10 research outputs found

    Study of Reliable Data Communication in Wireless Sensor Networks

    Get PDF
    A distributed wireless sensor network consists of numerous tiny autonomous sensing nodes deployed across a wide geographical area. These sensor nodes self organize and establish radio communication links with the neighboring nodes to form multi-hop routing paths to the central base station. The dynamic and lossy nature of wireless communication poses several challenges in reliable transfer of data from the sensor nodes to the sink. There are several applications of sensor networks wherein the data collected by the sensors in the network are critical and hence have to be reliably transported to the sink. An example of such an application is sensors with RFID readers mounted on them to read tag information from the objects in a factory warehouse. Here, the tag information recorded by the RFID reader is a critical piece of information which may not be available at a later point of time and hence has to be reliably transported to the sink. We study the various issues and analyze the design choices proposed in literature in addressing the challenge of sensors-to-sink reliable data communication in such applications. A cross-layer based protocol with MAC layer retransmissions and NACK (Negative Acknowledgment) based rerouting of data packets is developed to overcome link failures and provide reliability. The protocol is implemented on TinyOS and the performance of NACK based rerouting protocol in terms of percentage successful message reception is compared with NACK based retransmission protocol by running simulations on TOSSIM. The NACK based rerouting protocol provides greater reliability under different metrics like varying network size, network traffic and percentage of failed links in the network

    On exploiting asymmetric wireless links via one-way estimation

    Full text link

    Interaction of retransmission, blacklisting, and routing metrics for reliability in sensor network routing

    No full text
    Abstract — Unpredictable and heterogeneous links in a wireless sensor network require techniques to avoid low delivery rate and high delivery cost. Three commonly used techniques to help discover high quality paths include (1) link-layer retransmission, (2) blacklisting bad links, and (3) end-to-end routing metrics. Using simulation and testbed experiments, we present the first systematic exploration of the tradeoffs of combinations of these approaches, quantifying the effects of each of these three techniques. We identify several key results: One is that per-hop retransmissions (ARQ) is a necessary addition to any other mechanism if reliable data delivery is a goal. Additional interactions between the services are more subtle. First, in a multihop network, either blacklisting or reliability metrics like ETX can provide consistent high-reliability paths when added to ARQ. Second, at higher deployment densities, blacklisting has a lower routing overhead than ETX. But at lower densities, blacklisting becomes less stable as the network partitions. These results are consistent across both simulation and testbed experiments. We conclude that ETX with retransmissions is the best choice in general, but that blacklisting may be worth considering at higher densities, either with or without ETX. I

    Reliable load-balancing routing for resource-constrained wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are energy and resource constrained. Energy limitations make it advantageous to balance radio transmissions across multiple sensor nodes. Thus, load balanced routing is highly desirable and has motivated a significant volume of research. Multihop sensor network architecture can also provide greater coverage, but requires a highly reliable and adaptive routing scheme to accommodate frequent topology changes. Current reliability-oriented protocols degrade energy efficiency and increase network latency. This thesis develops and evaluates a novel solution to provide energy-efficient routing while enhancing packet delivery reliability. This solution, a reliable load-balancing routing (RLBR), makes four contributions in the area of reliability, resiliency and load balancing in support of the primary objective of network lifetime maximisation. The results are captured using real world testbeds as well as simulations. The first contribution uses sensor node emulation, at the instruction cycle level, to characterise the additional processing and computation overhead required by the routing scheme. The second contribution is based on real world testbeds which comprises two different TinyOS-enabled senor platforms under different scenarios. The third contribution extends and evaluates RLBR using large-scale simulations. It is shown that RLBR consumes less energy while reducing topology repair latency and supports various aggregation weights by redistributing packet relaying loads. It also shows a balanced energy usage and a significant lifetime gain. Finally, the forth contribution is a novel variable transmission power control scheme which is created based on the experience gained from prior practical and simulated studies. This power control scheme operates at the data link layer to dynamically reduce unnecessarily high transmission power while maintaining acceptable link reliability

    Networking and application interface technology for wireless sensor network surveillance and monitoring

