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Interaction with Constraints in 3D Modeling

Wolfgang Sohrt, Beat Bruderlin 

Department of Computer Science, University of Utah

Interactive geometric modeling is an important part of the industrial product design 
process. This paper describes how constraints can be used to facilitate the interactive 
definition of geometric objects and assemblies. We have implemented a geometric 
modeling system that combines the definition of objects by interactive construction 
operations and specification of geometric constraints. The modeling operations 
automatically generate constraints to maintain the properties intended by their invocation, 
and constraints, in turn, determine the degrees of freedom for further interactive mouse- 
controlled modeling operations. A symbolic geometry constraint solver is employed for 
solving systems of constraints.

1 Introduction
Today's modeling system are mostly based on an operational paradigm, i.e. 

geometric shapes are defined by a sequence of construction operations (explicit 
modeling). Such systems do not automatically ensure that the generated shape meets 
some specification, nor does it check whether an operation violates the intended 
properties of previous operations.

A much smaller number of modelers are based on constraint solving systems 
[SUT63, BOR81, LIN81, LIG82, GOS83, NEL85, BRU86, BRU87, BAR87, 
FUQ87, BOR88, EAT89, etc.]. Here, a geometric shape is defined by geometric 
dimensions, such as distance, angles, parallelism of lines and surfaces, etc. (implicit 
modeling'). This way, a definition can be checked for consistency. Unfortunately, as 
soon as one tries to construct anything more than trivial examples, constraint 
specification and solving becomes very complicated. Even if the constraint solver is 
capable of handling arbitrarily complex specifications, it is still difficult for the user to 
keep track of what is already defined, why some specifications are contradictory, and



how to resolve the inconsistencies that are likely to occur. In most cases it is much 
easier to just apply a powerful modeling operation where it would be difficult to come 
up with a complete specification for the same object.

In this research we investigated how the two seemingly opposite approaches of 
explicit and implicit modeling can be integrated effectively in an interactive 
environment.

2 Interactive Drafting of 3D Objects
In this section we give an overview of how graphical, object-oriented user 

interaction can be applied and extended to become a useful tool for 3 drafting. The user 
interaction of a geometric modeling system should be as simple and intuitive as 
possible. In our system, geometric operations are therefore not defined by entering 
commands and parameters in some command language, but by treating the objects on 
the screen as physical objects that can be directly manipulated by drag actions in 3-D 
(using a mouse), similarly to known 2-D illustration programs, as they exist for the 
Macintosh. However, the requirements for 3-D drafting systems are more demanding:

• Drafting applications require exact data input (much more than generally 
necessary in illustration applications).

• 3-D operations on 3-D data need to be carried out on a 2-D display and with a
2-D input device (mouse). Solutions to this problem are suggested, for 
instance, in [NIE86].

To overcome these problems, we provide the following solutions:
• 3-D objects provide handles for interactive transformations (rotation, 

translation and scaling) in certain directions (see Example 1 & 2 below). Thus, 
object manipulations are achieved conveniently through mouse dragging.

• Unfortunately, dragging operations generally yield inaccurate translation, 
rotation and scaling parameters, and therefore only approximate the intended 
manipulation (more like a sketch). One way of obtaining exact values is to 
provide a (user definable) 3D grid for these values.

• Another way of achieving exact interactive transformations is by defining them 
relative to other already existing objects that serve as a reference. Previous 
work describing this approach in an interactive environment [BIE90] 
demonstrates its power usefulness.
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• Yet another way of obtaining exact shapes is by defining geom etric 
dimensionings (angles, distances, etc.) and relations (parallelism, incidence, 
etc.). We can use the interactive mouse manipulations (mentioned above) to 
first approximately shape and position the geometric objects (sketch), and then 
specify the dimensionings and relations (constraints) which define the exact 
shape of the objects implicitly. A constraint solver is employed for solving 
systems of simultaneous constraints.

A previous approach that combined interactive modeling and constraints is 
described in [ROS86]. One of the major goals of our research was to investigate further 
ways of making all the alternative approaches work together and supplement each 
other, rather than being separate, isolated tools. Each of the approaches is already very 
powerful by itself; through an appropriate integration we obtain an even more powerful 
tool.

