
Interaction with Constraints in 3D
Modeling*

Wolfgang Sohrt, Beat Briiderlin
Computer Science Department

University of Utah
Salt Lake City, UT 84112,
bruderlin@ c s .Utah, edu

Technical Report Number: UUCS-90-024
November, 1990

■5-This work was supported in part by NSF grant # DDM-8910229

9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Interaction with Constraints in 3D Modeling

Wolfgang Sohrt, Beat Bruderlin

Department of Computer Science, University of Utah

Interactive geometric modeling is an important part of the industrial product design
process. This paper describes how constraints can be used to facilitate the interactive
definition of geometric objects and assemblies. We have implemented a geometric
modeling system that combines the definition of objects by interactive construction
operations and specification of geometric constraints. The modeling operations
automatically generate constraints to maintain the properties intended by their invocation,
and constraints, in turn, determine the degrees of freedom for further interactive mouse-
controlled modeling operations. A symbolic geometry constraint solver is employed for
solving systems of constraints.

1 Introduction
Today's modeling system are mostly based on an operational paradigm, i.e.

geometric shapes are defined by a sequence of construction operations (explicit
modeling). Such systems do not automatically ensure that the generated shape meets
some specification, nor does it check whether an operation violates the intended
properties of previous operations.

A much smaller number of modelers are based on constraint solving systems
[SUT63, BOR81, LIN81, LIG82, GOS83, NEL85, BRU86, BRU87, BAR87,
FUQ87, BOR88, EAT89, etc.]. Here, a geometric shape is defined by geometric
dimensions, such as distance, angles, parallelism of lines and surfaces, etc. (implicit
modeling'). This way, a definition can be checked for consistency. Unfortunately, as
soon as one tries to construct anything more than trivial examples, constraint
specification and solving becomes very complicated. Even if the constraint solver is
capable of handling arbitrarily complex specifications, it is still difficult for the user to
keep track of what is already defined, why some specifications are contradictory, and

how to resolve the inconsistencies that are likely to occur. In most cases it is much
easier to just apply a powerful modeling operation where it would be difficult to come
up with a complete specification for the same object.

In this research we investigated how the two seemingly opposite approaches of
explicit and implicit modeling can be integrated effectively in an interactive
environment.

2 Interactive Drafting of 3D Objects
In this section we give an overview of how graphical, object-oriented user

interaction can be applied and extended to become a useful tool for 3 drafting. The user
interaction of a geometric modeling system should be as simple and intuitive as
possible. In our system, geometric operations are therefore not defined by entering
commands and parameters in some command language, but by treating the objects on
the screen as physical objects that can be directly manipulated by drag actions in 3-D
(using a mouse), similarly to known 2-D illustration programs, as they exist for the
Macintosh. However, the requirements for 3-D drafting systems are more demanding:

• Drafting applications require exact data input (much more than generally
necessary in illustration applications).

• 3-D operations on 3-D data need to be carried out on a 2-D display and with a
2-D input device (mouse). Solutions to this problem are suggested, for
instance, in [NIE86].

To overcome these problems, we provide the following solutions:
• 3-D objects provide handles for interactive transformations (rotation,

translation and scaling) in certain directions (see Example 1 & 2 below). Thus,
object manipulations are achieved conveniently through mouse dragging.

• Unfortunately, dragging operations generally yield inaccurate translation,
rotation and scaling parameters, and therefore only approximate the intended
manipulation (more like a sketch). One way of obtaining exact values is to
provide a (user definable) 3D grid for these values.

• Another way of achieving exact interactive transformations is by defining them
relative to other already existing objects that serve as a reference. Previous
work describing this approach in an interactive environment [BIE90]
demonstrates its power usefulness.

