1761 ± 12 1016 ± 5.1
BATCH 1635 ± 15 1628 ± 11 922 ± 2.4
WL 1624 ± 5 1612 ± 9 950 ± 7

236 Chapter 9. Testing Operational Support Algorithms

The values for the success rate are not shown in this table because they are the same
as the ones measured in Table 9.4 and we can become a Master of BPM using both
the academic and practical routes. We see that is does not matter much whether the log
is generated from data with a BATCH or WL time model. However, we get the shortest
execution times in all cases when using data generated with a timing model taking the
workload into account (WL). The workload model will recommend taking the practical
route which ensures that the execution times are shorter. Furthermore, the results from
the log generated using a simple probability measure (PROB) performs worse, i.e., higher
execution times compared to other timing models (BATCH and WL). This is also true
when the PROB event log is even when used for the matching (same) time model, i.e.,
PROB. This could be affected by the fact that there are traces in the input logs used that
are beneficial for the PROB timing model. This leads to the behavior where the execution
of a user takes longer.

9.6 Conclusion
In this chapter, we have presented a cost-effective way of testing operational support
algorithms for the recommend query. We have discussed different user behavior models
based on CPN Tools. As shown in Figure 9.2, the user behavior model is connected to the
Declare workflow system and the operational support service in ProM using Access/CPN
2.0. This makes it possible to test real systems with simulated behavior of a user in
a CPN model. The user model allows for four different timing behaviors, i.e., constant
time, execution time from a probability distribution, execution time based on past similar
execution, and execution time based on existing workload. The user models are simple
but at the same time realistic enough to model user behavior. For example, as discussed
in Chapters 5 and 6 the workload present in a model can influence the processing speeds
of resources.

We have also tested four different recommendation algorithms: (a) random recommender
that randomly selects a work item from the list of available offers, (b) batch recommender
that selects a work item based on a previously executed work item, (c) model-specific rec-
ommender that is tailored for the running example shown in Figure 9.3, and (d) log-based
recommender that using information in the execution logs for making recommendation
decisions based on a specific goal.

Using CPN Tools it is easy to quickly prototype an operational support provider. It is
possible to integrate this in ProM which makes it easy to use the testing platform and
other existing clients of the operational support service and not necessary a simulation
model. This approach is useful in many other settings where an algorithm can modify
the domain over which it is carrying out its computations. This approach discussed in
this chapter is similar to the work discussed in [109, 110], where it was shown how CPN
components and workflow components can be exchanged for testing and simulation.

We evaluated the random, batch, model-specific, and log-based recommenders using the
four user behavior models for two main goals, i.e., shortest execution time and success
rate of executing a Master of BPM from the study process model shown in Figure 9.3.

9.6 Conclusion 237

From our experiments, we see that simple recommendation algorithms (random and
batch) may fail compared to more sophisticated adaptive algorithms (log-based recom-
mender). We also see that a model-specific algorithm using domain knowledge does not
necessarily outperform a smart general algorithm when the domain knowledge builds
on wrong assumptions about the user behavior (for example when using the log-based
recommender). Moreover, simple algorithms designed to exploit certain features of user
models, for example, the batch provider may not work as expected even though the as-
sumptions used in the model are correct. The testing of the recommendation algorithms
has been done in consideration with other factors in the process model, for example, it
might be the case that the goal of the experiment is to ensure that a model terminates
correctly (e.g., obtain a Master of BPM). If we are testing a batch recommendation
algorithms then we will not just focus on the batching of tasks but ensure that we get a
higher success rate as well.

From the results of the log-based recommender, we see that this provider using his-
toric data is surprisingly stable even when input data does not completely reflect reality,
making seeding such algorithms with generated data possible. We also see that if the al-
gorithm providing recommendations is not optimal, user deviations can be a good idea.
Even for the log provider which proved very efficient, deviations may benefit execution
in the long run as users may reach completely new and more efficient ways of executing
the process by chance, making it possible to provide better recommendations. The ex-
periments carried out in this chapter show that experimental results may deviate quite
a bit from expectations and this makes testing a very invaluable process.

Chapter 10

Conclusions

This chapter reflects on the research presented in this thesis. First, we summarize the
main contributions of this work in Section 10.1. To do this we return to the main research
topics that were introduced in Chapter 1. In Section 10.2 we discuss current limitations
of the work presented in this thesis and give directions for future work. Finally, we end
with some concluding remarks.

10.1 Summary of Contributions

Figure 10.1 summarizes the overview of main contributions of this thesis. As shown
simulation and process mining are important techniques that can be used for performance
analysis of resources in the design and diagnosis phases respectively. However, to make
simulation a worthwhile technique to be used by managers on a daily basis, it is crucial
that the behavior of resources is represented accurately in simulation models. Otherwise,
one ends up in a “garbage in - garbage out” situation. One approach to avoid this is
to provide a more accurate modeling of the resource perspective of simulation models.
Another approach is that simulation models can use existing information available in
event logs using process mining techniques. Process mining can be used to generate
(simulation) models populated with information from event logs, for example, arrival
rate and service time distributions, availability and busyness parameters of resources
etc. Moreover, such models can cover three main perspectives of a business process, i.e.,
control-flow, data & rules and resource perspectives.

In Chapter 2, we discussed limitations of current simulation models and stated that often,
simulation is not used in a structured and effective way because of a number of underly-
ing problems. We highlighted several fundamental problems crippling current simulation
approaches. The first problem identified is that simulation models are built from scratch
rather than using existing artifacts, for example, event logs, models, data, etc. The second
problem is that many of simulation approaches mainly focus on design, and simulation
does not provide support for operational decision making. The third problem is that in
many of simulation models, resources are modeled incorrectly. Many aspects about the
way resources work are abstracted away when building simulation models. In particular,
we identified a number of problems encountered when modeling resources in simulation

240 Chapter 10. Conclusions

d
e
s
i
g
n

e
n
a
c
t

d
i
a
g
n
o
s
e

e
v
e
n
t

l
o
g
s

c
o
n
t
a
i
n
i
n
g

i
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

a
c
t
i
v
i
t
i
e
s

a
n
d

r
e
s
o
u
r
c
e
s

p
r
o
c
e
s
s

m
o
d
e
l
s

a
l
s
o

m
o
d
e
l
i
n
g

r
e
s
o
u
r
c
e

a
v
a
i
l
a
b
i
l
i
t
y

a
n
d

b
u
s
y
n
e
s
s

s
i
m
u
l
a
t
i
o
n

r
e
s
u
l
t
s

f
o
c
u
s
i
n
g

o
n

r
e
s
o
u
r
c
e

b
e
h
a
v
i
o
r

i
n

p
r
o
c
e
s
s
e
s

i
n
f
o
r
m
a
t
i
o
n

s
y
s
t
e
m

p
r
o
c
e
s
s

m
i
n
i
n
g

p
r
e
d
i
c
t
i
v
e

a
n
d

d
e
s
c
r
i
p
t
i
v
e

m
o
d
e
l
s

o
p
e
r
a
t
i
o
n
a
l

s
u
p
p
o
r
t

p
r
e
d
i
c
t
i
o
n
s
,

r
e
c
o
m
m
e
n
d
a
t
i
o
n
s
,

e
t
c
.

p
r
o
c
e
s
s

m
i
n
i
n
g

r
e
s
u
l
t
s

f
o
c
u
s
i
n
g

o
n

r
e
s
o
u
r
c
e

b
e
h
a
v
i
o
r

b
u
s
i
n
e
s
s

p
r
o
c
e
s
s
e
s

m
a
c
h
i
n
e
s

p
e
o
p
l
e

s
e
r
v
i
c
e
s

o
r
g
a
n
i
z
a
t
i
o
n
s

d
o
c
u
m
e
n
t
s

“
w
o
r
l
d
”

s
i
m
u
l
a
t
i
o
n

F
igure

10.1:
O
verview

ofthe
contributions

presented
in

this
thesis.

10.1 Summary of Contributions 241

tools: (a) people are involved in multiple processes, (b) people tend to work part-time
and in batches, (c) processes may change depending on context, (d) people prioritize
tasks within a process, and (e) people do not work at constant speeds. This chapter
provided a clear understanding of the way resources actually work. Chapter 3 presented
several notations and concepts needed to discuss process mining including event logs and
how they are represented. A number of process modeling languages and tools are also
discussed in this chapter.

In Chapter 4, we presented an approach taken to analyze resource availability param-
eters from event logs. In particular, we were interested in analyzing different resource
availability parameters. This is based on the concepts that were introduced in Chapter 2
where resources working on a given process, are not fully available to work but only work
for specific periods of time. We discussed how to approximate resource availability for a
given process using the activities that were executed by resources as observed in event
logs. Furthermore, since resources tend to work in batches we also discussed techniques
to estimate the periods of times over which resources work as they execute activities, i.e.,
chunks over which resources work. We also presented case studies of real-life event logs
based on new plug-ins implemented using the ProM framework. These plug-ins allow us
to analyze resource availability parameters from event logs.

In Chapter 5, we discussed an approach taken to quantify the relationship between work-
load and processing speeds of resources (which we referred to as resource busyness). We
defined workload of a resource at any given time based on two main perspectives. Work-
load from the queue length perspective calculates the number of work items that have
been allocated to a resource. Whereas, workload from the how busy perspective calcu-
lates the number of work items that a resource has executed in the past. The processing
speeds of resources were defined by either the service times or waiting times of activities.
In this chapter, process mining is used as a technique for the extraction of characteristic
properties of resources from event logs, i.e., to quantify the effect of changing workload
on resource performance. This chapter also discussed case studies of real-life event logs
based on new ProM plug-ins. The plug-ins present the relationship between workload
and the working speeds of resources. The work discussed in Chapters 4 and 5 provided
an approach taken to capture essential resource performance characteristics from event
logs.

Whereas Chapters 4 and 5 focused on the mining of resource aspects from event logs,
Chapter 6 presented approaches taken to incorporate such resource characteristics in sim-
ulation models. First, we discussed a CPN model used to represent resource availability
based on a number of parameters, i.e., availability, chunk size, and horizon. Additionally,
we also discussed how to embed resource availability parameters in existing simulation
approaches based on a workflow process model. In the second part of this chapter, we
discussed how to incorporate workload-dependent working speeds in simulation mod-
els. This was discussed in the context of a workflow process model with multiple tasks
and resources. Based on simulation experiments, we investigated the effect of incorrectly
modeling resources in simulation models on the key performance indicators, for example,
flow times and resource utilization. The work discussed in this chapter provided a more

242 Chapter 10. Conclusions

accurate modeling of resources in simulation models.

Chapter 7 discussed a general setting that provided a unified view of event logs. This
chapter presented an approach that can be used to bridge the gap between simulation
and process mining based on an analysis of event logs from the simulated and the real
world. This is based on the ProM framework that can be used to analyze event logs from
a simulated process and a real life process in a unified manner. From an analysis point
of view it is irrelevant where the logs came from. We also discussed how to generate
synthetic logs from simulation models and provided practical settings within which such
event logs can be used.

In Chapter 8, we defined and discussed four kinds of operational support queries: (a)
simple queries that provide statistics about the current execution recorded in a partial
trace, (b) compare queries that consider the current partial trace execution in relation
to other similar partial trace executions, (c) predict queries that yield predictions about
the future of the current execution based on completed executions with similar pasts or
prefixes as the current partial trace, and (d) recommend queries that provide recommen-
dations of what to do to in order to achieve a goal. The approach discussed was tested
and implemented using the Declare workflow system and the operational support service
in the ProM framework. The work discussed in this chapter provided a unified platform
for the interaction of operational support algorithms.

Chapter 9 presented a general setting for testing operational support algorithms. In
particular, we discussed how to test simple algorithms for the recommend action of
operational support. The implementation was based on an abstract testing platform
that provides interaction between a simulated user (using a CPN model), and a workflow
management system (using Declare), that receives recommendations from the operational
support service (in ProM).

The work discussed in this chapter is not without limitations. Moreover, this work opens
up various avenues for future research in the area of mining of resource perspectives,
simulation and in testing operational support algorithms. The limitations of this work
and the ideas for future work are discussed in the remainder.

10.2 Limitations and Directions for Future Work
In the previous section, we have discussed several contributions of this thesis relating
to the analysis of resources using process mining techniques, modeling of resources in
simulation models and operational support. In this section, we discuss some challenges
and extensions in line with these topics.

Resource Analysis

In Chapters 4 and 5, we discussed techniques that are used to analyze resource perfor-
mance using an event log. The analysis of resource availability and resource busyness is
carried out from the perspective of a single resource that executed activities in the log
over a specific time period. The techniques presented typically consider a single/individ-

10.2 Limitations and Directions for Future Work 243

ual resource at a time. However, it is important to move beyond the analysis of individual
resources to provide analysis of resource characteristics based on hierarchies of resources.
There are several resource hierarchies that can be considered.
• Organizational groups: where comparisons are done among resources that belong

to the same organizational group.
• Roles: where performance of resources holding similar roles are compared.
• Across organizations: where performance analysis is done for resources in several
connected organizations. There can be organizations that work together in collabo-
ration to handle cases belonging to a given business process [4]. Therefore, it is can
be interesting to compare how one organization performs over another organization
especially if similar activities are being handled by these organizations.

• Work shifts: here it is interesting to compare the performance of resources over
time (e.g., morning and afternoon). For example, the time of the day, the period of
the year may influence resource behavior. This is also closely related to the aspect
of “concept drift” [44]. Here, different points in time when changes occur in a given
business process can be identified. Such changes can also affect the way resources
work. It can be interesting to compare the performance of resources before and
after such changes occurred.

Resource Analysis Put into Context

In this thesis, we have discussed analysis of resources from event logs and also discussed
a framework for operational support. However, this analysis is presented in a general
setting. Organizations execute processes in a particular context and this context plays
a very important role for the analysis of business process performance [105, 136, 148].
There are four main types of context that can be considered: (a) instance context, (b)
process context, (c) social context, and (d) external context [8].

Most of the existing process mining techniques focus on the instance context. For this
context, only properties of cases (i.e., process instances) are considered. Few techniques
are using the process context where aspects related to a process and the instances of
this process are considered. For example, the number of process instances executed for a
given process or the number of resources involved in the execution of process instances
and their different properties as discussed in this thesis (i.e., resource availability and
workload).

The work discussed in this thesis relates to the social context discussed in [8]. Different
aspects characterize the way resources actually work in a given organization. However,
what is more interesting is to find a link between the instance/process context and the
social context. For example, it might be the case that delays observed in a given process
model are attributed to the unavailability of resources. It might also be that resources
accumulate work and process it in a batch which may lead to higher flow times. The last
dimension that can be analyzed is the external context which mainly captures the factors
that are outside of the organization [8, 148]. For example, the weather can influence the
cases handled by an organization both in terms of volume and characteristics. There are
situations where there are floods which increase the number of insurance claims received

244 Chapter 10. Conclusions

in an organization. Therefore, when analyzing resource performance such external aspects
influencing the process in a given time period should also be given consideration. It is
important that analysis in these contexts is not done in isolation because discovered
analysis in one context may be influenced by factors from another context.

Resource Analysis in Social Business Process Management

In this thesis, we have discussed resource analysis based on users interacting with a
workflow management system. However, with the growing interest in combining busi-
ness process management systems with social software, analysis of resource behavior is
becoming more important. There are a number of global online employment places in
which contractors and clients interact with one another. Such environments are referred
to as “Mechanical Turks” which are outsourcing environments where people place work
to be done. Examples include Amazon’s Mechanical Turk, Elance, oDesk [34, 68, 122].
In these environments, work is not only limited to a single organization, however, people
work over various environments within the web. Several variations and patterns in the
way resources work can be analyzed, for example, how people work if they are executing
activities that have to be completed in a short period of time or activities that span over
a couple of months.

As discussed in [69, 72], the work context can be captured based on business processes
executed daily by resources. Such information can be analyzed to determine tasks that
users executed and any dependencies among such tasks. Furthermore, it is possible to
analyze the behavior of resources that are involved in execution of activities while inter-
acting with social software.

Work Distribution

The analysis of resources discussed in this thesis is important in the area of work dis-
tribution. Good insights into the behavior and performance of resources will assist in a
better work distribution. One of the major objective of a PAIS is to facilitate the dis-
tribution of work among a group of resources involved in a process [160, 161]. With a
better characterization of resource behavior, for example, considering when resources are
available to work and the impact of varying workloads on the speed of resources, this
can be used as a basis for making work allocation decisions in real life.