3 Interfacing Interactive Manipulations with Constraint 
Specification.
Whenever a geometric operation is carried out, we wish to keep the intended 

resulting geometric relationships, and these should not be violated by subsequent 
operations. E.g. when we position an object on a table, one of its faces becomes 
coplanar to the table surface. Future operations should maintain the coplanarity (i.e. we 
can translate the object within that plane or rotate it about an axis perpendicular to the 
plane). Unfortunately, conventional modeling systems don't remember such properties 
of previous operations. The approach taken here is to determine the properties of the 
modeling operations and to maintain them during further manipulations. Not only does 
this avoid possible errors, but also, it will make the interaction more efficient. If done 
properly, the system does what the user means without him explicitly stating his 
intentions all the time. The idea is to keep the postconditions of previous manipulations 
as constraints. When constraints are imposed on objects or groups of objects 
(assemblies), they restrict the degrees of freedom for manipulations. These constraints 
will be visualized and enforced during interactive, direct manipulations. It must be 
intuitively clear which operations are possible, and which are not (A rigid object, for 
instance, must look rigid; if the rotational degrees of freedom are restricted to an axis, 
this axis can be displayed, etc.).
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Example 1
This example demonstrates how the principles introduced above can be used to 
assemble objects. A T-shaped object is to be fit into a U-shaped object with a 
slanted side (Fig. 1). First, we select one point on the T that shall be matched 
with a second point on the U (as indicated by the arrow in Fig. 2).

Since so far the T is not constrained, a translation is possible. The system moves 
the T towards the U such that the two selected points match. By carrying out this 
translate-to-match transformation, a constraint is automatically created which 
ensures that the point selected on the T stays fixed to the point on the U (indicated 
by a black dot in Fig. 3).

Now, the T cannot be translated relative to the U any longer (but it can still be 
rotated about the fixed point). Hence, when we select the next two points as 
shown by the arrow in Fig. 3, the system will, by default, apply a rotation 
transformation about the fixed point on T such that the two half lines originating 
at the fixed point and each going through one of the two selected points will 
coincide afterwards.



A new constraint is automatically created that requires the T to remain fixed with 
respect to the merged half lines (indicated by a thick black line in Fig. 4). T can 
still be rotated, but only about this line. In order to align the T with the slanted 
sides of the U, we select the two points indicated by the arrow in Fig. 4, and the 
system will carry out a rotation about the fixed line such that the two selected 
points lie in the same half-plane originating at the fixed line (indicated by the 
grayed surfaces in Fig. 5).
Now, the position as well as the orientation of the T are fixed. Only its size can 
still be changed (unless the user explicitly specified size constraints before). We 
select two points on the fixed line, as indicated by the arrow in Fig. 5. The line is 
collinear with a body axis of the T. Hence, the system carries out a one-dimen
sional scaling along this axis with the fixed point determining the center of 
scaling. The result is shown in Fig. 6.
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The size of the T is now constrained in the direction of the axis, but it can still be 
scaled in the other two directions with the fixed point remaining unchanged. The 
modeler displays two handles for drag-scaling with the fixed point as the common 
center (Fig. 7).

To scale the object interactively, the user places the mouse cursor on the 
appropriate handle and drags it towards or away from the fixed point, until the 
object has reached the desired size in that direction. As an aid to obtain exact
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values, the scaling can be done in discrete intervals (grid), and dimension 
numbers are displayed while dragging. To obtain a finer resolution than it is 
possible with the mouse input, the user can correct the displayed dimension by 
typing in intermediate values. After the scaling has been carried out, the new 
dimension can be turned into a constraint by clicking on a corresponding check
box. .

4 Constraints, Dependencies and Object Hierarchies.
Geometric objects in modeling applications are often logically grouped and 

structured in hierarchies (assemblies). Operations can be defined for a single object, as 
well as for a group of objects. In the following we show how constraints between 
objects can also lead to hierarchical structures in the cases where we can derive a clear 
dependency of one object from another.

Constraints are internally represented as constraints between an object and the 
group in which the object belongs (or relative to the world coordinate system group, 
which is the implicit group to which all objects belong by default). Objects of a 
subgroup are the dependents of their super group. Whenever a constraint is defined 
between two unrelated objects, a group hierarchy is established automatically, as 
shown in the following example.

Example 2
The robot finger in fig. 8 has been constructed by matching the leftmost edge of 
part 2 to the rightmost edge of part 1 and then matching the leftmost edge of part 3 
to the rightmost edge of part 2. These matching operations generate constraints 
between objects automatically, as described in the previous section. The resulting 
degrees of freedom between adjacent parts are rotation axes which are visually 
indicated by the rotation handles in fig. 8.
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This simple model of object dependencies is very useful for many construction 
operations and for simple mechanical systems, such as manipulators. Mechanical 
systems like linkages, however, can get very complex, and a more sophisticated 
approach, such as it is described in the next section, is necessary.