W. Sohrt, B. Briiderlin Interaction with Constraints in 3D M odelling Page 2

• Yet another way of obtaining exact shapes is by defining geom etric
dimensionings (angles, distances, etc.) and relations (parallelism, incidence,
etc.). We can use the interactive mouse manipulations (mentioned above) to
first approximately shape and position the geometric objects (sketch), and then
specify the dimensionings and relations (constraints) which define the exact
shape of the objects implicitly. A constraint solver is employed for solving
systems of simultaneous constraints.

A previous approach that combined interactive modeling and constraints is
described in [ROS86]. One of the major goals of our research was to investigate further
ways of making all the alternative approaches work together and supplement each
other, rather than being separate, isolated tools. Each of the approaches is already very
powerful by itself; through an appropriate integration we obtain an even more powerful
tool.

3 Interfacing Interactive Manipulations with Constraint
Specification.
Whenever a geometric operation is carried out, we wish to keep the intended

resulting geometric relationships, and these should not be violated by subsequent
operations. E.g. when we position an object on a table, one of its faces becomes
coplanar to the table surface. Future operations should maintain the coplanarity (i.e. we
can translate the object within that plane or rotate it about an axis perpendicular to the
plane). Unfortunately, conventional modeling systems don't remember such properties
of previous operations. The approach taken here is to determine the properties of the
modeling operations and to maintain them during further manipulations. Not only does
this avoid possible errors, but also, it will make the interaction more efficient. If done
properly, the system does what the user means without him explicitly stating his
intentions all the time. The idea is to keep the postconditions of previous manipulations
as constraints. When constraints are imposed on objects or groups of objects
(assemblies), they restrict the degrees of freedom for manipulations. These constraints
will be visualized and enforced during interactive, direct manipulations. It must be
intuitively clear which operations are possible, and which are not (A rigid object, for
instance, must look rigid; if the rotational degrees of freedom are restricted to an axis,
this axis can be displayed, etc.).

W. Sohrt, B. Briiderlin Interaction with Constraints in 3D M odelling Page 3

W. Sohrt, B. Briiderlin Interaction with Constraints in 3D Modelling Page 4

Example 1
This example demonstrates how the principles introduced above can be used to
assemble objects. A T-shaped object is to be fit into a U-shaped object with a
slanted side (Fig. 1). First, we select one point on the T that shall be matched
with a second point on the U (as indicated by the arrow in Fig. 2).

Since so far the T is not constrained, a translation is possible. The system moves
the T towards the U such that the two selected points match. By carrying out this
translate-to-match transformation, a constraint is automatically created which
ensures that the point selected on the T stays fixed to the point on the U (indicated
by a black dot in Fig. 3).

Now, the T cannot be translated relative to the U any longer (but it can still be
rotated about the fixed point). Hence, when we select the next two points as
shown by the arrow in Fig. 3, the system will, by default, apply a rotation
transformation about the fixed point on T such that the two half lines originating
at the fixed point and each going through one of the two selected points will
coincide afterwards.

A new constraint is automatically created that requires the T to remain fixed with
respect to the merged half lines (indicated by a thick black line in Fig. 4). T can
still be rotated, but only about this line. In order to align the T with the slanted
sides of the U, we select the two points indicated by the arrow in Fig. 4, and the
system will carry out a rotation about the fixed line such that the two selected
points lie in the same half-plane originating at the fixed line (indicated by the
grayed surfaces in Fig. 5).
Now, the position as well as the orientation of the T are fixed. Only its size can
still be changed (unless the user explicitly specified size constraints before). We
select two points on the fixed line, as indicated by the arrow in Fig. 5. The line is
collinear with a body axis of the T. Hence, the system carries out a one-dimen
sional scaling along this axis with the fixed point determining the center of
scaling. The result is shown in Fig. 6.

W. Sohrt, B. Briiderlin Interaction with Constraints in 3D M odelling Page 5

The size of the T is now constrained in the direction of the axis, but it can still be
scaled in the other two directions with the fixed point remaining unchanged. The
modeler displays two handles for drag-scaling with the fixed point as the common
center (Fig. 7).