Resource analysis can be done in an offline manner using completed cases. However, as
discussed in this thesis, it is also possible to provide for the analysis of resources using
cases that are still running in a workflow system based on operational support. This can
also be extended to work distribution where decisions about which resource to allocate
work are made in a timely and online manner. Such decisions made at run-time can be
based on the current analysis of resource performance as recorded in partial traces and
event logs. For example, we can consider current information about resource availability
and busyness parameters over the past two days when allocating work to resources.
Therefore, it now becomes possible to provide work allocation algorithms that are based
on a better understanding of the way resources actually work.

10.3 Concluding Remarks 245

Testing Operational Support Algorithms

In Chapter 8, we proposed a generic framework for operational support based on the four
types of operational support queries. However, our discussion is limited to single client
and single case scenario. For example, we tested algorithms for operational support where
a single client is limited to the execution of a single case. It would be more interesting
to consider situations where two or more clients work on a single case, or where a single
client works on multiple cases, or where multiple clients work on multiple cases. This can
also be tested on the four types of operational support queries.

Furthermore, it can be interesting to consider scenarios where there are constraints on
different resource behavior characteristics, when testing operational support algorithms.
For example, if resources are not available to work all the time, how does this affect
experimental results based on key performance indicators (i.e., flow times, waiting times)?
It would also be interesting to compare the off-line performance of resources (i.e., working
without any recommendations) and the performance of resources that execute activities
while being given recommendations from the operational support service. We expect that
with recommendations, there is more flexibility in the way users execute activities but
also that better informed decisions are made since recommendations are given based on
what users did in the past.

The advanced queries introduced in Chapter 8 make use of information from a partial
trace and a model. In particular, we focus on the use of an event log as an example of
a model. However, it is also interesting to explore the use of other kinds of models, for
example, the use of Petri net models or transition systems that have been discovered
from an event log [28, 164] In such cases it is also possible to have updates made on
the event log as the user executes activities in a workflow system. Any predictions or
recommendations can be made using the updated Petri net or Transition system mined
from the log.

10.3 Concluding Remarks
In this thesis, we were able to address three limitations of simulation approaches while
focusing on the resource performance perspective. In the first part of this thesis, we
discussed approaches taken to analyze the performance of resources from event logs. Such
information can be used to adequately set resource behavior parameters in simulation
models.

The second part of this thesis provided ways of modeling the resource perspective more
accurately, specifically for simulation purposes. Using Colored Petri Nets (CPNs), we
characterized resource availability, and the effect of workload on the processing speeds
of resources based on a number of simulation parameters. Using simulation experiments,
we investigated the effect of incorrectly modeling resources in simulation models. The
results from this thesis clearly showed that it is crucial to accurately model and set
resource parameters in simulation models.

Finally, we have discussed a framework for operational support where past executions of

246 Chapter 10. Conclusions

users are analyzed to gain knowledge about the way people work and use these insights
for guiding users and managers. Operational support can be used as a basis for making
decisions, for example, about the next task to execute. We discussed four types of oper-
ational support queries: the simple, compare, predict and recommend queries. Moreover,
we also presented an abstract testing platform for evaluating operational support algo-
rithms. In particular, we tested several recommendation algorithms based on a number of
user behavior models. The experiments carried out in this part of the thesis indicate that
experimental results can deviate from expectations and this makes testing of the utmost
importance. The contributions of this thesis provide a solid basis for further research in
the area of resource performance analysis particularly for work distribution based on the
operational support framework.

Bibliography

[1] W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial on Models,
Systems and Standards for Workflow Management. In J. Desel, W. Reisig, and G. Rozen-
berg, editors, Lectures on Concurrency and Petri Nets, volume 3098 of Lecture Notes in
Computer Science, pages 1–65. Springer, 2004. (cited on pp. 6 and 47)

[2] W.M.P. van der Aalst. Challenges in Business Process Analysis. In J. Filipe, J. Cordeiro,
and J. Cardoso, editors, Enterprise Information Systems, volume 12 of LNBIP, pages
27–42. Springer, 2008. (cited on pp. 8 and 10)

[3] W.M.P. van der Aalst. Business Process Simulation Revisited. In J. Barjis, editor, En-
terprise and Organizational Modeling and Simulation, volume 63 of LNBIP, pages 1–14.
Springer, 2010. (cited on pp. 12, 13, 16, 19, 25, 28, 74, 99, 125, 126, and 149)

[4] W.M.P. van der Aalst. Intra- and Inter-Organizational Process Mining: Discovering Pro-
cesses within and between Organizations. In P. Johannesson, J. Krogstie, and A.L. Opdahl,
editors, The Practice of Enterprise Modeling, volume 92 of LNBIP, pages 1–11. Springer,
2011. (cited on p. 243)

[5] W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer, 2011. (cited on pp. 10, 59, and 173)

[6] W.M.P. van der Aalst. Business Process Simulation Survival Guide. BPM Center Report
BPM-13-11, BPMcenter.org, 2013. (cited on p. 167)

[7] W.M.P. van der Aalst and B.F. van Dongen. Discovering Workflow Performance Models
from Timed Logs. In Y. Han, S. Tai, and D. Wikarski, editors, International Conference on
Engineering and Deployment of Cooperative Information Systems (EDCIS 2002), volume
2480 of Lecture Notes in Computer Science, pages 45–63. Springer, 2002. (cited on p. 95)

[8] W.M.P. van der Aalst and S. Dustdar. Process Mining Put into Context. IEEE Internet
Computing, 16(1):82–86, 2012. (cited on pp. 10, 59, 149, and 243)

[9] W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2004. (cited on pp. 7 and 47)

[10] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language.

248 Bibliography

Information Systems, 30(4):245–275, 2005. (cited on pp. 4, 5, and 19)
[11] W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering Interaction Pat-

terns in Business Processes. In J. Desel, B. Pernici, and M. Weske, editors, International
Conference on Business Process Management (BPM 2004), volume 3080 of Lecture Notes
in Computer Science, pages 244–260. Springer, 2004. (cited on pp. 10 and 14)

[12] W.M.P. van der Aalst and C. Stahl. Modeling Business Processes: A Petri Net Oriented
Approach. MIT press, Cambridge, MA, 2011. (cited on pp. 2, 47, and 48)

[13] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A.J.M.M.
Weijters. Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge
Engineering, 47(2):237–267, 2003. (cited on pp. 9, 10, 14, and 61)

[14] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003. (cited on pp. 4, 125,
and 219)

[15] W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske. Business Process Manage-
ment: A Survey. In W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske, editors,
International Conference on Business Process Management (BPM 2003), volume 2678 of
Lecture Notes in Computer Science, pages 1–12. Springer, 2003. (cited on p. 2)

[16] W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design and
Implementation of the YAWL System. In A. Persson and J. Stirna, editors, Advanced
Information Systems Engineering, Proceedings of the 16th International Conference on
Advanced Information Systems Engineering (CAiSE’04), volume 3084 of Lecture Notes in
Computer Science, pages 142–159. Springer, 2004. (cited on p. 30)

[17] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Discovering
Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering,
16(9):1128–1142, 2004. (cited on pp. 10, 14, 61, and 176)

[18] W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen. Process Mining and Verifica-
tion of Properties: An Approach based on Temporal Logic. In R. Meersman and Z. Tari
et al., editors, On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE
2005, volume 3760 of Lecture Notes in Computer Science, pages 130–147. Springer, 2005.
(cited on p. 49)

[19] W.M.P. van der Aalst, H.A. Reijers, and M. Song. Discovering Social Networks from
Event Logs. Computer Supported Cooperative work, 14(6):549–593, 2005. (cited on pp. 62
and 95)

[20] W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther, R.S. Mans, A.K. Alves de
Medeiros, A. Rozinat, V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M. Weijters. ProM
4.0: Comprehensive Support for Real Process Analysis. In J. Kleijn and A. Yakovlev, ed-
itors, Application and Theory of Petri Nets and Other Models of Concurrency (ICATPN
2007), volume 4546 of Lecture Notes in Computer Science, pages 484–494. Springer, 2007.
(cited on p. 30)

[21] W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters, B.F. van Dongen, A.K. Alves
de Medeiros, M. Song, and H.M.W. Verbeek. Business Process Mining: An Industrial
Application. Information Systems, 32(5):713–732, 2007. (cited on pp. 10 and 14)

[22] W.M.P. van der Aalst, M. Rosemann, and M. Dumas. Deadline-based Escalation in
Process-Aware Information Systems. Decision Support Systems, 43(2):492–511, 2007.
(cited on p. 28)

[23] W.M.P. van der Aalst, J. Nakatumba, A. Rozinat, and N. Russell. Business Process Simu-
lation : How to Get it Right? Computer Science Report No. 08-21, Technische Universiteit

Bibliography 249

Eindhoven, 2008. (cited on pp. 16 and 19)
[24] W.M.P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative Workflows: Balancing

Between Flexibility and Support. Computer Science - Research and Development, 23(2):
99–113, 2009. (cited on p. 177)

[25] W.M.P. van der Aalst, J. Nakatumba, A. Rozinat, and N. Russell. Business Process
Simulation. In J. vom Brocke and M. Rosemann, editors, Handbook on Business Process
Management, International Handbooks on Information Systems, pages 313–338. Springer,
2010. (cited on pp. 12, 13, 16, 19, 25, 28, 32, 74, 99, 123, and 126)

[26] W.M.P. van der Aalst, M. Pesic, and M. Song. Beyond Process Mining: From the Past
to Present and Future. In B. Pernici, editor, Advanced Information Systems Engineering,
Proceedings of the 22nd International Conference on Advanced Information Systems En-
gineering (CAiSE’10), volume 6051 of Lecture Notes in Computer Science, pages 38–52.
Springer, 2010. (cited on pp. 14, 32, 173, 175, 194, and 201)

[27] W.M.P. van der Aalst, V. Rubin, H.M.W. Verbeek, B.F. van Dongen, E. Kindler, and
C.W. Günther. Process Mining: A Two-Step Approach to Balance Between Underfitting
and Overfitting. Software and Systems Modeling, 9(1):87–111, 2010. (cited on pp. 61
and 176)

[28] W.M.P. van der Aalst, M.H. Schonenberg, and M. Song. Time Prediction Based on Process
Mining. Information Systems, 36(2):450–475, 2011. (cited on pp. 14, 176, 194, 201, 207,
and 245)

[29] W.M.P. van der Aalst, A. Adriansyah, and B. van Dongen. Replaying History on Process
Models for Conformance Checking and Performance Analysis. WIREs Data Mining and
Knowledge Discovery, 2012. (cited on p. 61)

[30] W.M.P. van der Aalst, C. Stahl, and M. Westergaard. Strategies for Modeling Complex
Processes using Colored Petri Nets. In Transactions on Petri Nets and Other Models of
Concurrency, 2012. (cited on pp. 47 and 48)

[31] R. F. Adlera and R. Benbunan-Fichb. Juggling on a High Wire: Multitasking Effects on
Performance. International Journal of Human-Computer Studies, 70(2):156–168, 2012.
(cited on p. 120)

[32] A. Adriansyah, N. Sidorova, and B.F. van Dongen. Cost-based Fitness in Conformance
Checking. In International Conference on Application of Concurrency to System Design
(ACSD 2011), pages 57–66. IEEE Computer Society, 2011. (cited on p. 10)

[33] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Workflow
Logs. In Sixth International Conference on Extending Database Technology, volume 1377
of Lecture Notes in Computer Science, pages 469–483. Springer, 1998. (cited on p. 61)

[34] Amazon. Amazon Mechanical Turk. https://www.mturk.com/mturk/welcome, 2012.
(cited on p. 244)

[35] R. Ardhaldjian and M. Fahner. Using Simulation in the Business Process Reengineering
Effort. Industrial engineering, pages 60–61, July 1994. (cited on pp. 12 and 29)

[36] B. Silver. The BPMS Report: TIBCO iProcess Suite 10.6. http://www.tibco.com, 2007.
(cited on pp. 13, 21, and 29)

[37] B. Yu and D.T. Wright. Software Tools Supporting Business Process Analysis and Mod-
elling. Business Process Management Journal, 3(2):133–150, 1997. (cited on p. 99)

[38] I. Barba, B. Weber, and C. Del Valle. Supporting the Optimized Execution of Busi-
ness Processes through Recommendations. In Business Process Management Workshops,
volume 99 of LNBIP, pages 135–140. Springer, 2012. (cited on p. 202)

[39] R. Bekker and S.C. Borst. Optimal Admission Control in Queues with Workload-

250 Bibliography

Dependent Service Rates. Probability in the Engineering and Informational Sciences,
20:543–570, 2006. (cited on p. 119)

[40] R. Bekker, S.C. Borst, and O.J. Boxm. Queues with Workload-Dependent Arrival and
Service Rates. Queuing Systems, 46(3-4):537–556, 2004. (cited on pp. 107 and 119)

[41] E. Bertino, E. Ferrari, and V. Atluri. The Specification and Enforcement of Authorization
Constraints in Workfow Management Systems. ACM Transactions on Information and
System Security, 2(1):65–104, 1999. (cited on p. 95)

[42] J.W.M. Bertrand and H.P.G. van Ooijen. Workload Based Order Release and Productiv-
ity: A Missing Link. Production Planning and Control, 13(7):665–678, 2002. (cited on
pp. 28, 30, 101, 107, and 119)

[43] R.P. Jagadeesh Chandra Bose. Process Mining in the Large. Preprocessing, Discovery
and Diagnostics. PhD Thesis, Eindhoven University of Technology, May 2012. (cited on
pp. 11, 61, 95, and 97)

[44] R.P. Jagadeesh Chandra Bose, W.M.P. van der Aalst, I. Zliobaite, and M. Pechenizkiy.
Handling Concept Drift in Process Mining. In H. Mouratidis and C. Rolland, editors,
International Conference on Advanced Information Systems Engineering (CAiSE 2011),
volume 6741 of Lecture Notes in Computer Science, pages 391–405. Springer, 2011. (cited
on pp. 28 and 243)

[45] BPM|one Suite. Business Process Management. http://www.perceptivesoftware.com/
products/product-explorer/business-process/bpmone.psi, 2012. (cited on pp. 21 and 29)

[46] N. Brand and van der Kolk. Workflow Analsysis and Design. Kluwer Bedrijfswetenschap-
pen, 1997. (cited on p. 7)

[47] M. Brundage. XQuery: the XML Query Language. Addison-Wesley, 2004. (cited on
pp. 50, 194, and 228)

[48] C. Bussler and S. Jablonski. Policy Resolution for Workflow Management Systems. In
Proceedings of the 28th Hawaii International Conference on System Sciences, page 831.
IEEE Computer Society, 1995. (cited on p. 95)

[49] J.A. Buzacott. Commonalities in Reengineered Business Processes: Models and Issues.
Management Science, 42(5):768–782, 1996. (cited on p. 29)

[50] S. Canbaz. Discovering Artifact-Centric Processes: Mining Assistance Handling Processes
of a First Aid Company Using an Artifact-Centric Approach. Master’s thesis, Eindhoven
University of Technology, Eindhoven, 2011. (cited on p. 114)

[51] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press, Cambridge,
Massachusetts and London, UK, 1999. (cited on p. 49)

[52] J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-Based
Data. ACM Transactions on Software Engineering and Methodology, 7(3):215–249, 1998.
(cited on pp. 10, 14, and 61)

[53] CoSeLog. Configurable Services for Local Governments, 2012. www.win.tue.nl/coselog.
(cited on p. 87)

[54] CPN Tools. CPN Tools, 2012. cpntools.org. (cited on p. 53)
[55] R. Crooy. Predictions in Information Systems: A Process Mining Perspective. Master’s

thesis, Eindhoven University of Technology, Eindhoven, 2008. (cited on p. 201)
[56] O.J. Dahl and K. Nygaard. SIMULA: An ALGOL Based Simulation Language. Commu-

nications of the ACM, 1:671–678, Sept 1966. (cited on p. 29)
[57] A. Datta. Automating the Discovery of As-Is Business Process Models: Probabilistic and

Algorithmic Approaches. Information Systems Research, 9(3):275–301, 1998. (cited on
pp. 10, 14, and 61)

Bibliography 251

[58] T.H. Davenport. Process Innovation: Reengineering Work Through Information Technol-
ogy. Harvard Business School Press, Boston, 1993. (cited on p. 29)

[59] Declare. Declare, 2012. www.win.tue.nl/declare. (cited on p. 52)
[60] B.F. van Dongen. Business Process Intelligence Challenge Dataset.