    Get PDF
    Distributed unattended ground sensor (UGS) networks are commonly deployed to support wide area battlefield surveillance and monitoring missions. The information they generate has proven to be valuable in providing a necessary tactical information advantage for command and control, intelligence and reconnaissance field planning. Until recently, however, there has been greater emphasis within the defence research community for UGS networks to fulfil their mission objectives successfully, with minimal user interaction. For a distributed UGS scenario, this implies a network centric capability, where deployed UGS networks can self-manage their behaviour in response to dynamic environmental changes. In this thesis, we consider both the application interface and networking technologies required to achieve a network centric capability, within a distributed UGS surveillance setting. Three main areas of work are addressed towards achieving this. The first area of work focuses on a capability to support autonomous UGS network management for distributed surveillance operations. The network management aspect is framed in terms of how distributed sensors can collaborate to achieve their common mission objectives and at the same time, conserve their limited network resources. A situation awareness methodology is used, in order to enable sensors which have similar understanding towards a common objective to be utilised, for collaboration and to allow sensor resources to be managed as a direct relationship according to, the dynamics of a monitored threat. The second area of work focuses on the use of geographic routing to support distributed surveillance operations. Here we envisage the joint operation of unmanned air vehicles and UGS networks, working together to verify airborne threat observations. Aerial observations made in this way are typically restricted to a specific identified geographic area. Information queries sent to inquire about these observations can also be routed and restricted to using this geographic information. In this section, we present our bio-inspired geographic routing strategy, with an integrated topology control function to facilitate this. The third area of work focuses on channel aware packet forwarding. Distributed UGS networks typically operate in wireless environments, which can be unreliable for packet forwarding purposes. In this section, we develop a capability for UGS nodes to decide which packet forwarding links are reliable, in order to reduce packet transmission failures and improve overall distributed networking performance

    Algorithms for Energy Efficiency in Wireless Sensor Networks

    Get PDF
    The recent advances in microsensor and semiconductor technology have opened a new field within computer science: the networking of small-sized sensors which are capable of sensing, processing, and communicating. Such wireless sensor networks offer new applications in the areas of habitat and environment monitoring, disaster control and operation, military and intelligence control, object tracking, video surveillance, traffic control, as well as in health care and home automation. It is likely that the deployed sensors will be battery-powered, which will limit the energy capacity significantly. Thus, energy efficiency becomes one of the main challenges that need to be taken into account, and the design of energy-efficient algorithms is a major contribution of this thesis. As the wireless communication in the network is one of the main energy consumers, we first consider in detail the characteristics of wireless communication. By using the embedded sensor board (ESB) platform recently developed by the Free University of Berlin, we analyze the means of forward error correction and propose an appropriate resync mechanism, which improves the communication between two ESB nodes substantially. Afterwards, we focus on the forwarding of data packets through the network. We present the algorithms energy-efficient forwarding (EEF), lifetime-efficient forwarding (LEF), and energy-efficient aggregation forwarding (EEAF). While EEF is designed to maximize the number of data bytes delivered per energy unit, LEF additionally takes into account the residual energy of forwarding nodes. In so doing, LEF further prolongs the lifetime of the network. Energy savings due to data aggregation and in-network processing are exploited by EEAF. Besides single-link forwarding, in which data packets are sent to only one forwarding node, we also study the impact of multi-link forwarding, which exploits the broadcast characteristics of the wireless medium by sending packets to several (potential) forwarding nodes. By actively selecting a forwarder among all nodes that received a packet successfully, retransmissions can often be avoided. In the majority of cases, multi-link forwarding is thus more efficient and able to save energy. In the last part of this thesis, we present a topology and energy control algorithm (TECA) to turn off the nodes' radio transceivers completely in order to avoid idle listening. By means of TECA, a connected backbone of active nodes is established, while all other nodes may sleep and save energy by turning off their radios. All algorithms presented in this thesis have been fully analyzed, simulated, and implemented on the ESB platform. They are suitable for several applications scenarios and can easily be adapted even to other wireless sensor platforms
    corecore