To scale the object interactively, the user places the mouse cursor on the
appropriate handle and drags it towards or away from the fixed point, until the
object has reached the desired size in that direction. As an aid to obtain exact

W. Sohrt, B. Briiderlin Interaction with Constraints in 3D Modelling Page 6

values, the scaling can be done in discrete intervals (grid), and dimension
numbers are displayed while dragging. To obtain a finer resolution than it is
possible with the mouse input, the user can correct the displayed dimension by
typing in intermediate values. After the scaling has been carried out, the new
dimension can be turned into a constraint by clicking on a corresponding check
box. .

4 Constraints, Dependencies and Object Hierarchies.
Geometric objects in modeling applications are often logically grouped and

structured in hierarchies (assemblies). Operations can be defined for a single object, as
well as for a group of objects. In the following we show how constraints between
objects can also lead to hierarchical structures in the cases where we can derive a clear
dependency of one object from another.

Constraints are internally represented as constraints between an object and the
group in which the object belongs (or relative to the world coordinate system group,
which is the implicit group to which all objects belong by default). Objects of a
subgroup are the dependents of their super group. Whenever a constraint is defined
between two unrelated objects, a group hierarchy is established automatically, as
shown in the following example.

Example 2
The robot finger in fig. 8 has been constructed by matching the leftmost edge of
part 2 to the rightmost edge of part 1 and then matching the leftmost edge of part 3
to the rightmost edge of part 2. These matching operations generate constraints
between objects automatically, as described in the previous section. The resulting
degrees of freedom between adjacent parts are rotation axes which are visually
indicated by the rotation handles in fig. 8.

W. Sohrt, B. Briiderlin Interaction with Constraints in 3D M odelling Page 8

This simple model of object dependencies is very useful for many construction
operations and for simple mechanical systems, such as manipulators. Mechanical
systems like linkages, however, can get very complex, and a more sophisticated
approach, such as it is described in the next section, is necessary.

5 Explicitly Defined Constraints
So far we described how constraints can defined implicitly as properties

(postconditions) of a modeling operation. These constraints are always satisfied, since
they are generated after an operation has been carried out. Degrees of freedom limit the
possible manipulations, and thus constraints guarantee that future operation will not
violate previously defined constraints. Our system also provides the possibility of
explicitly specifying, relaxing or changing constraints any time. For instance, we may
want to dimension distances, angles, etc. of a not yet completely constrained shape or
assembly. A symbolic constraint solver is employed for the following tasks:

• Automatically derive the transformation on the objects that are necessary to
meet the constraints.

• Compute the degrees of freedom for future interactive manipulations.
• Detect if a subset of the constraints cannot be satisfied simultaneously, i.e., is

contradictory.
The symbolic constraint solver simplifies a given set of constraints by applying

geometric rewrite rules, derived from axioms of Euclidean geometry. The result is a
symbolic form of geometric operations. A short description of the constraint solver is
given in the next section; for a more comprehensive treatment of the subject we refer to
[BRU88] and [BRU90],

Many practical 3D construction examples have in common that the constraints are
defined in some two dimensional hyperplane. In our current implementation we
therefore restricted ourselves to apply a two-dimensional constraint solver. (Some
simple generalizations to 3D constraint solving have been proposed in [BRU86] and
[BRU87]). The mentioned hyperplane usually doesn't have to be specified explicitly by
the user, but is already defined by the degrees of freedom of the objects involved. For
instance, if a rotational degree of freedom is defined for an object, future constraints
will automatically be interpreted as being defined relative to a plane perpendicular to the
rotation axis. In other examples the plane for constraint solving is defined by

W. Sohrt, B. Briiderlin Interaction with Constraints in 3D Modelling Page 9

constraining a face of an object to be coplanar or parallel to some face of an object
higher in the hierarchy. Before solving the constraint system, the program has to make
sure that the constraints are in a common plane (or in parallel planes). All points that are
to be constrained will be projected onto that plane, the constraints will be solved within
the plane, and the 2D solution coordinates will be mapped back into 3-space.