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f, 2012. (cited on
p. 70)

[61] B.F. van Dongen and W.M.P. van der Aalst. A Meta Model for Process Mining Data.
In J. Casto and E. Teniente, editors, Proceedings of the CAiSE’05 Workshops (EMOI-
INTEROP Workshop), volume 2, pages 309–320. FEUP, Porto, Portugal, 2005. (cited on
pp. 42 and 175)

[62] B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Mining: Aggregating Instances
Graphs into EPCs and Petri Nets. In D. Marinescu, editor, Proceedings of the Second Inter-
national Workshop on Applications of Petri Nets to Coordination, Workflow and Business
Process Management, pages 35–58. Florida International University, Miami, Florida, USA,
2005. (cited on p. 61)

[63] B.F. van Dongen and A. Adriansyah. Process Mining: Fuzzy Clustering and Performance
Visualisation. In S. Rinderle and S. Sadiq and F. Leymann, editor, BPM 2009 Workshops,
Proceedings of the Fifth Workshop on Business Process Intelligence (BPI’09), volume 43
of LNBIP, pages 158–169. Springer, 2010. (cited on pp. 11, 61, 95, and 97)

[64] B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining Tool Support.
In G. Ciardo and P. Darondeau, editors, Application and Theory of Petri Nets 2005,
volume 3536 of Lecture Notes in Computer Science, pages 444–454. Springer, 2005. (cited
on p. 52)

[65] B.F. van Dongen, R.A. Crooy, and W.M.P. van der Aalst. Cycle Time Prediction: When
Will This Case Finally Be Finished? In R. Meersman and Z. Tari, editors, Proceedings
of the 16th International Conference on Cooperative Information Systems, CoopIS 2008,
OTM 2008, Part I, volume 5331 of Lecture Notes in Computer Science, pages 319–336.
Springer, 2008. (cited on pp. 14, 176, and 201)

[66] C. Dorn, T. Burkhart, D. Werth, and S. Dustdar. Self-adjusting Recommendations for
People-Driven Ad-Hoc Processes. In International Conference on Business Process Man-
agement (BPM 2010), volume 6336 of LNCS, pages 327–342. Springer, 2010. (cited on
p. 202)

[67] M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Information
Systems: Bridging People and Software through Process Technology. Wiley & Sons, 2005.
(cited on pp. 2, 3, and 174)

[68] Elance. Elance. https://www.elance.com/, 2012. (cited on p. 244)
[69] S. Erol, M. Granitzer, S. Happ, S. Jantunen, B. Jennings, P. Johannesson, A. Koschmider,

S. Nurcan, D. Rossi, and R. Schmidt. Performance Measurement Systems: Models, Char-
acteristics and Measures. Journal of Software Maintenance Evolution, 22:449–476, 2010.
(cited on p. 244)

[70] FileNET. Ensemble User Guide. FileNET Corporation, Costa Mesa, California, 1998.
(cited on pp. 21 and 29)

[71] D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal Prop-
erties on Running Programs. In ASE ’01: Proceedings of the 16th IEEE International
Conference on Automated Software Engineering, page 412, Washington, DC, USA, 2001.
IEEE Computer Society. (cited on p. 49)

[72] M. Granitzer, G. Granitzer, K. Tochtermann, A. Rath S. Lindstaedt, and W. Groib. Au-

252 Bibliography

tomating Knowledge Transfer abd Creation in Knowledge Intensive Business Processes. In
P. Johannesson, J. Krogstie, and A.L. Opdahl, editors, Proceedings of the First Workshop
on Business Process Management and Social Software (BPMS), volume 92 of LNBIP,
pages 1–11. Springer, 2008. (cited on p. 244)

[73] D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.C. Shan. Business
Process Intelligence. Computers in Industry, 53(3):321–343, 2004. (cited on p. 29)

[74] C. Günther and W.M.P. van der Aalst. A Generic Import Framework for Process Event
Logs. In J. Eder and S. Dustdar, editors, Business Process Management Workshops,
Workshop on Business Process Intelligence (BPI 2006), volume 4103 of Lecture Notes in
Computer Science, pages 81–92. Springer, 2006. (cited on p. 169)

[75] C.W. Günther. Open XES Developer Guide. http://www.xes-standard.org, 2009. (cited
on pp. 42, 43, and 45)

[76] C.W. Günther. Process Mining in Flexible Environments. PhD Thesis, Eindhoven Uni-
versity of Technology, September 2009. (cited on pp. 42 and 61)

[77] C.W. Günther and W.M.P. van der Aalst. Fuzzy Mining: Adaptive Process Simplification
Based on Multi-perspective Metrics. In G. Alonso, P. Dadam, and M. Rosemann, editors,
International Conference on Business Process Management (BPM 2007), volume 4714 of
Lecture Notes in Computer Science, pages 328–343. Springer, 2007. (cited on p. 61)

[78] C.W. Günther, M. Reichert, and W.M.P. van der Aalst. Supporting Flexible Processes
with Adaptive Workflow and Case Handling. In Proceedings of the Seventeenth Workshop
on Enabling Technologies: Infrastructures for Collaborative Enterprises (WETICE 2008),
pages 229–234. IEEE Computer Society Press, 2008. (cited on p. 174)

[79] J.R. Hackman and G.R. Oldham. Motivation Through the Design of Work: Test of a
Theory. Organizational Behaviour and Human Performance, 16(2):250–279, 1976. (cited
on p. 163)

[80] C. Haisjackl and B. Weber. User Assistance During Process Execution - An Experimental
Evaluation of Recommendation Strategies. In Business Process Management Workshops,
Workshop on Business Process Intelligence (BPI 2010) , volume 66 of LNBIP, pages 135–
145. Springer, 2011. (cited on pp. 14, 176, and 201)

[81] M. Hammer and J. Champy. Reengineering the Corporation. Nicolas Brealey Publishing,
London, 1993. (cited on p. 29)

[82] P.A. Hancock and H.C.N. Ganey. From the Inverted-U to the Extended-U: The Evolution
of a Law of Psychology. Journal of Human Performance in Extreme Environments, 7(1):
5–14, 2003. (cited on p. 101)

[83] J. Harrington. Business Process Improvement: The Breakthrough Strategy for Total Qual-
ity. McGraw-Hill, 1991. (cited on p. 29)

[84] D. O. Hebb. Drives and the C.N.S (Conceptual Nervous System). Psychological Review,
62:243–254, 1955. (cited on pp. 29, 101, and 157)

[85] J. Herbst. A Machine Learning Approach to Workflow Management. In Proceedings 11th
European Conference on Machine Learning, volume 1810 of Lecture Notes in Computer
Science, pages 183–194. Springer, 2000. (cited on p. 61)

[86] A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adams, and N. Russell. Modern Business
Process Automation: YAWL and its Support Environment. Springer, 2010. (cited on p. 4)

[87] J. Holström. The Relationship Between Speed and Productivity in Industrial Networks: A
Study of Industrial Statistics. International Journal of Production Economics, 34:91–97,
1994. (cited on p. 120)

[88] P.T.G. Hornix. Performance Analysis of Business Processes Through Process Mining.

Bibliography 253

Master’s thesis, Eindhoven University of Technology, Eindhoven, 2007. (cited on pp. 11,
61, 95, and 97)

[89] IBM WebSphere Business Modeler. WebSphere Business Modeler: Advanced Simulation.
http://www.ibm.com, 2012. (cited on pp. 21 and 29)

[90] IDS Scheer. ARIS Process Performance Manager (ARIS PPM): Measure, Analyze and
Optimize Your Business Process Performance (whitepaper). IDS Scheer, Saarbruecken,
Gemany, http://www.ids-scheer.com, 2002. (cited on pp. 21 and 29)

[91] Intalio|BPM. Business Process Management. http://www.intalio.com, 2012. (cited on
pp. 21 and 29)

[92] J. W. Tukey. Exploratory Data Analysis. Addison Wesley, 1977. (cited on p. 57)
[93] M. H. Jansen-vullers and M. Netjes. Business Process Simulation − A Tool Survey. In

Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN, Aarhus,
Denmark, 2006. University of Aarhus. (cited on pp. 12 and 29)

[94] M.H. Jansen-Vullers, P.A.M. Kleingeld, M.W.N.C. Loosschilder, and H.A. Reijers. Per-
formance Measures to Evaluate the Impact of Best Practices. In B. Pernici and J.A.
Gulla, editors, Proceedings of Workshops and Doctoral Consortium of the 19th Interna-
tional Conference on Advanced Information Systems Engineering (BPMDS Workshop),
volume 1, pages 359–368. Tapir Academic Press Trondheim, 2007. (cited on pp. 7, 8, 95,
and 163)

[95] K. Jensen and L.M. Kristensen. Coloured Petri Nets: Modeling and Validation of Concur-
rent Systems. Springer, 2009. (cited on pp. 47, 48, and 53)

[96] K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for Mod-
elling and Validation of Concurrent Systems. International Journal on Software Tools for
Technology Transfer, 9(3-4):213–254, 2007. (cited on pp. 30, 47, and 53)

[97] C.A. Johnston, J.P. Moreno, K. Regas, C. Tyler, and J.P. Foreyt. The Application of
the Yerkes Dodson Law in a Childhood Weight Management Program: Examining Weight
Dissatisfaction. Journal of Pediatric Psychology, pages 1–6, 2012. (cited on p. 120)

[98] D. Juedes, F. Drews, and L. Welch. Workload Functions: A New Paradigm for Real-
time Computing. In 10th IEEE Real-Time and Embedded Technology and Applications
Symposium Work-In Progress Session, pages 25–28, 2004. (cited on p. 120)

[99] D.W. Kelton, R. Sadowski, and D. Sturrock. Simulation with Arena. McGraw-Hill, New
York, 2003. (cited on pp. 21 and 29)

[100] J. Kleijnen and W. van Groenendaal. Simulation: A Statistical Perspective. John Wiley
and Sons, New York, 1992. (cited on pp. 23 and 29)

[101] A. Kumar, W.M.P. van der Aalst, and H.M.W. Verbeek. Dynamic Work Distribution in
Workflow Management Systems: How to Balance Quality and Performance? Journal of
Management Information Systems, 18(3):157–193, 2002. (cited on pp. 96 and 99)

[102] Lanner. WITNESS Simulation Software. http://www.lanner.com, 2012. (cited on pp. 21
and 29)

[103] A.M. Law and D.W. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New York,
1982. (cited on p. 29)

[104] A. Lazovik, M. Aiello, and M. Papazoglou. Associating Assertions with Business Processes
and Monitoring their Execution. In ICSOC ’04: Proceedings of the 2nd International
Conference on Service Oriented Computing, pages 94–104, New York, NY, USA, 2004.
ACM Press. (cited on p. 201)

[105] M. Leyer. Towards A Context-Aware Analysis Of Business Process Performance. In P. B.
Seddon and S. Gregor, editors, Pacific Asia Conference on Information Systems, page 108.

254 Bibliography

Queensland University of Technology, 2011. (cited on p. 243)
[106] L. T. Ly, S. Rinderle, P. Dadam, and M. Reichert. Mining Staff Assignment Rules from

Event-Based Data. In C. Bussler and A. Haller, editors, Business Process Management
Workshops, volume 3812 of LNCS, pages 177–190. Springer, 2006. (cited on p. 96)

[107] F.M. Maggi, M. Montali, M. Westergaard, and W.M.P. van der Aalst. Monitoring Business
Constraints with Linear Temporal Logic: An Approach Based on Colored Automata. In
S. Rinderle, F. Toumani, and K. Wolf, editors, Business Process Management (BPM 2011),
volume 6896 of Lecture Notes in Computer Science, pages 132–147. Springer, 2011. (cited
on p. 194)

[108] K. Mahbub and G. Spanoudakis. A Framework for Requirements Monitoring of Service
Based Systems. In ICSOC ’04: Proceedings of the 2nd International Conference on Service
Oriented Computing, pages 84–93, New York, NY, USA, 2004. ACM Press. (cited on
p. 201)

[109] R. Mans. Workflow Support for the Healthcare Domain. PhD Thesis, Eindhoven University
of Technology, June 2011. (cited on p. 236)

[110] R.S. Mans, W.M.P. van der Aalst, N. Russell, P. Bakker, and A. Moleman. Process-Aware
Information System Development for the Healthcare Domain - Consistency, Reliability,
and Effectiveness. In Proc. of BPM 2009 Workshops, volume 43 of LNBIP, pages 635–
646. Springer, 2010. (cited on p. 236)

[111] L. Maruster and R.T.P. van Beest. Redesigning Business Processes: A Methodology Based
on Simulation and Process Mining Techniques. Knowledge Information Systems, 21:267–
297, 2009. (cited on p. 30)

[112] A.K. Alves de Medeiros. Genetic Process Mining. PhD Thesis, Eindhoven University of
Technology, 2006. (cited on p. 61)

[113] A.K. Alves de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic Process
Mining: An Experimental Evaluation. Data Mining and Knowledge Discovery, 14(2):245–
304, 2007. (cited on p. 61)

[114] M. zur Muehlen. Resource Modeling in Workflow Applications. In J. Becker, M. zur
Muehlen, and M. Rosemann, editors, Proceedings of the 1999 Workflow Management Con-
ference, pages 137–153, Muenster, Germany, 1999. Kluwer Academic Publishers. (cited
on p. 95)

[115] M. zur Muehlen. Organizational Management in Workflow Applications - Issues and
Perspectives. Information Technology and Management, 5(3–4):271–291, 2004. (cited on
pp. 32 and 95)

[116] J. Nakatumba and W.M.P. van der Aalst. Analyzing Resource Behavior Using Process
Mining. In S. Rinderle and S. Sadiq and F. Leymann, editor, BPM 2009 Workshops,
Proceedings of the Fifth Workshop on Business Process Intelligence (BPI’09), volume 43
of LNBIP, pages 69–80. Springer, 2010. (cited on pp. 16, 28, 32, and 99)

[117] J. Nakatumba, M. Westergaard, and W.M.P. van der Aalst. A Meta-model for Operational
Support. BPM Center Report BPM-12-05, BPMcenter.org, 2012. (cited on pp. 16, 32,
173, and 175)

[118] J. Nakatumba, M. Westergaard, and W.M.P. van der Aalst. Generating Event Logs with
Workload-Dependent Speeds from Simulation Models. In M. Bajec and J. Eder, editor,
Proceedings of the 8th Workshop on Enterprise and Organizational Modeling and Simu-
lation (EOMAS’12), volume 112 of LNBIP, pages 383–397. Springer, 2012. (cited on
pp. 16, 28, 32, 99, and 123)

[119] J. Nakatumba, M. Westergaard, and W.M.P. van der Aalst. An Infrastructure for Cost-
Effective Testing of Operational Support Algorithms Based on Colored Petri Nets. In

Bibliography 255

Proceedings of the 33rd International Conference on Applications and Theory of Petri
Nets, volume 7347 of LNCS, pages 308–327. Springer, 2012. (cited on pp. 17, 32, 175,
and 205)

[120] A. Neely, M. Gregory, and K. Platts. Performance Measurement System Design: A Liter-
ature Review and Research Agenda. International Journal of Operations and Production
Management, 15(4):80–116, 1995. (cited on p. 7)

[121] M. Netjes. Process Improvement: The Creation and Evaluation of Process Alternatives.
PhD Thesis, Eindhoven University of Technology, May 2010. (cited on p. 126)

[122] oDesk. Online Desk. https://www.odesk.com/, 2012. (cited on p. 244)
[123] V. Onyemah. Role Ambiguity, Role Conflict, and Performance: Empirical Evidence of

an Inverted-U Relationship. Journal of Personal Selling and Sales Management, 28(3):
299–313, 2008. (cited on p. 120)

[124] H.P.G. van Ooijen and J.W.M. Bertrand. The Effects of a Simple Arrival Rate Con-
trol Policy on Throughput and Work-in-progress in Production Systems with Workload
Dependent Processing Rates. International Journal of Production Economics, 85:61–68,
2003. (cited on pp. 28, 100, 107, and 119)

[125] C. Ouyang, M.T. Wynn, C. Fidge, A.H.M. ter Hofstede, and J.C. Kuhr. Modelling Com-
plex Resource Requirements in Business Process Management Systems. In M. Rosemann,
P. Green, and F. Rohde, editors, 21st Australasian Conference on Information Systems,
2010. (cited on pp. 73 and 96)

[126] Pegasystems. PegaRULES Process Simulator Managing Process Change for Optimal Re-
sults. http://www.pega.com, 2012. (cited on pp. 21 and 29)

[127] M. Pesic. Constraint-based Workflow Management Systems: Shifting Control to Users.
PhD Thesis, Eindhoven University of Technology, May 2008. (cited on pp. 4, 7, 49,
and 175)

