151,230 research outputs found

    Interaction with constraints in 3D modeling

    Get PDF
    Journal ArticleInteractive geometric modeling is an important part of the industrial product design process. This paper describes how constraints can be used to facilitate the interactive definition of geometric objects and assemblies. We have implemented a geometric modeling system that combines the definition of objects by interactive construction operations and specification of geometric constraints. The modeling operations automatically generate constraints to maintain the properties intended by their invocation, and constraints, in turn, determine the degrees of freedom for further interactive mouse-controlled modeling operations. A symbolic geometry constraint solver is employed for solving systems of constraints

    Interaction with constraints in 3D modeling

    Get PDF
    Journal ArticleInteractive geometric modeling is an important part of the industrial product design process. This paper describes how constraints can be used to facilitate the interactive definition of geometric objects and assemblies. We have implemented a geometric modeling system that combines the definition of objects by interactive construction operations and specification of geometric constraints. The modeling operations automatically generate constraints to maintain the properties intended by their invocation, and constraints, in turn, determine the degrees of freedom for further interactive mouse-controlled modeling operations. A symbolic geometry constraint solver is employed for solving systems of constraints

    INTERACTION WITH CONSTRAINTS IN 3D MODELING

    Full text link

    Pore Elimination Mechanisms during 3D Printing of Metals

    Get PDF
    Laser powder bed fusion (LPBF) is a 3D printing technology that can print metal parts with complex geometries without the design constraints of traditional manufacturing routes. However, the parts printed by LPBF normally contain many more pores than those made by conventional methods, which severely deteriorates their properties. Here, by combining in-situ high-speed high-resolution synchrotron x-ray imaging experiments and multi-physics modeling, we unveil the dynamics and mechanisms of pore motion and elimination in the LPBF process. We find that the high thermocapillary force, induced by the high temperature gradient in the laser interaction region, can rapidly eliminate pores from the melt pool during the LPBF process. The thermocapillary force driven pore elimination mechanism revealed here may guide the development of 3D printing approaches to achieve pore-free 3D printing of metals

    Synthesizing Physically Plausible Human Motions in 3D Scenes

    Full text link
    Synthesizing physically plausible human motions in 3D scenes is a challenging problem. Kinematics-based methods cannot avoid inherent artifacts (e.g., penetration and foot skating) due to the lack of physical constraints. Meanwhile, existing physics-based methods cannot generalize to multi-object scenarios since the policy trained with reinforcement learning has limited modeling capacity. In this work, we present a framework that enables physically simulated characters to perform long-term interaction tasks in diverse, cluttered, and unseen scenes. The key idea is to decompose human-scene interactions into two fundamental processes, Interacting and Navigating, which motivates us to construct two reusable Controller, i.e., InterCon and NavCon. Specifically, InterCon contains two complementary policies that enable characters to enter and leave the interacting state (e.g., sitting on a chair and getting up). To generate interaction with objects at different places, we further design NavCon, a trajectory following policy, to keep characters' locomotion in the free space of 3D scenes. Benefiting from the divide and conquer strategy, we can train the policies in simple environments and generalize to complex multi-object scenes. Experimental results demonstrate that our framework can synthesize physically plausible long-term human motions in complex 3D scenes. Code will be publicly released at https://github.com/liangpan99/InterScene

    Productive Frictions: Moving from Digital to Material Prototyping and Low-Volume Production for Design Research

    Get PDF
    In this paper we discuss the low-volume production of an interaction design research product known as the tilting bowl. The form of the tilting bowl was designed with 3D modeling tools and utilized digital fabrication for rapid prototyping. The final form was produced in a small number of glazed ceramic forms with embedded electronics and actuators. We focus on the lessons we learned from the challenges and design opportunities that arose in moving from digital processes to ceramic processes. We reflected on these lessons and developed thematic notions we refer to as frictions. These include shifting constraints, naïve expertise, manual automation, and dynamic materiality. The contributions of this paper are new design insights into the combination of digital and material processes for studio based prototyping and low-volume production and adds to the emerging relevance of digital fabrication, physical fabrication, and physical materials to interaction design and HCI research

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専
    corecore