5 Explicitly Defined Constraints
So far we described how constraints can defined implicitly as properties 

(postconditions) of a modeling operation. These constraints are always satisfied, since 
they are generated after an operation has been carried out. Degrees of freedom limit the 
possible manipulations, and thus constraints guarantee that future operation will not 
violate previously defined constraints. Our system also provides the possibility of 
explicitly specifying, relaxing or changing constraints any time. For instance, we may 
want to dimension distances, angles, etc. of a not yet completely constrained shape or 
assembly. A symbolic constraint solver is employed for the following tasks:

• Automatically derive the transformation on the objects that are necessary to 
meet the constraints.

• Compute the degrees of freedom for future interactive manipulations.
• Detect if a subset of the constraints cannot be satisfied simultaneously, i.e., is 

contradictory.
The symbolic constraint solver simplifies a given set of constraints by applying 

geometric rewrite rules, derived from axioms of Euclidean geometry. The result is a 
symbolic form of geometric operations. A short description of the constraint solver is 
given in the next section; for a more comprehensive treatment of the subject we refer to 
[BRU88] and [BRU90],

Many practical 3D construction examples have in common that the constraints are 
defined in some two dimensional hyperplane. In our current implementation we 
therefore restricted ourselves to apply a two-dimensional constraint solver. (Some 
simple generalizations to 3D constraint solving have been proposed in [BRU86] and 
[BRU87]). The mentioned hyperplane usually doesn't have to be specified explicitly by 
the user, but is already defined by the degrees of freedom of the objects involved. For 
instance, if a rotational degree of freedom is defined for an object, future constraints 
will automatically be interpreted as being defined relative to a plane perpendicular to the 
rotation axis. In other examples the plane for constraint solving is defined by
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constraining a face of an object to be coplanar or parallel to some face of an object 
higher in the hierarchy. Before solving the constraint system, the program has to make 
sure that the constraints are in a common plane (or in parallel planes). All points that are 
to be constrained will be projected onto that plane, the constraints will be solved within 
the plane, and the 2D solution coordinates will be mapped back into 3-space.

We provided the following 2D predicates for specifying constraints: •
• position of a point,
• distance between two points,
• directed slope of the line between two points, and
• angle between two lines.
This set of predicates is sufficient for the specification of a wide range of 

constraints. For example, to make a line vertical, a slope constraint can be imposed on 
its end points.

The constraints are defined by choosing the appropriate constraint type, selecting 
the points for which the constraint shall be imposed, and specifying the constraint 
value. If no value is specified, the constraint will assume the value that will keep the 
current state. For instance, if a distance constraint is to be specified between two 
points, and the user selects the two points, per default their current distance (projected 
onto the constraint plane) will be constrained, unless the user types in a new value.

We decided that explicitly defined constraints between two objects shall not 
affect the shape of either of them. The objects are assumed to be rigid. This fact must 
be made known to the constraint solver. Thus, if two points of the same object are 
constrained, the modeler automatically generates a distance constraint between them.

6 The Constraint Solver

Constraints are relations between points which may be expressed by predicates on 
these points. The predicates may be stored in the database of a Prolog interpreter as so 
called 'facts'. Here is a list of some geometric predicates on points, as used in our 
approach:

p(P, Pos). 
d(Pl, P2, D). 
s(Pl, P2, Alpha).
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The semantics of the predicates is defined as follows:

To express that the position of a point P is known we use the predicate p(P, Pos). 
This means that the position of P is defined by the value of Pos to which a symbolic 
expression may be assigned. Possible expressions are, e.g. a pair of coordinates [10, 
0.5], or a geometric function, such as intersection(line(p(P2), 90), circle(p(P3), 20)), 
meaning that the point is located at the intersection of a line through another point P2 
with a slope of 90 degrees toward the x-axis, and a circle with center point P3 and a 
radius of 20.

The predicate d(Pl, P2 Dist), expresses that we know the distance between two 
points. For the value of Dist we may again write a constant number, a parameter, or a 
function such as length(vector(P3, P4)), i.e. the distance of two points with already 
specified position.

s(Pl, P2, Alpha) constrains the slope of the line connecting PI and P2 by the angle 
Alpha to the x-axis (measured counterclockwise).