[128] M. Pesic and W.M.P. van der Aalst. Analyzing the Resource Perspective of Workflow
Management Systems: Using a Meta Model and Constraints. BETAWorking Paper Series,
WP 157, Eindhoven University of Technology, Eindhoven, 2006. (cited on p. 96)

[129] M. Pesic and W.M.P. van der Aalst. A Declarative Approach for Flexible Business Pro-
cesses. In J. Eder and S. Dustdar, editors, Business Process Management Workshops,
Workshop on Dynamic Process Management (DPM 2006), volume 4103 of Lecture Notes
in Computer Science, pages 169–180. Springer, 2006. (cited on pp. 4 and 49)

[130] M. Pesic and W.M.P. van der Aalst. Modeling Work Distribution Mechanisms using
Colored Petri Nets. International Journal on Software Tools for Technology Transfer, 9
(3-4):327–352, 2007. (cited on pp. 41 and 95)

[131] M. Pesic, H. Schonenberg, and W.M.P. van der Aalst. DECLARE: Full Support for
Loosely-Structured Processes. In M. Spies and M.B. Blake, editors, Proceedings of the
Eleventh IEEE International Enterprise Distributed Object Computing Conference (EDOC
2007), pages 287–298. IEEE Computer Society, 2007. (cited on p. 4)

[132] M. Pesic, M. H. Schonenberg, N. Sidorova, and W.M.P. van der Aalst. Constraint-Based
Workflow Models: Change Made Easy. In F. Curbera, F. Leymann, and M. Weske, editors,
Proceedings of the OTM Conference on Cooperative information Systems (CoopIS 2007),
volume 4803 of Lecture Notes in Computer Science, pages 77–94. Springer, 2007. (cited
on p. 174)

[133] M. Pesic, D. Bosnacki, and W.M.P. van der Aalst. Enacting Declarative Languages Using
LTL: Avoiding Errors and Improving Performance. In J. van de Pol and M. Weber, editors,
Proceedings of the 17th International SPIN Workshop on Model Checking of Software
(SPIN2010), volume 6349 of Lecture Notes in Computer Science, pages 146–161. Springer,

256 Bibliography

2010. (cited on p. 49)
[134] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Fakultät für Mathematik und

Physik, Technische Hochschule Darmstadt, Darmstadt, Germany, 1962. (cited on p. 45)
[135] M. Pidd. Computer Modelling for Discrete Simulation. John Wiley and Sons, New York,

1989. (cited on p. 29)
[136] K. Ploesser, M. Peleg, P. Soffer, M. Rosemann, and J. Recker. Learning from Context to

Improve Business Processes. BPTrends, pages 1–7, January 2009. (cited on p. 243)
[137] Progress Savvion. Progress Savvion Process Modeler: Overview.

http://www.progress.com, 2012. (cited on pp. 21 and 29)
[138] ProM. ProM, 2012. www.processmining.org. (cited on p. 51)
[139] M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of Workflow

without Loosing Control. Journal of Intelligent Information Systems, 10(2):93–129, 1998.
(cited on p. 174)

[140] H. Reijers. Design and Control of Workflow Processes: Business Process Management for
the Service Industry, volume 2617 of Lecture Notes in Computer Science. Springer, 2003.
(cited on pp. 7 and 95)

[141] H. Reijers, J. Rigter, and W.M.P. van der Aalst. The Case Handling Case. International
Journal of Cooperative Information Systems, 12(3):365–391, 2003. (cited on p. 174)

[142] H.A. Reijers and W.M.P. van der Aalst. Short-Term Simulation: Bridging the Gap between
Operational Control and Strategic Decision Making. In M.H. Hamza, editor, Proceedings
of the IASTED International Conference on Modelling and Simulation, pages 417–421.
IASTED/Acta Press, Anaheim, USA, 1999. (cited on pp. 24 and 30)

[143] H.A. Reijers and W.M.P. van der Aalst. The Effectiveness of Workflow Management
Systems: Predictions and Lessons Learned. International Journal of Information Man-
agement, 25(5):458–472, 2005. (cited on pp. 13, 16, 25, 28, 30, 74, 126, and 127)

[144] W. Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs in Theoretical
Computer Science. Springer-Verlag, Berlin, 1985. (cited on p. 45)

[145] P. Resnick and H.R. Varian. Recommender Systems. Communications of the ACM, 40
(3):56–58, 1997. (cited on p. 201)

[146] S. Rinderle, M. Reichert, and P. Dadam. Correctness Criteria For Dynamic Changes in
Workflow Systems: A Survey. Data and Knowledge Engineering, 50(1):9–34, 2004. (cited
on p. 174)

[147] J. Rivera. Modeling With Extend. In S. Andrad óttir and K.J. Healy and B.L. Nelson,
editor, Proceedings of the 1997 Winter Simulation Conference, pages 674–679, 1997. (cited
on pp. 21 and 29)

[148] M. Rosemann, J. Recker, and C. Flender. Contextualisation of Business Processes. In-
ternational Journal of Business Process Integration and Management, 3(1):47–60, 2008.
(cited on p. 243)

[149] S.M. Ross. A Course in Simulation. Macmillan, New York, 1990. (cited on pp. 23 and 29)
[150] A. Rozinat. Process Mining: Conformance and Extension. PhD Thesis, Eindhoven Uni-

versity of Technology, November 2010. (cited on pp. 11, 24, 120, 121, 140, 167, and 169)
[151] A. Rozinat. How Process Mining Compares to Simulation.

http://fluxicon.com/blog/2011/06/process-mining-simulation/, 2011. (cited on p. 171)
[152] A. Rozinat and W.M.P. van der Aalst. Decision Mining in ProM. In S. Dustdar, J.L.

Fiadeiro, and A. Sheth, editors, International Conference on Business Process Manage-
ment (BPM 2006), volume 4102 of Lecture Notes in Computer Science, pages 420–425.
Springer, 2006. (cited on pp. 11, 20, and 61)

Bibliography 257

[153] A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit and
Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor, BPM
2005 Workshops (Workshop on Business Process Intelligence), volume 3812 of Lecture
Notes in Computer Science, pages 163–176. Springer, 2006. (cited on p. 10)

[154] A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes Based on
Monitoring Real Behavior. Information Systems, 33(1):64–95, 2008. (cited on pp. 10
and 14)

[155] A. Rozinat, R.S. Mans, M. Song, and W.M.P. van der Aalst. Discovering Colored Petri
Nets From Event Logs. International Journal on Software Tools for Technology Transfer,
10(1):57–74, 2008. (cited on pp. 24, 30, and 163)

[156] A. Rozinat, M. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C. Fidge. Workflow
Simulation for Operational Decision Support using YAWL and ProM. BPM Center Report
BPM-08-04, BPMcenter.org, 2008. (cited on pp. 24, 30, 167, and 170)

[157] A. Rozinat, M.T. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C. Fidge.
Workflow Simulation for Operational Decision Support Using Design, Historic and State
Information. In M. Dumas, M. Reichert, and M.C. Shan, editors, International Conference
on Business Process Management (BPM 2008), volume 5240 of Lecture Notes in Computer
Science, pages 196–211. Springer, 2008. (cited on pp. 11, 14, 24, 30, 163, 167, 170, and 201)

[158] A. Rozinat, R.S. Mans, M. Song, and W.M.P. van der Aalst. Discovering Simulation
Models. Information Systems, 34(3):305–327, 2009. (cited on pp. 33, 120, 121, 125, 167,
and 169)

[159] A. Rozinat, M. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C. Fidge. Workflow
Simulation for Operational Decision Support. Data and Knowledge Engineering, 68(9):
834–850, 2009. (cited on pp. 24, 30, 32, 167, 168, and 170)

[160] N. Russell. Foundations of Process-Aware Information Systems. PhD Thesis, Queensland
University of Technology, 2007. (cited on pp. 7, 26, 95, 125, 225, and 244)

[161] N. Russell and W.M.P. van der Aalst. Work Distribution and Resource Management in
BPEL4People: Capabilities and Opportunities. In Z. Bellahsene and M. Léonard, editors,
Proceedings of the 20th International Conference on Advanced Information Systems En-
gineering (CAiSE’08), volume 5074 of Lecture Notes in Computer Science, pages 94–108.
Springer, 2008. (cited on pp. 13 and 244)

[162] N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow
Resource Patterns: Identification, Representation and Tool Support. In O. Pastor and
J. Falcao e Cunha, editors, Proceedings of the 17th Conference on Advanced Information
Systems Engineering (CAiSE’05), volume 3520 of Lecture Notes in Computer Science,
pages 216–232. Springer, 2005. (cited on pp. 26, 95, 99, 125, and 225)

[163] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow Data
Patterns: Identification, Representation and Tool Support. In L. Delcambre, C. Kop, H.C.
Mayr, J. Mylopoulos, and O. Pastor, editors, 24nd International Conference on Conceptual
Modeling (ER 2005), volume 3716 of Lecture Notes in Computer Science, pages 353–368.
Springer, 2005. (cited on p. 125)

[164] H. Schonenberg. What’s Next? Operational Support for Business Process Execution. PhD
Thesis, Eindhoven University of Technology, May 2012. (cited on pp. 14, 175, 176, 207,
and 245)

[165] H. Schonenberg, B. Weber, B.F. van Dongen, and W.M.P. van der Aalst. Supporting Flex-
ible Processes Through Recommendations Based on History. In M. Dumas, M. Reichert,
and M.C. Shan, editors, International Conference on Business Process Management (BPM
2008), volume 5240 of Lecture Notes in Computer Science, pages 51–66. Springer, 2008.

258 Bibliography

(cited on pp. 14, 175, and 201)
[166] R.E. Shannon. Systems Simulation: The Art and Science. Prentice-Hall, Englewood Cliffs,

1975. (cited on p. 29)
[167] M. Sierhuis. Brahms: A Multiagent Modeling and Simulation Language for Work System

Analysis and Design. PhD thesis, University of Amsterdam, Amsterdam, The Netherlands,
2001. (cited on p. 25)

[168] M. Sierhuis and W.J. Clancey. Modeling and Simulating Work Practice: A Method for
Work Systems Design. IEEE Intelligent Systems, 17(5):32–41, 2002. (cited on pp. 25
and 30)

[169] Software-Ley. COSA 3.0 User Manual. Software-Ley GmbH, Pullheim, Germany, 1999.
(cited on pp. 21 and 29)

[170] M. Sole and J. Carmona. Process Mining from a Basis of Regions. In J. Lilius and
W. Penczek, editors, Applications and Theory of Petri Nets 2010, volume 6128 of Lecture
Notes in Computer Science, pages 226–245. Springer, 2010. (cited on p. 61)

[171] M. Song and W.M.P. van der Aalst. Supporting Process Mining by Showing Events at
a Glance. In K. Chari and A. Kumar, editors, Proceedings of 17th Annual Workshop on
Information Technologies and Systems (WITS 2007), pages 139–145, Montreal, Canada,
December 2007. (cited on p. 95)

[172] M. Song and W.M.P. van der Aalst. Towards Comprehensive Support for Organizational
Mining. Decision Support Systems, 46(1):300–317, 2008. (cited on pp. 10, 14, 62, 95,
and 99)

[173] Staffware. Staffware Process Suite Version 2 – White Paper. Staffware PLC, Maidenhead,
UK, 2003. (cited on p. 201)

[174] A. De Toni and S. Tonchia. Performance Measurement Systems: Models, Characteristics
and Measures. International Journal of Operations and Production Management, 21(1):
46–70, 2001. (cited on pp. 7 and 95)

[175] I.T.P. Vanderfeesten, H.A. Reijers, and W.M.P. van der Aalst. Product Based Work-
flow Support: Dynamic Workflow Execution. In Z. Bellahsene and M. Léonard, editors,
Proceedings of the 20th International Conference on Advanced Information Systems Engi-
neering (CAiSE’08), volume 5074 of Lecture Notes in Computer Science, pages 571–574.
Springer, 2008. (cited on pp. 14, 176, 201, and 202)

[176] H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. ProM 6:
The Process Mining Toolkit. In M. La Rosa, editor, Proc. of BPM Demonstration Track
2010, volume 615 of CEUR Workshop Proceedings, pages 34–39, 2010. (cited on p. 51)

[177] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cam-
bridge University Press, Cambridge, 1994. (cited on p. 62)

[178] B. Weber, W. Wild, and R. Breu. CBRFlow: Enabling Adaptive Workflow Management
Through Conversational Case-Based Reasoning. In Advances in Case-Based Reasoning,
volume 3155 of Lecture Notes in Computer Science, pages 434–448. Springer, 2004. (cited
on pp. 14, 176, and 202)

[179] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models from
Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering, 10(2):
151–162, 2003. (cited on p. 61)

[180] A.J.M.M. Weijters and J.T.S. Ribeiro. Flexible Heuristics Miner (FHM). In IEEE Sym-
posium on Computational Intelligence and Data Mining, pages 310–317. IEEE Computer
Society, 2011. (cited on p. 61)

[181] A.J.M.M. Weijters, W.M.P. van der Aalst, B. van Dongen, C. Günther, R. Mans, A.K.

Bibliography 259

Alves de Medeiros, A. Rozinat, M. Song, and E. Verbeek. Process Mining with ProM. In
M. Dastani and E. de Jong, editors, Proceedings of the 19th Belgium-Netherlands Confer-
ence on Artificial Intelligence (BNAIC 2007), 2007. (cited on p. 51)

[182] J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik. Process
Discovery using Integer Linear Programming. In K. van Hee and R. Valk, editors, Pro-
ceedings of the 29th International Conference on Applications and Theory of Petri Nets
(Petri Nets 2008), volume 5062 of Lecture Notes in Computer Science, pages 368–387.
Springer, 2008. (cited on p. 61)

[183] J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik. Process Dis-
covery using Integer Linear Programming. Fundamenta Informaticae, 94:387–412, 2010.
(cited on p. 61)

[184] M. Weske. Business Process Management: Concepts, Languages, Architectures. Springer,
2007. (cited on pp. 2 and 174)

[185] M. Westergaard. Access/CPN 2.0: A High-Level Interface to Coloured Petri Net Models.
In Proceedings of the 32nd International Conference on Applications and Theory of Petri
Nets, volume 6709 of LNCS, pages 328–337. Springer, 2011. (cited on pp. 54 and 55)

[186] M. Westergaard. Better Algorithms for Analyzing and Enacting Declarative Workflow
Languages Using LTL. In S. Rinderle, F. Toumani, and K. Wolf, editors, Business Process
Management (BPM 2011), volume 6896 of Lecture Notes in Computer Science, pages
83–98. Springer, 2011. (cited on p. 49)

[187] M. Westergaard and F.M. Maggi. Modelling and Verification of a Protocol for Operational
Support using Coloured Petri Nets. In Proceedings of the 32nd International Conference
on Applications and Theory of Petri Nets, volume 5606 of LNCS. Springer, 2011. (cited
on pp. 16, 176, 177, 191, and 213)

[188] M. Westergaard and H.M.W. Verbeek. Efficient Implementation of Prioritized Transitions
for High-level Petri Nets. In M. Duvigneau, D. Moldt, and K. Hiraishi, editors, Petri Nets
and Software Engineering. International Workshop PNSE’11, volume 723, pages 27–41.
CEUR-WS.org, 2011. (cited on p. 48)

[189] M. Westergaard, L.M. Kristensen, and M. Kuusela. A Prototype for Cosimulating Sys-
temC and Coloured Petri Net Models. In K. Jensen, editor, Proceedings of the Tenth
Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2009), vol-
ume 590 of DAIMI, pages 1–19, Aarhus, Denmark, 2009. University of Aarhus. (cited on
pp. 56 and 213)

[190] C.D. Wickens and J.G. Hollands. Engineering Psychology and Human Performance.
Harper, 1999. (cited on pp. 28, 30, 32, 100, 101, 119, and 149)

[191] M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Achieving a
General, Formal and Decidable Approach to the OR-join in Workflow using Reset nets. In
G. Ciardo and P. Darondeau, editors, Applications and Theory of Petri Nets 2005, volume
3536 of Lecture Notes in Computer Science, pages 423–443. Springer, 2005. (cited on
p. 125)

[192] M.T. Wynn, M. Dumas, C.J. Fidge, A.H.M. ter Hofstede, and W.M.P. van der Aalst.
Business Process Simulation for Operational Decision Support. In A. ter Hofstede, B. Be-
natallah, and H.Y. Paik, editors, BPM 2007 International Workshops (BPI, BPD, CBP,
ProHealth, RefMod, Semantics4ws), volume 4928 of Lecture Notes in Computer Science,
pages 66–77. Springer, 2008. (cited on pp. 24 and 30)

[193] R.M. Yerkes and J.D. Dodson. The Relation of Strength of Stimulus to Rapidity of Habit-
Formation. Journal of Comparative Neurology and Psychology, 18:459–482, 1908. (cited
on pp. 28, 100, and 119)

260 Bibliography

[194] J.L. Zhao and E.A. Stohr. Temporal Workflow Management in a Claim Handling System.
In Proceedings of the International Joint Conference on Work Activities Coordination and
Collaboration (WACC’99), pages 187–195. ACM, 1999. (cited on p. 27)

Summary

Resource-Aware Business Process Management:
Analysis and Support
Organizations have tried to use simulation to analyze the performance of their business processes
at some point. However, few organizations are using simulation in a structured and effective way.
This can be attributed to several challenges that arise when mapping a real life business process
onto a simulation model especially involving human resources. The first and major pitfall is
that the focus of simulation is mainly on design yet it is more interesting to use simulation for
operational decision making. Simulation mainly deals with examining steady-state situations
and is less suitable for operational decision making. Secondly, there is limited support for the
use of existing artifacts such as event logs and models as input when building simulation models.
This implies that often times, simulation models are built from scratch.