We provided the following 2D predicates for specifying constraints: •
• position of a point,
• distance between two points,
• directed slope of the line between two points, and
• angle between two lines.
This set of predicates is sufficient for the specification of a wide range of

constraints. For example, to make a line vertical, a slope constraint can be imposed on
its end points.

The constraints are defined by choosing the appropriate constraint type, selecting
the points for which the constraint shall be imposed, and specifying the constraint
value. If no value is specified, the constraint will assume the value that will keep the
current state. For instance, if a distance constraint is to be specified between two
points, and the user selects the two points, per default their current distance (projected
onto the constraint plane) will be constrained, unless the user types in a new value.

We decided that explicitly defined constraints between two objects shall not
affect the shape of either of them. The objects are assumed to be rigid. This fact must
be made known to the constraint solver. Thus, if two points of the same object are
constrained, the modeler automatically generates a distance constraint between them.

6 The Constraint Solver

Constraints are relations between points which may be expressed by predicates on
these points. The predicates may be stored in the database of a Prolog interpreter as so
called 'facts'. Here is a list of some geometric predicates on points, as used in our
approach:

p(P, Pos).
d(Pl, P2, D).
s(Pl, P2, Alpha).

W. Sohrt, B. Brtiderlin Interaction with Constraints in 3D M odelling Page 10

The semantics of the predicates is defined as follows:

To express that the position of a point P is known we use the predicate p(P, Pos).
This means that the position of P is defined by the value of Pos to which a symbolic
expression may be assigned. Possible expressions are, e.g. a pair of coordinates [10,
0.5], or a geometric function, such as intersection(line(p(P2), 90), circle(p(P3), 20)),
meaning that the point is located at the intersection of a line through another point P2
with a slope of 90 degrees toward the x-axis, and a circle with center point P3 and a
radius of 20.

The predicate d(Pl, P2 Dist), expresses that we know the distance between two
points. For the value of Dist we may again write a constant number, a parameter, or a
function such as length(vector(P3, P4)), i.e. the distance of two points with already
specified position.

s(Pl, P2, Alpha) constrains the slope of the line connecting PI and P2 by the angle
Alpha to the x-axis (measured counterclockwise).

To derive the position of points that are not explicitly specified by a corresponding
predicate, we may apply rules known from constructing with compass and ruler. An
example: given the positions of two points PI and P2, the distance between PI and a
third point P3 and the distance between P2 and P3, we may construct P3 by inter
secting two circles. We first write the precondition of the rule by a conjunction of
predicates:

p(Pl, [Posl]) a p(P2, [Pos2]) a d(Pl, P3, R l) a d(P2, P3, R2)

The position of the third point P3 is found by intersecting two circles with centers
PI and P2. This is expressed symbolically by:

p(P3, intersection(circle(p(Pl), Rl), circle(p(P2), R2))).

We formalize this construction rule by introducing the following notation for
rewrite-rules: Conjunctions of predicates are expressed as lists of predicates '[]', and
the symbol indicates the direction in which the rewrite-rule is applied. The above
rule is represented by the following rewrite-rule:

W. Sohrt, B. Briiderlin Interaction with Constraints in 3D M odelling Page 11

[p(Pl, [Posl]), p(P2, [Pos2]), d(Pl, P3, R l), d(P2, P3, R2)]
-> [p(Pl, [Posl]), p(P2, [Pos2]),

p(P3, intersection(circle(p(Pl), R l), circle(p(P2), R2)))].

A a more comprehensive description of the constraint solver can be found in
[BRU87], [BRU88] and [BRU90b].

7 Interfacing Between Implicitly and Explicitly Defined
Constraints
Solving explicitly defined constraints should, of course, not violate the

constraints derived as a postcondition of modeling operations (implicitly defined
constraints), and modeling operations should not violate explicitly defined constraints.
Whenever the symbolic constraint solver is invoked, the implicit constraints on the
objects are turned into temporary explicit constraints on their constrained points. Then,
the constraint solver is started.