To derive the position of points that are not explicitly specified by a corresponding 
predicate, we may apply rules known from constructing with compass and ruler. An 
example: given the positions of two points PI and P2, the distance between PI and a 
third point P3 and the distance between P2 and P3, we may construct P3 by inter
secting two circles. We first write the precondition of the rule by a conjunction of 
predicates:

p(Pl, [Posl]) a p(P2, [Pos2]) a d(Pl, P3, R l) a d(P2, P3, R2)

The position of the third point P3 is found by intersecting two circles with centers 
PI and P2. This is expressed symbolically by:

p(P3, intersection(circle(p(Pl), Rl), circle(p(P2), R2))).

We formalize this construction rule by introducing the following notation for 
rewrite-rules: Conjunctions of predicates are expressed as lists of predicates '[ ]', and 
the symbol indicates the direction in which the rewrite-rule is applied. The above 
rule is represented by the following rewrite-rule:
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[p(Pl, [Posl]), p(P2, [Pos2]), d(Pl, P3, R l), d(P2, P3, R2)]
-> [p(Pl, [Posl]), p(P2, [Pos2]),

p(P3, intersection(circle(p(Pl), R l), circle(p(P2), R2)))].

A a more comprehensive description of the constraint solver can be found in 
[BRU87], [BRU88] and [BRU90b].

7 Interfacing Between Implicitly and Explicitly Defined 
Constraints
Solving explicitly defined constraints should, of course, not violate the 

constraints derived as a postcondition of modeling operations (implicitly defined 
constraints), and modeling operations should not violate explicitly defined constraints. 
Whenever the symbolic constraint solver is invoked, the implicit constraints on the 
objects are turned into temporary explicit constraints on their constrained points. Then, 
the constraint solver is started.

For the constraint solver all objects are regarded as being rigid objects. This 
simplifies the user interaction and constraint solving dramatically. It means, for 
example, that implicitly the distance between two points of the same object is 
automatically constrained. Also, points of an object higher in the hierarchy are 
completely constrained relative to the points of an object lower in the hierarchy.

Figure 10 gives an overview of how the various parts of the system are 
interrelated.

specifying 
geometric constraints 
(define, relax, change)

applying
modelling

operations

constraint solver geometric modeler

Fig. 10
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The constraint solver finds symbolic expressions for the positions of the points 
specified by the constraints. These expressions are the numerically evaluated and 
directly translated into transformations on the objects involved. If several points of the 
same object are constrained, the transformations are interpreted as follows: The 
computed new position of the first point leads to a translation that maps the old position 
into the new one. The position of the second point in the same object yields a rotation. 
In the case where the degrees of freedom are two dimensional, two points is all we can 
specify for one object. For three dimensional degrees of freedom, one additional 
rotation may be specified. If more points shall be specified by constraints, an additional 
scaling operation may have to be carried out to satisfy the constraints. Since we limit 
ourselves to rigid objects, the constraint solver would report an overconstrained 
configuration, in this case.

Example 3
As an example for demonstrating the interaction between the constrain solver and 
the interactive part, we construct a toy device, called "treadmill" (fig. 11). It 
consists of a board with two notches orthogonal to each other, two sliders that 
run in those notches, and a handle whose one end is attached to one slider and 
whose mid section is attached to the other slider. If we turn the handle, the sliders 
move back and forth along the notches.
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First we construct the board with the notches. We generate five blocks 
dimensioned to their proper size and assemble them, using matching operations. 
A boolean operation (union) is carried out to merge the blocks into one solid. For 
the sliders, we instantiate cuboids, translate, rotate and scale them, such that they 
fit into the notches. To position them, we first attach them to the corners of the 
notches. Afterwards, we relax their translation constraints in the direction of their 
notches. Finally, we create the handle bar by instantiating another cuboid, scale it 
to the appropriate dimensions, and place a cylinder on one end. Then we install 
reference points on the board, the sliders, and the handle bar (indicated by circles 
in fig. 11).
To position the parts of the treadmill correctly we have to add explicit constraints 
to the ones we already specified implicitly; we constrain the vectors between the 
reference points on the handle and those on the sliders to be of length zero to 
make the points coincide (fig. 11).
Some explicit constraints are derived from the implicit constraints automatically: 
Either slider can only move in one direction relative to the board, so a slope 
constraint is imposed on the lines between their reference points and a point on 
the board (which happens to be the reference point of the board in this case). The 
distance between the reference points on the sliders is constrained, because they 
are matched with the reference points of the handle bar, which is treated as being 
rigid.
The constraints need to be defined in the plane that is defined by the two 
directions in which the sliders can move. This means that all constraints are 
specified and solved between projections of the constrained points onto that 
plane.
There is only one more constraint left that has to be specified to constrain the 
assembly completely: the slope of the handle. We constrain it by giving it a 
symbolic parameter name "alpha". For the numerical evaluation we need to 
specify a numeric value for "alpha". The result of the constraint solving is shown 
in fig. 12. (For the demonstration we let alpha run from 0 to 360 degrees in 10- 
degree-increments. This will give an animated display of the assembly (see fig. 
13).
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Once the symbolic constraints have been solved, the results will be turned into 
degrees of freedom. For the example above, the positions and orientations of the two 
sliders and the handles are completely constrained (they are functions of the parameter 
"alpha"). This means we can no longer freely manipulate these objects.