The third and important problem when building simulation models is that resources are often
not modeled adequately. When building simulation models it is assumed that people are always
available to work. However, people are involved in many different processes, for example, a
doctor, or specialist may perform tasks in a wide range if processes. Moreover, people also work
part-time (for example, only in the morning) and people also tend to work in batches. For
example, people prefer to let the work items related to the same task accumulate and process all
of them in one batch. Furthermore, people also work at different speeds based on the workload
present in the system.

In this thesis, we have addressed these three limitations of simulation while focusing on the
resource performance perspective. In particular, we have addressed these main research goals:

1. To have a clear understanding of the way human resources actually work.

2. To capture essential resource performance characteristics based on the information stored
in event logs.

3. To provide a more accurate modeling of resources in simulation models.

262 Summary

4. To provide a unified platform where different operational support algorithms can interact.

In the first part of this thesis, we discussed approaches taken to analyze the performance of
resources from event logs. Process-Aware Information Systems (PAISs) are able to record in-
formation in event logs as they support business processes. Therefore, in this thesis we exploit
such information about real executions of users recorded by PAISs. Resource availability is ap-
proximated using three main parameters, i.e., availability, chunk size and horizon. Using process
mining techniques, we describe an approach used to analyze such resource availability param-
eters from event logs. For example, it is possible to estimate the percentage of time when a
resource is available for a given process and to estimate the lengths of specific periods of time
when resources work for a given process. We also quantify the relationship between workload
and the speed at which resources work from event log data. The workload is measured from
two perspectives, i.e., queue length (which specifies work scheduled for a given resource) and
how busy (that specifies the amount of work that each resource has executed in the recent past)
perspectives. The techniques discussed in this section have been implemented in the process
mining framework, ProM1 and have been applied on real life case studies.

The second part of this thesis provided a more accurate modeling of the resource perspective in
simulation models based on Colored Petri Net (CPN) models. First, we discuss a CPNmodel that
is used to approximate resource availability parameters based on a flexible parameter referred
to as the chunk size. Furthermore, it is shown how such resource availability parameters can
be embedded in a simulation model based on a real workflow process. Secondly, we present a
CPN model showing how workload-dependent working speeds can be incorporated in simulation
models.The results from this part indicate that it is crucial to accurately model and set resource
parameters when building simulation models.

In the final part of thesis, we discuss a framework for operational support. Operational support
is described as an online process mining technique that considers current data recorded by a
process-aware information system for running cases. We define four main kinds of operational
support queries, i.e., the simple query that checks the performance of the current partial exe-
cution trace, the compare query that compares the performance of the current partial trace to
other similar traces in a given model, the predict query that provide predictions about the future
of the current partial trace and the recommend query that provides the best next action to take
from the current partial trace. Given a current execution in a workflow system, a client can send
one of the four queries to the Operational Support Service (OSS) requesting for a response. In
turn, the OSS sends a response back to the client from a given operational support provider. The
approach discussed is in this thesis has been implemented on a real workflow system, Declare
and the process mining framework, ProM.

Finally, this thesis presents an infrastructure for testing of operational support algorithms based
on colored Petri nets. The testing platform provides an interaction between a simulated user (i.e.,
colored Petri net model), a workflow management system (i.e., the Declare workflow system)
and the OSS in the ProM framework. The approach presented provides a cost-effective way of
testing recommendation algorithms because instead of having real users interacting with real
workflow systems for testing purposes, we can carry out interactions of real workflow systems
with simulated users. In the testing platform, we considered the recommend action of operational
support and looked at several user behaviour models and how such models work given a number
of recommendation algorithms. The experiments carried out show that experimental results may
deviate quite a bit from expectations and this makes testing a very invaluable process.

1see www.processmining.org for more details about ProM.

Samenvatting

Resource-Aware Business Process Management:
Analyse en Ondersteuning
Organisaties hebben geprobeerd om aan de hand van simulatiemodellen van hun bedrijfspro-
cessen iets te kunnen zeggen over de prestaties van die processen. Echter, slechts weinig organ-
isaties gebruiken zulke modellen op een gestructureerde en effectieve manier. Dit kan worden
toegeschreven aan een aantal uitdagingen die ontstaan bij het vangen van een situatie in de echte
wereld in zo’n simulatiemodel, en dan met name met het vangen van het gedrag van medew-
erkers in dat model. De belangrijkste valkuil hierbij is dat de simulaties veelal worden ingezet
om het ontwerp van een nieuw bedrijfsproces ondersteunen, terwijl het juist interessanter is om
simulaties te gebruiken bij het maken van operationele beslissingen in een bestaand bedrijfspro-
ces. Simulaties worden vaak gebruikt voor zogenaamde ‘steady-state’ situaties, maar zijn minder
geschikt voor het maken van operationele beslissingen. Daarnaast is er nauwelijks ondersteuning
om bestaande artefacten zoals logboeken te gebruiken bij het ontwerp van de simulatiemodellen.
Het gevolg hiervan is dat simulatiemodellen vaak van de grond af moeten worden opgebouwd.

Een derde belangrijk probleem bij het maken van een simulatiemodel is dat het gedrag van
medewerkers vaak niet afdoende wordt meegenomen. Typisch nemen de ontwerpers van het
model aan dat de medewerkers altijd beschikbaar zijn voor het betreffende proces. Echter,
mensen zijn vaak betrokken bij meerdere bedrijfsprocessen. Een dokter of een specialist kan
bijvoorbeeld taken verrichten in veel verschillende bedrijfsprocessen. Verder werken veel medew-
erkers tegenwoordig parttime (bijvoorbeeld alleen ’s ochtends) en werken ze vaak op een bepaalde
manier. Veel medewerkers stapelen bijvoorbeeld werk van een bepaald type een tijdje op, en
werken dan in één keer die gehele stapel weg. Tevens hebben medewerkers de neiging hebben
om anders te gaan werken als het drukker wordt.

In dit proefschrift onderzoeken we deze drie problemen met simulatiemodellen, waarbij we ons
primair richten op de prestaties van de medewerkers. Concreet hebben we de volgende onder-
zoeksdoelen onderzocht:

264 Samenvatting

1. Verkrijg een duidelijk beeld hoe medewerkers werken.

2. Bepaal onmisbare werkkarakteristieken van de betrokken medewerkers aan de hand van
beschikbare logboeken.

3. Voorzie in een betere vertaling van het gedrag van medewerkers naar een simulatiemodel.

4. Voorzie in een platform waarop verschillende algoritmen voor het maken van operationele
beslissingen kunnen samenwerken.

In het eerste deel van het proefschrift hebben we bestaande aanpakken beschreven om prestaties
van medewerkers te bepalen aan de hand van logboeken. Process-Aware Information Systems
(PAISs) zijn in staat om veel gegevens over de lopende bedrijfsprocessen vast te leggen in
zulke logboeken. In dit proefschrift maken we dan ook gebruik van deze gegevens over hoe de
medewerkers in het echt hebben gewerkt. Beschikbaarheid van de medewerkers wordt benaderd
middels drie belangrijke parameters, te weten beschikbaarheid, stapelgrootte, en horizon. We
beschrijven een aanpak om, met behulp van process mining technieken, deze parameters te
schatten aan de hand van de logboeken. Het is bijvoorbeeld mogelijk om de beschikbaarheid van
medewerkers te schatten alsook specifieke tijden waarop medewerkers aan bepaalde processen
werken. Tevens karakteriseren we de mate waarop de werkdrukte enerzijds en de manier waarop
medewerkers werken anderzijds aan elkaar gerelateerd zijn aan de hand van de logboeken. De
werkdrukte is daarbij gemeten op twee manieren: de wachtrijlengte (wat een maat is voor de
hoeveelheid onderhanden werk voor een medewerker) en de gewerkte tijd (wat een maat is voor
de hoeveelheid gedaan werk in het recente verleden voor een medewerker). De technieken die
hierbij gebruikt zijn, zijn allen geïmplementeerd in het process mining framework ProM2, en
zijn toegepast met behulp van case studies uit de praktijk.

In het tweede deel van het proefschrift geven we een meer accurate manier van modelleren van
medewerkers aan in simulaties gemodelleerd met Colored Petri Net (CPN). Als eerste beschrijven
we een CPN model dat gebruikt kan worden om de stapelgrootte beschikbaarheidsparameter van
medewerkers te schatten. Verder laten we zien hoe zulke beschikbaarheidsparameters kunnen
worden gebruikt in een simulatiemodel dat gebaseerd is op een echt bedrijfsproces. Als tweede
beschrijven we een CPN model dat laat zien dat variabele werksnelheden (veroorzaakt door
bijvoorbeeld variabele werkdrukte) kan worden gebruikt in simulatiemodellen. De resultaten
van dit tweede deel geven aan dat het cruciaal is om de simulatiemodellen zo accuraat mogelijk
te maken wat betreft de modellering van de medewerkers.

In het laatste deel van het proefschrift beschrijven we een framework voor de operationele onder-
steuning. Deze operationele ondersteuning is beschreven als een on-line process mining techniek
die gebruikt maakt van actuele gegevens welke door het PAIS voor lopende en afgehandelde
zaken reeds in de logboeken is vastgelegd. We onderscheiden vier soorten van vragen voor deze
operationele ondersteuning: De enkelvoudige vraag, welke prestaties bepaalt van een enkele, nog
lopende zaak, de vergelijkingsvraag, welke prestaties van een nog lopende zaak vergelijkt met
afgehandelde zaken, de voorspellingsvraag, welke voorspellingen geeft voor een nog lopende zaak
aan de hand van vergelijkbare afgehandelde zaken, en de aanbevelingsvraag, welke aanbevelingen
doet voor een nog lopende zaak aan de hand van vergelijkbare afgehandelde zaken. Gegeven een
nog lopende zaak kan een client zo’n vraag stellen aan de zogenaamde Operational Support Ser-
vice (OSS). Op haar beurt stuurt de OSS dan het antwoord op de gestelde vraag terug, waarbij
het gebruik maakt van een specifieke zogenaamde operational support provider. De technieken
die hierbij gebruikt zijn, zijn ook allen geïmplementeerd in ProM.

Als laatste beschrijft dit proefschrift een platform om algoritmes voor operational support te
2Zie www.processmining.org voor aanvullende informatie over ProM

Samenvatting 265

testen met behulp van CPNs. Het testplatform maakt samenwerking mogelijk tussen de ges-
imuleerde gebruiker (een CPN model), een workflow systeem (het Declare workflow systeem),
en het OSS in het ProM framework. De beschreven aanpak biedt een manier van testen van
aanbevelingsalgoritmen die effectief is qua kosten, omdat het niet nodig is om echte medewerkers
te laten samenwerken met echte workflow systemen enkel om iets te testen. In plaats daarvan
kunnen we het echte workflow systeem laten samenwerken met gesimuleerde medewerkers. Voor
het testplatform hebben we de aanbevelingsvraag van de operationele ondersteuning gebruikt,
hebben we verschillende gedragingen voor de medewerkers gebruikt, en hebben we bekeken hoe
zulke modellen samenwerken met een aantal aanbevelingsalgoritmen. De resultaten van de ex-
perimenten laten zien dat de simulatieresultaten nogal kunnen afwijken van de verwachtingen,
wat het nut van het testen eens te meer aantoont.

Acknowledgments

Through the journey taken to obtain this thesis, there have been several people who have
encouraged and supported me. First of all, I greatly indebted to my promotor Wil van der
Aalst. Wil thank you for your patience, excellent guidance and supervision that you have given
me. I would also like to thank Michael Westergaard for his day-to-day supervision and whose
ideas and comments have helped shape many areas in this thesis.

I would like to thank the coordinators of the Nuffic project both in the Netherlands and in
Uganda for giving me a scholarship to undertake PhD research at Eindhoven University of
Technology. Because of this sponsorship, I was able to carry out and complete my research.

I would like to thank the members of my reading committee prof.dr. Mark van den Brand, prof.
John Nerbonne, prof.dr.ir. Theo van der Weide and dr. John A. Quinn for their interest and
useful comments.

I would also like to thank Eric Verbeek for translating the summary to Dutch and not only this
but also always willing to help with all ProM related issues. Eric and Boudewijn were also helpful
with my ProM development process and provision of logs used in testing different plug-ins. I
would also like to thank Anne Rozinat, Rony Mans, Hajo Reijers from the IS group who were
very helpful at the start of my PhD in developing ideas especially in the area of simulation. The
discussions that I had with them helped me in various ways in this PhD.

I would also like to thank Riet van Buul, Ine van der Ligt and Lutgart van Kollenberg for always
taking care of my travel details including my visa, residence permit, accommodation each time
I had to move in and out of the Netherlands. I would also especially thank Riet van Buul and
Delia Arsinte for taking care of my stuff for the six-month periods when I was in Uganda. Ine,
thank you for helping out with the process of my PhD defense preparation I am really grateful
for that. I would also like to thank my colleagues at the TU/e, Anne, Arya, Carmen, Christian
Stahl, Elham, Jackline, Jan Martijn, JC, Joos, Dirk, Fabio, Helen, Rafal and Massimiliano.
Thank you for the wonderful discussions and the social evenings that we shared together.

While in the Netherlands, I was lucky to meet many people who made my stay in Eindhoven a

268 Acknowledgements

wonderful experience. Thank you Eva and Mike Kagunda for your friendship and willingness to
open your home for me. Thanks Natalie Faneyte for the wonderful times that we had together.
I would like to thank my friends Israel and Patience Arinaitwe for being there for me.

To my dear parents Mr. and Mrs. Kibalama, thank you for all the love, support, prayers and
the value that you placed in education. To my siblings David, Deborah and Ivan, thank you for
always being a source of motivation and inspiration. Finally, to my husband Peter thank you
for your unconditional love, prayers, support and constant reminder that I can make it.

May God bless you all.
Joyce Nakatumba-Nabende

September 2013

Curriculum Vitae

Joyce Nakatumba-Nabende was born on 26th February 1982 in Kampala, Uganda. After fin-
ishing a Bachelor’s Degree in Computer Science in 2004 at Mbarara University of Science and
Technology in Mbarara, Uganda, she studied a Master of Science in Computer Science Degree
(with an Information Systems option) at Makerere University in Kampala, Uganda. In October
2006, she graduated with her Master of Science in Computer Science Degree.

From March 2008, Joyce started a PhD project at Department of Mathematics and Computer
Science at Eindhoven University of Technology of which the results are presented in this disser-
tation. Since 2012 she is employed at Mbarara Univeristy of Science and Technology. Joyce can
be reached on jnakatumba@gmail.com.