For the constraint solver all objects are regarded as being rigid objects. This
simplifies the user interaction and constraint solving dramatically. It means, for
example, that implicitly the distance between two points of the same object is
automatically constrained. Also, points of an object higher in the hierarchy are
completely constrained relative to the points of an object lower in the hierarchy.

Figure 10 gives an overview of how the various parts of the system are
interrelated.

specifying
geometric constraints
(define, relax, change)

applying
modelling

operations

constraint solver geometric modeler

Fig. 10

W. Sohrt, B. Briiderlin Interaction with Constraints in 3D M odelling Page 12

The constraint solver finds symbolic expressions for the positions of the points
specified by the constraints. These expressions are the numerically evaluated and
directly translated into transformations on the objects involved. If several points of the
same object are constrained, the transformations are interpreted as follows: The
computed new position of the first point leads to a translation that maps the old position
into the new one. The position of the second point in the same object yields a rotation.
In the case where the degrees of freedom are two dimensional, two points is all we can
specify for one object. For three dimensional degrees of freedom, one additional
rotation may be specified. If more points shall be specified by constraints, an additional
scaling operation may have to be carried out to satisfy the constraints. Since we limit
ourselves to rigid objects, the constraint solver would report an overconstrained
configuration, in this case.

Example 3
As an example for demonstrating the interaction between the constrain solver and
the interactive part, we construct a toy device, called "treadmill" (fig. 11). It
consists of a board with two notches orthogonal to each other, two sliders that
run in those notches, and a handle whose one end is attached to one slider and
whose mid section is attached to the other slider. If we turn the handle, the sliders
move back and forth along the notches.

W. Sohrt, B. Briiderlin Interaction with Constraints in 3D Modelling Page 13

First we construct the board with the notches. We generate five blocks
dimensioned to their proper size and assemble them, using matching operations.
A boolean operation (union) is carried out to merge the blocks into one solid. For
the sliders, we instantiate cuboids, translate, rotate and scale them, such that they
fit into the notches. To position them, we first attach them to the corners of the
notches. Afterwards, we relax their translation constraints in the direction of their
notches. Finally, we create the handle bar by instantiating another cuboid, scale it
to the appropriate dimensions, and place a cylinder on one end. Then we install
reference points on the board, the sliders, and the handle bar (indicated by circles
in fig. 11).
To position the parts of the treadmill correctly we have to add explicit constraints
to the ones we already specified implicitly; we constrain the vectors between the
reference points on the handle and those on the sliders to be of length zero to
make the points coincide (fig. 11).
Some explicit constraints are derived from the implicit constraints automatically:
Either slider can only move in one direction relative to the board, so a slope
constraint is imposed on the lines between their reference points and a point on
the board (which happens to be the reference point of the board in this case). The
distance between the reference points on the sliders is constrained, because they
are matched with the reference points of the handle bar, which is treated as being
rigid.
The constraints need to be defined in the plane that is defined by the two
directions in which the sliders can move. This means that all constraints are
specified and solved between projections of the constrained points onto that
plane.
There is only one more constraint left that has to be specified to constrain the
assembly completely: the slope of the handle. We constrain it by giving it a
symbolic parameter name "alpha". For the numerical evaluation we need to
specify a numeric value for "alpha". The result of the constraint solving is shown
in fig. 12. (For the demonstration we let alpha run from 0 to 360 degrees in 10-
degree-increments. This will give an animated display of the assembly (see fig.
13).

W. Sohrt, B. Briiderlin Interaction with Constraints in 3D Modelling Page 15

Once the symbolic constraints have been solved, the results will be turned into
degrees of freedom. For the example above, the positions and orientations of the two
sliders and the handles are completely constrained (they are functions of the parameter
"alpha"). This means we can no longer freely manipulate these objects.