8 Group Hierarchies and Explicitly Defined Constraints
Whereas implicitly defined constraints directly express dependencies that are 

naturally represented by a group hierarchy (see section 4), explicitly defined constraints 
can be utilized to express relations between objects within the same group.

The constraint solver solves systems of constraints bottom up. At each level in 
the hierarchy, objects in a group (and all assemblies) are treated as rigid objects. A great 
advantage of the group hierarchy is that it localizes the constraint networks. Every 
group may feature a constraint network between its subgroups, but in the average, 
these local networks will be fairly small. Since the time needed for solving a constraint 
network can grow substantially with the number of constraints specified, localizing the 
the constraint solving improves the speed enormously.

Whenever the shape of a group is changed, all of their super groups need to be 
reevaluated. The symbolic constraints, however, do not need to be recomputed. For 
example, if the positions of the axles in a gearbox are constrained such that the 
cogwheels touch appropriately, and the diameter of one of the cogwheels is modified, 
the position of the axles have to be re-adjusted by substituing the new values into the 
old symbolic solutions.

9 Implementation
The system described in this paper comprises an interactive geometric modeler 

for polyhedral objects, providing among other things, regularized set operations. The 
symbolic constraint solver is implemented in Prolog, connected to the modeling system 
through a language interface. The system is implemented on Macintoshes, Sun 
workstations under the "Suntools" windows systems and for X_windows. We have 
also implemented an interface to the sculptured surface modeler Alpha_l, using the 
Alpha_l network model server. This enables direct manipulations and the use of 
constraints for Alpha_l, currently on the level of CSG primitives and 3D transfer-
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mations. This will also allow us to experiment with more complex models; we are no 
longer restricted to simple polyhedra.

10 Conclusion
By utilizing constraints, we have done a step towards building an easy-to-use 

interactive geometric modeling system. Objects can be created, dimensioned relative to 
other objects, translated, rotated and scaled according to exact specifications with a few 
mouse-clicks and dragging motions. The intermediate results of such operations are 
fixed by constraints, so that future modifications will not violate previously fulfilled 
design requirements. Handles provide the user not only with an interactive 
transformation facility, but also with feedback about the degrees of freedom that are left 
for an object. If dependencies are not sufficient, constraints can be specified explicitly 
and solved with a symbolic constraint solver.

It is important to realize that geometric modeling is only one part of the industrial 
design process. A design system must support the complete production process, 
consisting of manufacturing, cost, maintenance, documentation, material and parts, 
standards, functional and physical properties, etc. Therefore, geometric modeling must 
be integrated into such a larger design systems (including production planning systems, 
facility management systems, etc.). Most current CAD systems output mechanical parts 
as fixed geometric shapes; the geometric design part is almost completely separated 
from other design aspects. It is difficult to add (or change) information under a different 
perspective. Changing a part may inadvertently violate previous design decisions. 
Utilizing constraints prevents the user from doing inappropriate modifications; it is also 
more flexible than parametric design: Constraints can be associated with geometric 
objects (or they can be removed) at any time, whereas parametric design usually 
requires that the user specifies the operations and dependencies in a specific order.

Our goal is to develop a flexible framework to communicate ideas between 
different departments of a design office during the early design process. Constraints 
can be used to communicate design specifications together with the geometric objects, 
so that modifications in later design steps don't violate the original requirements. 
Therefore, constraints should be an integral part of the information stored in a CAD 
database.
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