Index

arrival rate, 129
availability, 74, 127, 129

batch, 26, 126, 223

chunk size, 16, 74, 127, 129
completions, 185
cosimulation, 55

Declare, 52
Declare client, 193, 205

evaluation, 187
event, 39

enabling event, 63
schedule event, 68
start event, 65

event log, 39
trace, 39

event properties, 39

horizon, 74, 127

operational support, 16, 171
model, 174, 183
partial execution trace, 173

operational support architecture, 174
operational support queries, 177

compare query, 180
predict query, 184
recommend query, 186
simple query, 179

operational support service, 174

performance analysis, 7
process modeling, 3

declarative, 3
procedural, 3

processing speeds, 113
flow time, 113
service time, 113
waiting time, 113

projection mapping, 181
provider, 189

provider interface, 191

recommender, 221
batch recommender, 223
log-based recommender, 197, 225
model-specific recommender, 224
random recommender, 223

resource busyness, 103
timing profiles, 104
workload profiles, 106

resource states, 128
busy, 128
inactive, 128
ready, 128

sequence, 38
service rate, 129
session, 175
similar prefixes, 183
simulation, 12, 19, 123

272 Index

advanced simulation, 22, 31
traditional simulation, 21

steady state analysis, 23
synthetic logs, 166

transient analysis, 23

utilization, 129

work item, 40
work item states, 41

workload
how busy, 110, 155
queue length, 110, 154

workload-dependent speeds, 16, 28, 102, 219

XQuery, 50
FLWOR, 50, 194

Yerkes-Dodson Law of Arousal, 28, 100, 148

SIKS Dissertations

1998
1998-1 Johan van den Akker (CWI) DEGAS - An Active, Temporal Database of Autonomous Objects
1998-2 Floris Wiesman (UM) Information Retrieval by Graphically Browsing Meta-Information
1998-3 Ans Steuten (TUD) A Contribution to the Linguistic Analysis of Business Conversations within the
Language/Action Perspectives
1998-4 Dennis Breuker (UM) Memory versus Search in Games
1998-5 E.W.Oskamp (RUL) Computerondersteuning bij Straftoemeting

1999
1999-1 Mark Sloof (VU) Physiology of Quality Change Modelling; Automated modelling of Quality Change of
Agricultural Products
1999-2 Rob Potharst (EUR) Classification using decision trees and neural nets
1999-3 Don Beal (UM) The Nature of Minimax Search
1999-4 Jacques Penders (UM) The practical Art of Moving Physical Objects
1999-5 Aldo de Moor (KUB) Empowering Communities: A Method for the Legitimate User-Driven Specification
of Network Information Systems
1999-6 Niek J.E. Wijngaards (VU) Re-design of compositional systems
1999-7 David Spelt (UT) Verification support for object database design
1999-8 Jacques H.J. Lenting (UM) Informed Gambling: Conception and Analysis of a Multi-Agent Mechanism
for Discrete Reallocation.

2000
2000-1 Frank Niessink (VU) Perspectives on Improving Software Maintenance
2000-2 Koen Holtman (TUE) Prototyping of CMS Storage Management
2000-3 Carolien M.T. Metselaar (UVA) Sociaal-organisatorische gevolgen van kennistechnologie; een procesbe-
nadering en actorperspectief.
2000-4 Geert de Haan (VU) ETAG, A Formal Model of Competence Knowledge for User Interface Design
2000-5 Ruud van der Pol (UM) Knowledge-based Query Formulation in Information Retrieval.
2000-6 Rogier van Eijk (UU) Programming Languages for Agent Communication
2000-7 Niels Peek (UU) Decision-theoretic Planning of Clinical Patient Management
2000-8 Veerle Coupâ (EUR) Sensitivity Analyis of Decision-Theoretic Networks
2000-9 Florian Waas (CWI) Principles of Probabilistic Query Optimization
2000-10 Niels Nes (CWI) Image Database Management System Design Considerations, Algorithms and Archi-

274 SIKS Dissertations

tecture
2000-11 Jonas Karlsson (CWI) Scalable Distributed Data Structures for Database Management

2001
2001-1 Silja Renooij (UU) Qualitative Approaches to Quantifying Probabilistic Networks
2001-2 Koen Hindriks (UU) Agent Programming Languages: Programming with Mental Models
2001-3 Maarten van Someren (UvA) Learning as problem solving
2001-4 Evgueni Smirnov (UM) Conjunctive and Disjunctive Version Spaces with Instance-Based Boundary Sets
2001-5 Jacco van Ossenbruggen (VU) Processing Structured Hypermedia: A Matter of Style
2001-6 Martijn van Welie (VU) Task-based User Interface Design
2001-7 Bastiaan Schonhage (VU) Diva: Architectural Perspectives on Information Visualization
2001-8 Pascal van Eck (VU) A Compositional Semantic Structure for Multi-Agent Systems Dynamics.
2001-9 Pieter Jan ’t Hoen (RUL) Towards Distributed Development of Large Object-Oriented Models, Views
of Packages as Classes
2001-10 Maarten Sierhuis (UvA) Modeling and Simulating Work Practice; BRAHMS: a multiagent modeling
and simulation language for work practice analysis and design
2001-11 Tom M. van Engers (VUA) Knowledge Management: The Role of Mental Models in Business Systems
Design

2002
2002-01 Nico Lassing (VU) Architecture-Level Modifiability Analysis
2002-02 Roelof van Zwol (UT) Modelling and searching web-based document collections
2002-03 Henk Ernst Blok (UT) Database Optimization Aspects for Information Retrieval
2002-04 Juan Roberto Castelo Valdueza (UU) The Discrete Acyclic Digraph Markov Model in Data Mining
2002-05 Radu Serban (VU) The Private Cyberspace Modeling Electronic Environments inhabited by Privacy-
concerned Agents
2002-06 Laurens Mommers (UL) Applied legal epistemology; Building a knowledge-based ontology of the legal
domain
2002-07 Peter Boncz (CWI) Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications
2002-08 Jaap Gordijn (VU) Value Based Requirements Engineering: Exploring Innovative E-Commerce Ideas
2002-09 Willem-Jan van den Heuvel(KUB) Integrating Modern Business Applications with Objectified Legacy
Systems
2002-10 Brian Sheppard (UM) Towards Perfect Play of Scrabble
2002-11 Wouter C.A. Wijngaards (VU) Agent Based Modelling of Dynamics: Biological and Organisational
Applications
2002-12 Albrecht Schmidt (Uva) Processing XML in Database Systems
2002-13 Hongjing Wu (TUE) A Reference Architecture for Adaptive Hypermedia Applications
2002-14 Wieke de Vries (UU) Agent Interaction: Abstract Approaches to Modelling, Programming and Verifying
Multi-Agent Systems
2002-15 Rik Eshuis (UT) Semantics and Verification of UML Activity Diagrams for Workflow Modelling
2002-16 Pieter van Langen (VU) The Anatomy of Design: Foundations, Models and Applications
2002-17 Stefan Manegold (UVA) Understanding, Modeling, and Improving Main-Memory Database Perfor-
mance

2003
2003-01 Heiner Stuckenschmidt (VU) Ontology-Based Information Sharing in Weakly Structured Environments
2003-02 Jan Broersen (VU) Modal Action Logics for Reasoning About Reactive Systems
2003-03 Martijn Schuemie (TUD) Human-Computer Interaction and Presence in Virtual Reality Exposure
Therapy
2003-04 Milan Petkovic (UT) Content-Based Video Retrieval Supported by Database Technology
2003-05 Jos Lehmann (UVA) Causation in Artificial Intelligence and Law - A modelling approach
2003-06 Boris van Schooten (UT) Development and specification of virtual environments
2003-07 Machiel Jansen (UvA) Formal Explorations of Knowledge Intensive Tasks
2003-08 Yongping Ran (UM) Repair Based Scheduling
2003-09 Rens Kortmann (UM) The resolution of visually guided behaviour
2003-10 Andreas Lincke (UvT) Electronic Business Negotiation: Some experimental studies on the interaction
between medium, innovation context and culture
2003-11 Simon Keizer (UT) Reasoning under Uncertainty in Natural Language Dialogue using Bayesian Net-
works

SIKS Dissertations 275

2003-12 Roeland Ordelman (UT) Dutch speech recognition in multimedia information retrieval
2003-13 Jeroen Donkers (UM) Nosce Hostem - Searching with Opponent Models
2003-14 Stijn Hoppenbrouwers (KUN) Freezing Language: Conceptualisation Processes across ICT-Supported
Organisations
2003-15 Mathijs de Weerdt (TUD) Plan Merging in Multi-Agent Systems
2003-16 Menzo Windhouwer (CWI) Feature Grammar Systems - Incremental Maintenance of Indexes to Digital
Media Warehouses
2003-17 David Jansen (UT) Extensions of Statecharts with Probability, Time, and Stochastic Timing
2003-18 Levente Kocsis (UM) Learning Search Decisions

2004
2004-01 Virginia Dignum (UU) A Model for Organizational Interaction: Based on Agents, Founded in Logic
2004-02 Lai Xu (UvT) Monitoring Multi-party Contracts for E-business
2004-03 Perry Groot (VU) A Theoretical and Empirical Analysis of Approximation in Symbolic Problem Solving
2004-04 Chris van Aart (UVA) Organizational Principles for Multi-Agent Architectures
2004-05 Viara Popova (EUR) Knowledge discovery and monotonicity
2004-06 Bart-Jan Hommes (TUD) The Evaluation of Business Process Modeling Techniques
2004-07 Elise Boltjes (UM) Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar abstract
denken, vooral voor meisjes
2004-08 Joop Verbeek(UM) Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale politiäle
gegevensuitwisseling en digitale expertise
2004-09 Martin Caminada (VU) For the Sake of the Argument; explorations into argument-based reasoning
2004-10 Suzanne Kabel (UVA) Knowledge-rich indexing of learning-objects
2004-11 Michel Klein (VU) Change Management for Distributed Ontologies
2004-12 The Duy Bui (UT) Creating emotions and facial expressions for embodied agents
2004-13 Wojciech Jamroga (UT) Using Multiple Models of Reality: On Agents who Know how to Play
2004-14 Paul Harrenstein (UU) Logic in Conflict. Logical Explorations in Strategic Equilibrium
2004-15 Arno Knobbe (UU) Multi-Relational Data Mining
2004-16 Federico Divina (VU) Hybrid Genetic Relational Search for Inductive Learning
2004-17 Mark Winands (UM) Informed Search in Complex Games
2004-18 Vania Bessa Machado (UvA) Supporting the Construction of Qualitative Knowledge Models
2004-19 Thijs Westerveld (UT) Using generative probabilistic models for multimedia retrieval
2004-20 Madelon Evers (Nyenrode) Learning from Design: facilitating multidisciplinary design teams

2005
2005-01 Floor Verdenius (UVA) Methodological Aspects of Designing Induction-Based Applications
2005-02 Erik van der Werf (UM)) AI techniques for the game of Go
2005-03 Franc Grootjen (RUN) A Pragmatic Approach to the Conceptualisation of Language
2005-04 Nirvana Meratnia (UT) Towards Database Support for Moving Object data
2005-05 Gabriel Infante-Lopez (UVA) Two-Level Probabilistic Grammars for Natural Language Parsing
2005-06 Pieter Spronck (UM) Adaptive Game AI
2005-07 Flavius Frasincar (TUE) Hypermedia Presentation Generation for Semantic Web Information Systems
2005-08 Richard Vdovjak (TUE) A Model-driven Approach for Building Distributed Ontology-based Web Ap-
plications
2005-09 Jeen Broekstra (VU) Storage, Querying and Inferencing for Semantic Web Languages
2005-10 Anders Bouwer (UVA) Explaining Behaviour: Using Qualitative Simulation in Interactive Learning
Environments
2005-11 Elth Ogston (VU) Agent Based Matchmaking and Clustering - A Decentralized Approach to Search
2005-12 Csaba Boer (EUR) Distributed Simulation in Industry
2005-13 Fred Hamburg (UL) Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen
2005-14 Borys Omelayenko (VU) Web-Service configuration on the Semantic Web; Exploring how semantics
meets pragmatics
2005-15 Tibor Bosse (VU) Analysis of the Dynamics of Cognitive Processes
2005-16 Joris Graaumans (UU) Usability of XML Query Languages
2005-17 Boris Shishkov (TUD) Software Specification Based on Re-usable Business Components
2005-18 Danielle Sent (UU) Test-selection strategies for probabilistic networks
2005-19 Michel van Dartel (UM) Situated Representation
2005-20 Cristina Coteanu (UL) Cyber Consumer Law, State of the Art and Perspectives
2005-21 Wijnand Derks (UT) Improving Concurrency and Recovery in Database Systems by Exploiting Appli-

276 SIKS Dissertations

cation Semantics

2006
2006-01 Samuil Angelov (TUE) Foundations of B2B Electronic Contracting
2006-02 Cristina Chisalita (VU) Contextual issues in the design and use of information technology in organi-
zations
2006-03 Noor Christoph (UVA) The role of metacognitive skills in learning to solve problems
2006-04 Marta Sabou (VU) Building Web Service Ontologies
2006-05 Cees Pierik (UU) Validation Techniques for Object-Oriented Proof Outlines
2006-06 Ziv Baida (VU) Software-aided Service Bundling - Intelligent Methods & Tools for Graphical Service
Modeling
2006-07 Marko Smiljanic (UT) XML schema matching – balancing efficiency and effectiveness by means of
clustering
2006-08 Eelco Herder (UT) Forward, Back and Home Again - Analyzing User Behavior on the Web
2006-09 Mohamed Wahdan (UM) Automatic Formulation of the Auditor’s Opinion
2006-10 Ronny Siebes (VU) Semantic Routing in Peer-to-Peer Systems
2006-11 Joeri van Ruth (UT) Flattening Queries over Nested Data Types
2006-12 Bert Bongers (VU) Interactivation - Towards an e-cology of people, our technological environment,
and the arts
2006-13 Henk-Jan Lebbink (UU) Dialogue and Decision Games for Information Exchanging Agents
2006-14 Johan Hoorn (VU) Software Requirements: Update, Upgrade, Redesign - towards a Theory of Require-
ments Change
2006-15 Rainer Malik (UU) CONAN: Text Mining in the Biomedical Domain
2006-16 Carsten Riggelsen (UU) Approximation Methods for Efficient Learning of Bayesian Networks
2006-17 Stacey Nagata (UU) User Assistance for Multitasking with Interruptions on a Mobile Device
2006-18 Valentin Zhizhkun (UVA) Graph transformation for Natural Language Processing
2006-19 Birna van Riemsdijk (UU) Cognitive Agent Programming: A Semantic Approach
2006-20 Marina Velikova (UvT) Monotone models for prediction in data mining
2006-21 Bas van Gils (RUN) Aptness on the Web
2006-22 Paul de Vrieze (RUN) Fundaments of Adaptive Personalisation
2006-23 Ion Juvina (UU) Development of Cognitive Model for Navigating on the Web
2006-24 Laura Hollink (VU) Semantic Annotation for Retrieval of Visual Resources
2006-25 Madalina Drugan (UU) Conditional log-likelihood MDL and Evolutionary MCMC
2006-26 Vojkan Mihajlovic (UT) Score Region Algebra: A Flexible Framework for Structured Information
Retrieval
2006-27 Stefano Bocconi (CWI) Vox Populi: generating video documentaries from semantically annotated media
repositories
2006-28 Borkur Sigurbjornsson (UVA) Focused Information Access using XML Element Retrieval

2007
2007-01 Kees Leune (UvT) Access Control and Service-Oriented Architectures
2007-02 Wouter Teepe (RUG) Reconciling Information Exchange and Confidentiality: A Formal Approach
2007-03 Peter Mika (VU) Social Networks and the Semantic Web
2007-04 Jurriaan van Diggelen (UU) Achieving Semantic Interoperability in Multi-agent Systems: a dialogue-
based approach
2007-05 Bart Schermer (UL) Software Agents, Surveillance, and the Right to Privacy: a Legislative Framework
for Agent-enabled Surveillance
2007-06 Gilad Mishne (UVA) Applied Text Analytics for Blogs
2007-07 Natasa Jovanovic’ (UT) To Whom It May Concern - Addressee Identification in Face-to-Face Meetings
2007-08 Mark Hoogendoorn (VU) Modeling of Change in Multi-Agent Organizations
2007-09 David Mobach (VU) Agent-Based Mediated Service Negotiation
2007-10 Huib Aldewereld (UU) Autonomy vs. Conformity: an Institutional Perspective on Norms and Protocols
2007-11 Natalia Stash (TUE) Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive Hyper-
media System
2007-12 Marcel van Gerven (RUN) Bayesian Networks for Clinical Decision Support: A Rational Approach to
Dynamic Decision-Making under Uncertainty
2007-13 Rutger Rienks (UT) Meetings in Smart Environments; Implications of Progressing Technology
2007-14 Niek Bergboer (UM) Context-Based Image Analysis
2007-15 Joyca Lacroix (UM) NIM: a Situated Computational Memory Model