8 Group Hierarchies and Explicitly Defined Constraints
Whereas implicitly defined constraints directly express dependencies that are

naturally represented by a group hierarchy (see section 4), explicitly defined constraints
can be utilized to express relations between objects within the same group.

The constraint solver solves systems of constraints bottom up. At each level in
the hierarchy, objects in a group (and all assemblies) are treated as rigid objects. A great
advantage of the group hierarchy is that it localizes the constraint networks. Every
group may feature a constraint network between its subgroups, but in the average,
these local networks will be fairly small. Since the time needed for solving a constraint
network can grow substantially with the number of constraints specified, localizing the
the constraint solving improves the speed enormously.

Whenever the shape of a group is changed, all of their super groups need to be
reevaluated. The symbolic constraints, however, do not need to be recomputed. For
example, if the positions of the axles in a gearbox are constrained such that the
cogwheels touch appropriately, and the diameter of one of the cogwheels is modified,
the position of the axles have to be re-adjusted by substituing the new values into the
old symbolic solutions.

9 Implementation
The system described in this paper comprises an interactive geometric modeler

for polyhedral objects, providing among other things, regularized set operations. The
symbolic constraint solver is implemented in Prolog, connected to the modeling system
through a language interface. The system is implemented on Macintoshes, Sun
workstations under the "Suntools" windows systems and for X_windows. We have
also implemented an interface to the sculptured surface modeler Alpha_l, using the
Alpha_l network model server. This enables direct manipulations and the use of
constraints for Alpha_l, currently on the level of CSG primitives and 3D transfer-

W. Sohrt, B. Briiderlin Interaction with Constraints in 3D Modelling Page

mations. This will also allow us to experiment with more complex models; we are no
longer restricted to simple polyhedra.

10 Conclusion
By utilizing constraints, we have done a step towards building an easy-to-use

interactive geometric modeling system. Objects can be created, dimensioned relative to
other objects, translated, rotated and scaled according to exact specifications with a few
mouse-clicks and dragging motions. The intermediate results of such operations are
fixed by constraints, so that future modifications will not violate previously fulfilled
design requirements. Handles provide the user not only with an interactive
transformation facility, but also with feedback about the degrees of freedom that are left
for an object. If dependencies are not sufficient, constraints can be specified explicitly
and solved with a symbolic constraint solver.

It is important to realize that geometric modeling is only one part of the industrial
design process. A design system must support the complete production process,
consisting of manufacturing, cost, maintenance, documentation, material and parts,
standards, functional and physical properties, etc. Therefore, geometric modeling must
be integrated into such a larger design systems (including production planning systems,
facility management systems, etc.). Most current CAD systems output mechanical parts
as fixed geometric shapes; the geometric design part is almost completely separated
from other design aspects. It is difficult to add (or change) information under a different
perspective. Changing a part may inadvertently violate previous design decisions.
Utilizing constraints prevents the user from doing inappropriate modifications; it is also
more flexible than parametric design: Constraints can be associated with geometric
objects (or they can be removed) at any time, whereas parametric design usually
requires that the user specifies the operations and dependencies in a specific order.

Our goal is to develop a flexible framework to communicate ideas between
different departments of a design office during the early design process. Constraints
can be used to communicate design specifications together with the geometric objects,
so that modifications in later design steps don't violate the original requirements.
Therefore, constraints should be an integral part of the information stored in a CAD
database.

W. Sohrt, B. Briiderlin Interaction with Constraints in 3D Modelling Page 17

Acknowledgements
We would like to thank Shiaofen Fang, Kwansik Kim and Susan Skowronski for

their help with the implementation of the modeler.
This work was supported in part by the National Science Foundation,
grant #DDM 8910229.