SIKS Dissertations 277

2007-16 Davide Grossi (UU) Designing Invisible Handcuffs. Formal investigations in Institutions and Organi-
zations for Multi-agent Systems
2007-17 Theodore Charitos (UU) Reasoning with Dynamic Networks in Practice
2007-18 Bart Orriens (UvT) On the development an management of adaptive business collaborations
2007-19 David Levy (UM) Intimate relationships with artificial partners
2007-20 Slinger Jansen (UU) Customer Configuration Updating in a Software Supply Network
2007-21 Karianne Vermaas (UU) Fast diffusion and broadening use: A research on residential adoption and
usage of broadband internet in the Netherlands between 2001 and 2005
2007-22 Zlatko Zlatev (UT) Goal-oriented design of value and process models from patterns
2007-23 Peter Barna (TUE) Specification of Application Logic in Web Information Systems
2007-24 Georgina Ramírez Camps (CWI) Structural Features in XML Retrieval
2007-25 Joost Schalken (VU) Empirical Investigations in Software Process Improvement

2008
2008-01 Katalin Boer-Sorbán (EUR) Agent-Based Simulation of Financial Markets: A modular, continuous-time
approach
2008-02 Alexei Sharpanskykh (VU) On Computer-Aided Methods for Modeling and Analysis of Organizations
2008-03 Vera Hollink (UVA) Optimizing hierarchical menus: a usage-based approach
2008-04 Ander de Keijzer (UT) Management of Uncertain Data - towards unattended integration
2008-05 Bela Mutschler (UT) Modeling and simulating causal dependencies on process-aware information sys-
tems from a cost perspective
2008-06 Arjen Hommersom (RUN) On the Application of Formal Methods to Clinical Guidelines, an Artificial
Intelligence Perspective
2008-07 Peter van Rosmalen (OU) Supporting the tutor in the design and support of adaptive e-learning
2008-08 Janneke Bolt (UU) Bayesian Networks: Aspects of Approximate Inference
2008-09 Christof van Nimwegen (UU) The paradox of the guided user: assistance can be counter-effective
2008-10 Wauter Bosma (UT) Discourse oriented summarization
2008-11 Vera Kartseva (VU) Designing Controls for Network Organizations: A Value-Based Approach
2008-12 Jozsef Farkas (RUN) A Semiotically Oriented Cognitive Model of Knowledge Representation
2008-13 Caterina Carraciolo (UVA) Topic Driven Access to Scientific Handbooks
2008-14 Arthur van Bunningen (UT) Context-Aware Querying; Better Answers with Less Effort
2008-15 Martijn van Otterlo (UT) The Logic of Adaptive Behavior: Knowledge Representation and Algorithms
for the Markov Decision Process Framework in First-Order Domains.
2008-16 Henriette van Vugt (VU) Embodied agents from a user’s perspective
2008-17 Martin Op ’t Land (TUD) Applying Architecture and Ontology to the Splitting and Allying of Enter-
prises
2008-18 Guido de Croon (UM) Adaptive Active Vision
2008-19 Henning Rode (UT) From Document to Entity Retrieval: Improving Precision and Performance of
Focused Text Search
2008-20 Rex Arendsen (UVA) Geen bericht, goed bericht. Een onderzoek naar de effecten van de introductie
van elektronisch berichtenverkeer met de overheid op de administratieve lasten van bedrijven.
2008-21 Krisztian Balog (UVA) People Search in the Enterprise
2008-22 Henk Koning (UU) Communication of IT-Architecture
2008-23 Stefan Visscher (UU) Bayesian network models for the management of ventilator-associated pneumonia
2008-24 Zharko Aleksovski (VU) Using background knowledge in ontology matching
2008-25 Geert Jonker (UU) Efficient and Equitable Exchange in Air Traffic Management Plan Repair using
Spender-signed Currency
2008-26 Marijn Huijbregts (UT) Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled
2008-27 Hubert Vogten (OU) Design and Implementation Strategies for IMS Learning Design
2008-28 Ildiko Flesch (RUN) On the Use of Independence Relations in Bayesian Networks
2008-29 Dennis Reidsma (UT) Annotations and Subjective Machines - Of Annotators, Embodied Agents, Users,
and Other Humans
2008-30 Wouter van Atteveldt (VU) Semantic Network Analysis: Techniques for Extracting, Representing and
Querying Media Content
2008-31 Loes Braun (UM) Pro-Active Medical Information Retrieval
2008-32 Trung H. Bui (UT) Toward Affective Dialogue Management using Partially Observable Markov Decision
Processes
2008-33 Frank Terpstra (UVA) Scientific Workflow Design; theoretical and practical issues
2008-34 Jeroen de Knijf (UU) Studies in Frequent Tree Mining
2008-35 Ben Torben Nielsen (UvT) Dendritic morphologies: function shapes structure

278 SIKS Dissertations

2009

2009-01 Rasa Jurgelenaite (RUN) Symmetric Causal Independence Models
2009-02 Willem Robert van Hage (VU) Evaluating Ontology-Alignment Techniques
2009-03 Hans Stol (UvT) A Framework for Evidence-based Policy Making Using IT
2009-04 Josephine Nabukenya (RUN) Improving the Quality of Organisational Policy Making using Collabo-
ration Engineering
2009-05 Sietse Overbeek (RUN) Bridging Supply and Demand for Knowledge Intensive Tasks - Based on
Knowledge, Cognition, and Quality
2009-06 Muhammad Subianto (UU) Understanding Classification
2009-07 Ronald Poppe (UT) Discriminative Vision-Based Recovery and Recognition of Human Motion
2009-08 Volker Nannen (VU) Evolutionary Agent-Based Policy Analysis in Dynamic Environments
2009-09 Benjamin Kanagwa (RUN) Design, Discovery and Construction of Service-oriented Systems
2009-10 Jan Wielemaker (UVA) Logic programming for knowledge-intensive interactive applications
2009-11 Alexander Boer (UVA) Legal Theory, Sources of Law & the Semantic Web
2009-12 Peter Massuthe (TUE, Humboldt-Universität zu Berlin) Operating Guidelines for Services
2009-13 Steven de Jong (UM) Fairness in Multi-Agent Systems
2009-14 Maksym Korotkiy (VU) From ontology-enabled services to service-enabled ontologies (making ontolo-
gies work in e-science with ONTO-SOA)
2009-15 Rinke Hoekstra (UVA) Ontology Representation - Design Patterns and Ontologies that Make Sense
2009-16 Fritz Reul (UvT) New Architectures in Computer Chess
2009-17 Laurens van der Maaten (UvT) Feature Extraction from Visual Data
2009-18 Fabian Groffen (CWI) Armada, An Evolving Database System
2009-19 Valentin Robu (CWI) Modeling Preferences, Strategic Reasoning and Collaboration in Agent-Mediated
Electronic Markets
2009-20 Bob van der Vecht (UU) Adjustable Autonomy: Controling Influences on Decision Making
2009-21 Stijn Vanderlooy (UM) Ranking and Reliable Classification
2009-22 Pavel Serdyukov (UT) Search For Expertise: Going beyond direct evidence
2009-23 Peter Hofgesang (VU) Modelling Web Usage in a Changing Environment
2009-24 Annerieke Heuvelink (VUA) Cognitive Models for Training Simulations
2009-25 Alex van Ballegooij (CWI) RAM: Array Database Management through Relational Mapping
2009-26 Fernando Koch (UU) An Agent-Based Model for the Development of Intelligent Mobile Services
2009-27 Christian Glahn (OU) Contextual Support of social Engagement and Reflection on the Web
2009-28 Sander Evers (UT) Sensor Data Management with Probabilistic Models
2009-29 Stanislav Pokraev (UT) Model-Driven Semantic Integration of Service-Oriented Applications
2009-30 Marcin Zukowski (CWI) Balancing vectorized query execution with bandwidth-optimized storage
2009-31 Sofiya Katrenko (UVA) A Closer Look at Learning Relations from Text
2009-32 Rik Farenhorst (VU) and Remco de Boer (VU) Architectural Knowledge Management: Supporting
Architects and Auditors
2009-33 Khiet Truong (UT) How Does Real Affect Affect Affect Recognition In Speech?
2009-34 Inge van de Weerd (UU) Advancing in Software Product Management: An Incremental Method Engi-
neering Approach
2009-35 Wouter Koelewijn (UL) Privacy en Politiegegevens; Over geautomatiseerde normatieve informatie-
uitwisseling
2009-36 Marco Kalz (OUN) Placement Support for Learners in Learning Networks
2009-37 Hendrik Drachsler (OUN) Navigation Support for Learners in Informal Learning Networks
2009-38 Riina Vuorikari (OU) Tags and self-organisation: a metadata ecology for learning resources in a mul-
tilingual context
2009-39 Christian Stahl (TUE, Humboldt-Universität zu Berlin) Service Substitution – A Behavioral Approach
Based on Petri Nets
2009-40 Stephan Raaijmakers (UvT) Multinomial Language Learning: Investigations into the Geometry of
Language
2009-41 Igor Berezhnyy (UvT) Digital Analysis of Paintings
2009-42 Toine Bogers (UvT) Recommender Systems for Social Bookmarking
2009-43 Virginia Nunes Leal Franqueira (UT) Finding Multi-step Attacks in Computer Networks using Heuristic
Search and Mobile Ambients
2009-44 Roberto Santana Tapia (UT) Assessing Business-IT Alignment in Networked Organizations
2009-45 Jilles Vreeken (UU) Making Pattern Mining Useful
2009-46 Loredana Afanasiev (UvA) Querying XML: Benchmarks and Recursion

SIKS Dissertations 279

2010

2010-01 Matthijs van Leeuwen (UU) Patterns that Matter
2010-02 Ingo Wassink (UT) Work flows in Life Science
2010-03 Joost Geurts (CWI) A Document Engineering Model and Processing Framework for Multimedia doc-
uments
2010-04 Olga Kulyk (UT) Do You Know What I Know? Situational Awareness of Co-located Teams in Multi-
display Environments
2010-05 Claudia Hauff (UT) Predicting the Effectiveness of Queries and Retrieval Systems
2010-06 Sander Bakkes (UvT) Rapid Adaptation of Video Game AI
2010-07 Wim Fikkert (UT) Gesture interaction at a Distance
2010-08 Krzysztof Siewicz (UL) Towards an Improved Regulatory Framework of Free Software. Protecting user
freedoms in a world of software communities and eGovernments
2010-09 Hugo Kielman (UL) A Politiele gegevensverwerking en Privacy, Naar een effectieve waarborging
2010-10 Rebecca Ong (UL) Mobile Communication and Protection of Children
2010-11 Adriaan Ter Mors (TUD) The world according to MARP: Multi-Agent Route Planning
2010-12 Susan van den Braak (UU) Sensemaking software for crime analysis
2010-13 Gianluigi Folino (RUN) High Performance Data Mining using Bio-inspired techniques
2010-14 Sander van Splunter (VU) Automated Web Service Reconfiguration
2010-15 Lianne Bodenstaff (UT) Managing Dependency Relations in Inter-Organizational Models
2010-16 Sicco Verwer (TUD) Efficient Identification of Timed Automata, theory and practice
2010-17 Spyros Kotoulas (VU) Scalable Discovery of Networked Resources: Algorithms, Infrastructure, Appli-
cations
2010-18 Charlotte Gerritsen (VU) Caught in the Act: Investigating Crime by Agent-Based Simulation
2010-19 Henriette Cramer (UvA) People’s Responses to Autonomous and Adaptive Systems
2010-20 Ivo Swartjes (UT) Whose Story Is It Anyway? How Improv Informs Agency and Authorship of Emergent
Narrative
2010-21 Harold van Heerde (UT) Privacy-aware data management by means of data degradation
2010-22 Michiel Hildebrand (CWI) End-user Support for Access to Heterogeneous Linked Data
2010-23 Bas Steunebrink (UU) The Logical Structure of Emotions
2010-24 Dmytro Tykhonov Designing Generic and Efficient Negotiation Strategies
2010-25 Zulfiqar Ali Memon (VU) Modelling Human-Awareness for Ambient Agents: A Human Mindreading
Perspective
2010-26 Ying Zhang (CWI) XRPC: Efficient Distributed Query Processing on Heterogeneous XQuery Engines
2010-27 Marten Voulon (UL) Automatisch contracteren
2010-28 Arne Koopman (UU) Characteristic Relational Patterns
2010-29 Stratos Idreos(CWI) Database Cracking: Towards Auto-tuning Database Kernels
2010-30 Marieke van Erp (UvT) Accessing Natural History - Discoveries in data cleaning, structuring, and
retrieval
2010-31 Victor de Boer (UVA) Ontology Enrichment from Heterogeneous Sources on the Web
2010-32 Marcel Hiel (UvT) An Adaptive Service Oriented Architecture: Automatically solving Interoperability
Problems
2010-33 Robin Aly (UT) Modeling Representation Uncertainty in Concept-Based Multimedia Retrieval
2010-34 Teduh Dirgahayu (UT) Interaction Design in Service Compositions
2010-35 Dolf Trieschnigg (UT) Proof of Concept: Concept-based Biomedical Information Retrieval
2010-36 Jose Janssen (OU) Paving the Way for Lifelong Learning; Facilitating competence development through
a learning path specification
2010-37 Niels Lohmann (TUE) Correctness of services and their composition
2010-38 Dirk Fahland (TUE) From Scenarios to Components
2010-39 Ghazanfar Farooq Siddiqui (VU) Integrative modeling of emotions in virtual agents
2010-40 Mark van Assem (VU) Converting and Integrating Vocabularies for the Semantic Web
2010-41 Guillaume Chaslot (UM) Monte-Carlo Tree Search
2010-42 Sybren de Kinderen (VU) Needs-driven service bundling in a multi-supplier setting - the computational
e3-service approach
2010-43 Peter van Kranenburg (UU) A Computational Approach to Content-Based Retrieval of Folk Song
Melodies
2010-44 Pieter Bellekens (TUE) An Approach towards Context-sensitive and User-adapted Access to Hetero-
geneous Data Sources, Illustrated in the Television Domain
2010-45 Vasilios Andrikopoulos (UvT) A theory and model for the evolution of software services
2010-46 Vincent Pijpers (VU) e3alignment: Exploring Inter-Organizational Business-ICT Alignment
2010-47 Chen Li (UT) Mining Process Model Variants: Challenges, Techniques, Examples
2010-48 Milan Lovric (EUR) Behavioral Finance and Agent-Based Artificial Markets

280 SIKS Dissertations

2010-49 Jahn-Takeshi Saito (UM) Solving difficult game positions
2010-50 Bouke Huurnink (UVA) Search in Audiovisual Broadcast Archives
2010-51 Alia Khairia Amin (CWI) Understanding and supporting information seeking tasks in multiple sources
2010-52 Peter-Paul van Maanen (VU) Adaptive Support for Human-Computer Teams: Exploring the Use of
Cognitive Models of Trust and Attention
2010-53 Edgar Meij (UVA) Combining Concepts and Language Models for Information Access

2011
2011-01 Botond Cseke (RUN) Variational Algorithms for Bayesian Inference in Latent Gaussian Models
2011-02 Nick Tinnemeier(UU) Organizing Agent Organizations. Syntax and Operational Semantics of an
Organization-Oriented Programming Language
2011-03 Jan Martijn van der Werf (TUE) Compositional Design and Verification of Component-Based Infor-
mation Systems
2011-04 Hado van Hasselt (UU) Insights in Reinforcement Learning; Formal analysis and empirical evaluation
of temporal-difference learning algorithms
2011-05 Base van der Raadt (VU) Enterprise Architecture Coming of Age - Increasing the Performance of an
Emerging Discipline.
2011-06 Yiwen Wang (TUE) Semantically-Enhanced Recommendations in Cultural Heritage
2011-07 Yujia Cao (UT) Multimodal Information Presentation for High Load Human Computer Interaction
2011-08 Nieske Vergunst (UU) BDI-based Generation of Robust Task-Oriented Dialogues
2011-09 Tim de Jong (OU) Contextualised Mobile Media for Learning
2011-10 Bart Bogaert (UvT) Cloud Content Contention
2011-11 Dhaval Vyas (UT) Designing for Awareness: An Experience-focused HCI Perspective
2011-12 Carmen Bratosin (TUE) Grid Architecture for Distributed Process Mining
2011-13 Xiaoyu Mao (UvT) Airport under Control. Multiagent Scheduling for Airport Ground Handling
2011-14 Milan Lovric (EUR) Behavioral Finance and Agent-Based Artificial Markets
2011-15 Marijn Koolen (UvA) The Meaning of Structure: the Value of Link Evidence for Information Retrieval
2011-16 Maarten Schadd (UM) Selective Search in Games of Different Complexity
2011-17 Jiyin He (UVA) Exploring Topic Structure: Coherence, Diversity and Relatedness
2011-18 Mark Ponsen (UM) Strategic Decision-Making in complex games
2011-19 Ellen Rusman (OU) The Mind’s Eye on Personal Profiles
2011-20 Qing Gu (VU) Guiding service-oriented software engineering - A view-based approach
2011-21 Linda Terlouw (TUD) Modularization and Specification of Service-Oriented Systems
2011-22 Junte Zhang (UVA) System Evaluation of Archival Description and Access
2011-23 Wouter Weerkamp (UVA) Finding People and their Utterances in Social Media
2011-24 Herwin van Welbergen (UT) Behavior Generation for Interpersonal Coordination with Virtual Humans
On Specifying, Scheduling and Realizing Multimodal Virtual Human Behavior
2011-25 Syed Waqar ul Qounain Jaffry (VU) Analysis and Validation of Models for Trust Dynamics
2011-26 Matthijs Aart Pontier (VU) Virtual Agents for Human Communication - Emotion Regulation and
Involvement-Distance Trade-Offs in Embodied Conversational Agents and Robots
2011-27 Aniel Bhulai (VU) Dynamic website optimization through autonomous management of design patterns
2011-28 Rianne Kaptein(UVA) Effective Focused Retrieval by Exploiting Query Context and Document Struc-
ture
2011-29 Faisal Kamiran (TUE) Discrimination-aware Classification
2011-30 Egon van den Broek (UT) Affective Signal Processing (ASP): Unraveling the mystery of emotions
2011-31 Ludo Waltman (EUR) Computational and Game-Theoretic Approaches for Modeling Bounded Ratio-
nality
2011-32 Nees-Jan van Eck (EUR) Methodological Advances in Bibliometric Mapping of Science
2011-33 Tom van der Weide (UU) Arguing to Motivate Decisions
2011-34 Paolo Turrini (UU) Strategic Reasoning in Interdependence: Logical and Game-theoretical Investiga-
tions
2011-35 Maaike Harbers (UU) Explaining Agent Behavior in Virtual Training
2011-36 Erik van der Spek (UU) Experiments in serious game design: a cognitive approach
2011-37 Adriana Burlutiu (RUN) Machine Learning for Pairwise Data, Applications for Preference Learning
and Supervised Network Inference
2011-38 Nyree Lemmens (UM) Bee-inspired Distributed Optimization
2011-39 Joost Westra (UU) Organizing Adaptation using Agents in Serious Games
2011-40 Viktor Clerc (VU) Architectural Knowledge Management in Global Software Development
2011-41 Luan Ibraimi (UT) Cryptographically Enforced Distributed Data Access Control
2011-42 Michal Sindlar (UU) Explaining Behavior through Mental State Attribution
2011-43 Henk van der Schuur (UU) Process Improvement through Software Operation Knowledge

SIKS Dissertations 281

2011-44 Boris Reuderink (UT) Robust Brain-Computer Interfaces
2011-45 Herman Stehouwer (UvT) Statistical Language Models for Alternative Sequence Selection
2011-46 Beibei Hu (TUD) Towards Contextualized Information Delivery: A Rule-based Architecture for the
Domain of Mobile Police Work
2011-47 Azizi Bin Ab Aziz(VU) Exploring Computational Models for Intelligent Support of Persons with
Depression
2011-48 Mark Ter Maat (UT) Response Selection and Turn-taking for a Sensitive Artificial Listening Agent
2011-49 Andreea Niculescu (UT) Conversational interfaces for task-oriented spoken dialogues: design aspects
influencing interaction quality

2012
2012-01 Terry Kakeeto (UvT) Relationship Marketing for SMEs in Uganda
2012-02 Muhammad Umair(VU) Adaptivity, emotion, and Rationality in Human and Ambient Agent Models
2012-03 Adam Vanya (VU) Supporting Architecture Evolution by Mining Software Repositories
2012-04 Jurriaan Souer (UU) Development of Content Management System-based Web Applications
2012-05 Marijn Plomp (UU) Maturing Interorganisational Information Systems
2012-06 Wolfgang Reinhardt (OU) Awareness Support for Knowledge Workers in Research Networks
2012-07 Rianne van Lambalgen (VU) When the Going Gets Tough: Exploring Agent-based Models of Human
Performance under Demanding Conditions
2012-08 Gerben de Vries (UVA) Kernel Methods for Vessel Trajectories
2012-09 Ricardo Neisse (UT) Trust and Privacy Management Support for Context-Aware Service Platforms
2012-10 David Smits (TUE) Towards a Generic Distributed Adaptive Hypermedia Environment
2012-11 J.C.B. Rantham Prabhakara (TUE) Process Mining in the Large: Preprocessing, Discovery, and Diag-
nostics
2012-12 Kees van der Sluijs (TUE) Model Driven Design and Data Integration in Semantic Web Information
Systems
2012-13 Suleman Shahid (UvT) Fun and Face: Exploring non-verbal expressions of emotion during playful
interactions
2012-14 Evgeny Knutov(TUE) Generic Adaptation Framework for Unifying Adaptive Web-based Systems
2012-15 Natalie van der Wal (VU) Social Agents. Agent-Based Modelling of Integrated Internal and Social
Dynamics of Cognitive and Affective Processes
2012-16 Fiemke Both (VU) Helping people by understanding them - Ambient Agents supporting task execution
and depression treatment
2012-17 Amal Elgammal (UvT) Towards a Comprehensive Framework for Business Process Compliance
2012-18 Eltjo Poort (VU) Improving Solution Architecting Practices
2012-19 Helen Schonenberg (TUE) What’s Next? Operational Support for Business Process Execution
2012-20 Ali Bahramisharif (RUN) Covert Visual Spatial Attention, a Robust Paradigm for Brain-Computer
Interfacing
2012-21 Roberto Cornacchia (TUD) Querying Sparse Matrices for Information Retrieval
2012-22 Thijs Vis (UvT) Intelligence, politie en veiligheidsdienst: verenigbare grootheden?
2012-23 Christian Muehl (UT) Toward Affective Brain-Computer Interfaces: Exploring the Neurophysiology of
Affect during Human Media Interaction
2012-24 Laurens van der Werff (UT) Evaluation of Noisy Transcripts for Spoken Document Retrieval
2012-25 Silja Eckartz (UT) Managing the Business Case Development in Inter-Organizational IT Projects: A
Methodology and its Application
2012-26 Emile de Maat (UVA) Making Sense of Legal Text
2012-27 Hayrettin Gurkok (UT) Mind the Sheep! User Experience Evaluation & Brain-Computer Interface
Games
2012-28 Nancy Pascall (UvT) Engendering Technology Empowering Women
2012-29 Almer Tigelaar (UT) Peer-to-Peer Information Retrieval
2012-30 Alina Pommeranz (TUD) Designing Human-Centered Systems for Reflective Decision Making
2012-31 Emily Bagarukayo (RUN) A Learning by Construction Approach for Higher Order Cognitive Skills
Improvement, Building Capacity and Infrastructure
2012-32 Wietske Visser (TUD) Qualitative multi-criteria preference representation and reasoning
2012-33 Rory Sie (OUN) Coalitions in Cooperation Networks (COCOON)
2012-34 Pavol Jancura (RUN) Evolutionary analysis in PPI networks and applications
2012-35 Evert Haasdijk (VU) Never Too Old To Learn – On-line Evolution of Controllers in Swarm- and
Modular Robotics
2012-36 Denis Ssebugwawo (RUN) Analysis and Evaluation of Collaborative Modeling Processes
2012-37 Agnes Nakakawa (RUN) A Collaboration Process for Enterprise Architecture Creation
2012-38 Selmar Smit (VU) Parameter Tuning and Scientific Testing in Evolutionary Algorithms

282 SIKS Dissertations

2012-39 Hassan Fatemi (UT) Risk-aware design of value and coordination networks
2012-40 Agus Gunawan (UvT) Information Access for SMEs in Indonesia
2012-41 Sebastian Kelle (OU) Game Design Patterns for Learning
2012-42 Dominique Verpoorten (OU) Reflection Amplifiers in self-regulated Learning
2012-43 Withdrawn
2012-44 Anna Tordai (VU) On Combining Alignment Techniques
2012-45 Benedikt Kratz (UvT) A Model and Language for Business-aware Transactions
2012-46 Simon Carter (UVA) Exploration and Exploitation of Multilingual Data for Statistical Machine Trans-
lation
2012-47 Manos Tsagkias (UVA) Mining Social Media: Tracking Content and Predicting Behavior
2012-48 Jorn Bakker (TUE) Handling Abrupt Changes in Evolving Time-series Data
2012-49 Michael Kaisers (UM) Learning against Learning - Evolutionary dynamics of reinforcement learning
algorithms in strategic interactions
2012-50 Steven van Kervel (TUD) Ontologogy driven Enterprise Information Systems Engineering
2012-51 Jeroen de Jong (TUD) Heuristics in Dynamic Scheduling; a practical framework with a case study in
elevator dispatching

2013
2013-01 Viorel Milea (EUR) News Analytics for Financial Decision Support
2013-02 Erietta Liarou (CWI) MonetDB/DataCell: Leveraging the Column-store Database Technology for
Efficient and Scalable Stream Processing
2013-03 Szymon Klarman (VU) Reasoning with Contexts in Description Logics
2013-04 Chetan Yadati(TUD) Coordinating autonomous planning and scheduling
2013-05 Dulce Pumareja (UT) Groupware Requirements Evolutions Patterns
2013-06 Romulo Goncalves(CWI) The Data Cyclotron: Juggling Data and Queries for a Data Warehouse
Audience
2013-07 Giel van Lankveld (UT) Quantifying Individual Player Differences
2013-08 Robbert-Jan Merk(VU) Making enemies: cognitive modeling for opponent agents in fighter pilot sim-
ulators
2013-09 Fabio Gori (RUN) Metagenomic Data Analysis: Computational Methods and Applications
2013-10 Jeewanie Jayasinghe Arachchige(UvT) A Unified Modeling Framework for Service Design
2013-11 Evangelos Pournaras(TUD) Multi-level Reconfigurable Self-organization in Overlay Services
2013-12 Marian Razavian(VU) Knowledge-driven Migration to Services
2013-13 Mohammad Safiri(UT) Service Tailoring: User-centric creation of integrated IT-based homecare ser-
vices to support independent living of elderly
2013-14 Jafar Tanha (UVA) Ensemble Approaches to Semi-Supervised Learning Learning
2013-15 Daniel Hennes (UM) Multiagent Learning - Dynamic Games and Applications
2013-16 Eric Kok (UU) Exploring the practical benefits of argumentation in multi-agent deliberation
2013-17 Koen Kok (VU) The PowerMatcher: Smart Coordination for the Smart Electricity Grid
2013-18 Jeroen Janssens (UvT) Outlier Selection and One-Class Classification
2013-19 Renze Steenhuizen (TUD) Coordinated Multi-Agent Planning and Scheduling
2013-20 Katja Hofmann (UvA) Fast and Reliable Online Learning to Rank for Information Retrieval
2013-21 Sander Wubben (UvT) Text-to-text generation by monolingual machine translation
2013-22 Tom Claassen (RUN) Causal Discovery and Logic
2013-23 Patricio de Alencar Silva(UvT) Value Activity Monitoring
2013-24 Haitham Bou Ammar (UM) Automated Transfer in Reinforcement Learning
2013-25 Agnieszka Anna Latoszek-Berendsen (UM) Intention-based Decision Support. A new way of represent-
ing and implementing clinical guidelines in a Decision Support System
2013-26 Alireza Zarghami (UT) Architectural Support for Dynamic Homecare Service Provisioning
2013-27 Mohammad Huq (UT) Inference-based Framework Managing Data Provenance
2013-28 Frans van der Sluis (UT) When Complexity becomes Interesting: An Inquiry into the Information
eXperience
2013-29 Iwan de Kok (UT) Listening Head
2013-30 Joyce Nakatumba (TUE) Resource-Aware Business Process Management: Analysis and Support

	1 Introduction
	1.1 Business Process Management
	1.2 Process Modeling
	1.3 Performance Analysis Using Process Mining and Simulation
	1.3.1 Graduate Admission Process
	1.3.2 Business Process Performance Analysis
	1.3.3 Analysis of a Graduate Admission Process

	1.4 Problem Definition and Research Goals
	1.5 Contributions
	1.6 Overview of the Thesis

	2 Limitations of Current Simulation Approaches
	2.1 Traditional Simulation
	2.2 Problems with Current Simulation Approaches
	2.2.1 Pitfall One: Focus on Design Rather than Operational Decision Making
	2.2.2 Pitfall Two: Building Simulation Models from Scratch Rather Than Using Existing Artifacts

	2.3 Incorrect Modeling of Resources
	2.3.1 People are Involved in Multiple Processes and Work Part-time
	2.3.2 People Work in Batches
	2.3.3 People Prioritize Tasks Within a Process
	2.3.4 Processes May Change Depending on Context
	2.3.5 People Do Not Work at Constant Speeds

	2.4 Related Work
	2.5 Conclusion
	2.5.1 Focus of Advanced Simulation
	2.5.2 Outlook

	3 Preliminaries
	3.1 Notations
	3.2 Event Logs
	3.3 Representing Event Logs
	3.4 Process Modeling Formalisms
	3.4.1 Petri Nets
	3.4.2 Colored Petri Nets
	3.4.3 Declare

	3.5 Query Languages
	3.6 Tools
	3.6.1 ProM Framework
	3.6.2 Declare
	3.6.3 CPN Tools
	3.6.4 Access/CPN 2.0

	3.7 Visualization of Results
	3.7.1 Error Bar Plot
	3.7.2 Box Plot

	4 Using Process Mining to Analyze Resource Availability
	4.1 Introduction
	4.2 Assumptions about Resource Work Behavior
	4.3 Preprocessing of Event Logs
	4.3.1 Obtaining Start Event Given a Complete Event
	4.3.2 Obtaining Schedule Event Given a Complete Event
	4.3.3 Experimental Validation

	4.4 Characterizing Resource Availability from Event Logs
	4.4.1 Resource Availability Parameters
	4.4.2 Approach Taken to Analyze Resource Availability
	4.4.3 Resource Availability from Event Logs
	4.4.4 Experimental Validation

	4.5 Related Work
	4.6 Conclusion

	5 Using Process Mining to Analyze Resource Busyness
	5.1 Workload-dependent Processing Speeds
	5.2 Characterizing Workload-Dependent Speeds from Event Logs
	5.2.1 Approach Taken to Analyze Resource Busyness
	5.2.2 Workload and Processing Speeds from Event Logs
	5.2.3 Experimental Validation

	5.3 Related Work
	5.4 Conclusion

	6 Modeling Resource Behavior in Simulation Models
	6.1 Business Process Simulation
	6.2 Modeling Resource Availability
	6.2.1 Availability Simulation Model Parameters
	6.2.2 CPN Model
	6.2.3 Simulation Experiments
	6.2.4 Embedding Availability Parameters in a Workflow Model
	6.2.5 CPN Model for the Workflow Model
	6.2.6 Discussion

	6.3 Modeling Resource Busyness
	6.3.1 Workload-Dependent Simulation Model Parameters
	6.3.2 CPN Model
	6.3.3 Simulation Experiments

	6.4 Conclusion

	7 Providing a Unified View of Event Logs
	7.1 Bridging the Gap Between Simulation and Process Mining
	7.2 Generating Synthetic Logs from Simulation Models
	7.3 Conclusion

	8 Operational Support
	8.1 Introduction
	8.2 Operational Support Architecture
	8.3 Running Example
	8.4 Operational Support Queries
	8.4.1 Simple Query
	8.4.2 Compare Query
	8.4.3 Predict Query
	8.4.4 Recommend Query

	8.5 Implementation Considerations of the Operational Support Service
	8.5.1 Operational Support Service and Provider
	8.5.2 Data Representation
	8.5.3 Simple Queries
	8.5.4 Advanced Queries

	8.6 Related Work
	8.7 Conclusion

	9 Testing Operational Support Algorithms
	9.1 Evaluating Operational Support Algorithms
	9.2 Running Example
	9.3 User Behaviour Modeling
	9.3.1 Top Page of the CPN Model
	9.3.2 User Page
	9.3.3 Pick Item Page
	9.3.4 User Behaviour Page

	9.4 Recommendation Algorithms
	9.4.1 Provider Model
	9.4.2 Log-based Recommender

	9.5 Experiments
	9.5.1 Random Recommender
	9.5.2 Batch Recommender
	9.5.3 Model-specific Recommender
	9.5.4 Log-based Recommender

	9.6 Conclusion

	10 Conclusions
	10.1 Summary of Contributions
	10.2 Limitations and Directions for Future Work
	10.3 Concluding Remarks

	Bibliography
	Summary
	Samenvatting
	Acknowledgements
	Curriculum Vitae
	Index
	SIKS Dissertations