References
[BIE 90] Bier, Eric A., Snap dragging in 3 Dimensions, Proceedings of the 1990

Symposium on Interactive 3D Graphics, March 1990, pp. 193-204
[BAR87] Barford, L.A., A Graphical, Language-Based Editor For Generic Solid

Models Represented By Constraints, PhD Thesis, Cornell University, May
1987

[BOR81] Borning, A., The Programming Language Aspects of ThingLab, a
Constraint-Oriented Simulation Laboratory, ACM Toplas, Vol 3, No 4,
October 1981

[BRU85] Briiderlin, B.D., Using Prolog for Constructing Geometric Objects Defined
by Constraints, Springer LNCS, No 204, pp. 488-459, Proceedings of
Eurocal '85, Springer Verlag Berlin, New York 1985

[BRU86] Briiderlin, B.D., Constructing Three-Dimensional Geometric Objects
Defined By Constraints, 1986 Workshop on Interactive 3D Graphics,
Conference Proceedings, Chapel Hill, North Carolina, ACM Siggraph 1986

[BRU87] Briiderlin, B.D., Rule-Based Geometric Modeling, PhD Thesis, ETH
Zurich, Switzerland, Verlag der Fachvereine, vdf-Verlag, Zurich 1987

[BRU88] Briiderlin, B.D., Automatizing geometric proofs and constructions,
Computational Geometry and its Applications, H. Noltemeier (Ed), Springer
Lecture Notes in Computer Science No 333, pp. 253-373, Springer Verlag
1988

[BRU90] Briiderlin, B.D., Symbolic Computer Geometry for Computer Aided
Geometric Design, Proceedings of the NSF Design and Manufacturing
Systems Conference, January 1990, pp. 177-181

[BRU90b] Briiderlin, B.D., An Axiomatic Approach for Solving Geometric Problems
Symbolically, Tech Report UUCS 90-023, Computer Science, University
of Utah, November 1990.

W. Sohrt, B. Briiderlin Interaction with Constraints in 3D M odelling Page 18

[EAT89] Eaton, R.L., Explicit Geometric Constraints, MS Thesis, Cornell University
1989

[FUQ87] Fuqua, T.W., Constraint Kernels: Constraints and Dependencies in a
Geometric Modeling System, MS Thesis, University of Utah, August 1987

[GOS83] Gosling, J.A., Algebraic Constraints, PhD Thesis, Carnegie-Mellon
University, May 1983, published as CMU Computer Science Department
tech report CMU-CS-83-132

[HOP84] Hopcroft, J., Joseph, D., Whitesides, S., Movement Problems for 2
Dimensional Linkages, SIAM Journal of Computation, Vol. 13, No. 3,
August 1984

[LIG82] Light, R., Gossard, D., Modification of geometric models through
variational geometry, Computer Aided Design, Vol. 14 No. 4, July 1982,
pp. 209-214

[LIN81] Lin, V.C., Gossard, D.C., Light, R.A., Variational geometry in computer-
aided design, Proceedings of SIGGRAPH, 1981

[NEL85] Nelson, G., Juno, a constraint-based graphics system, ACM Siggraph
1985, pp. 235-243

[NIE86] Nielson, G.A., Olsen, D.R.Jr., Direct Manipulation Techniques for 3D
Objects Using 2D Locator Devices, Workshop on Interactive 3D Graphics,
October 23/24 1986, Dept, of Computer Science, University of North
Carolina at Chapel Hill

[ROS86] Rossignac, J.R., Constraints in Constructive Solid Geometry, Interactive
3D Graphics, October 23-24,1986, Chapel Hill

[STE80] Steele, G.L.Jr., Sussman, G.J., CONSTRAINTS - A Language for
Expressing Almost-Hierarchical Descriptions, Artificial Intelligence,
14(1): 1-39, January 1980

[SUT63] Sutherland, I., Sketchpad, A Man-Machine Graphical Communication
System, PhD Thesis, MIT, January 1963

[WIT87] Witkin, A., Fleischer, K., Barr, A., Energy Constraints on Parameterized
Models, Siggraph 87 Conference Proceedings, ACM Siggraph, August
1987. d d . 225-232

