62,686 research outputs found

    Non-null Infinitesimal Micro-steps: a Metric Temporal Logic Approach

    Full text link
    Many systems include components interacting with each other that evolve with possibly very different speeds. To deal with this situation many formal models adopt the abstraction of "zero-time transitions", which do not consume time. These however have several drawbacks in terms of naturalness and logic consistency, as a system is modeled to be in different states at the same time. We propose a novel approach that exploits concepts from non-standard analysis to introduce a notion of micro- and macro-steps in an extension of the TRIO metric temporal logic, called X-TRIO. We use X-TRIO to provide a formal semantics and an automated verification technique to Stateflow-like notations used in the design of flexible manufacturing systems.Comment: 20 pages, 2 figures, submitted to the conference "FORMATS: Formal Modelling and Analysis of Timed Systems" 201

    Constructing programs or processes

    Get PDF
    We define interacting sequential programs, motivated originally by constructivist considerations. We use them to investigate notions of implementation and determinism. Process algebras do not define what can be implemented and what cannot. As we demonstrate it is problematic to do so on the set of all processes. Guided by constructivist notions we have constructed interacting sequential programs which we claim can be readily implemented and are a subset of processes

    A Provenance Tracking Model for Data Updates

    Get PDF
    For data-centric systems, provenance tracking is particularly important when the system is open and decentralised, such as the Web of Linked Data. In this paper, a concise but expressive calculus which models data updates is presented. The calculus is used to provide an operational semantics for a system where data and updates interact concurrently. The operational semantics of the calculus also tracks the provenance of data with respect to updates. This provides a new formal semantics extending provenance diagrams which takes into account the execution of processes in a concurrent setting. Moreover, a sound and complete model for the calculus based on ideals of series-parallel DAGs is provided. The notion of provenance introduced can be used as a subjective indicator of the quality of data in concurrent interacting systems.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    Static Safety for an Actor Dedicated Process Calculus by Abstract Interpretation

    Get PDF
    The actor model eases the definition of concurrent programs with non uniform behaviors. Static analysis of such a model was previously done in a data-flow oriented way, with type systems. This approach was based on constraint set resolution and was not able to deal with precise properties for communications of behaviors. We present here a new approach, control-flow oriented, based on the abstract interpretation framework, able to deal with communication of behaviors. Within our new analyses, we are able to verify most of the previous properties we observed as well as new ones, principally based on occurrence counting

    Interacting via the Heap in the Presence of Recursion

    Full text link
    Almost all modern imperative programming languages include operations for dynamically manipulating the heap, for example by allocating and deallocating objects, and by updating reference fields. In the presence of recursive procedures and local variables the interactions of a program with the heap can become rather complex, as an unbounded number of objects can be allocated either on the call stack using local variables, or, anonymously, on the heap using reference fields. As such a static analysis is, in general, undecidable. In this paper we study the verification of recursive programs with unbounded allocation of objects, in a simple imperative language for heap manipulation. We present an improved semantics for this language, using an abstraction that is precise. For any program with a bounded visible heap, meaning that the number of objects reachable from variables at any point of execution is bounded, this abstraction is a finitary representation of its behaviour, even though an unbounded number of objects can appear in the state. As a consequence, for such programs model checking is decidable. Finally we introduce a specification language for temporal properties of the heap, and discuss model checking these properties against heap-manipulating programs.Comment: In Proceedings ICE 2012, arXiv:1212.345

    A Formal Methods Approach to Pattern Synthesis in Reaction Diffusion Systems

    Full text link
    We propose a technique to detect and generate patterns in a network of locally interacting dynamical systems. Central to our approach is a novel spatial superposition logic, whose semantics is defined over the quad-tree of a partitioned image. We show that formulas in this logic can be efficiently learned from positive and negative examples of several types of patterns. We also demonstrate that pattern detection, which is implemented as a model checking algorithm, performs very well for test data sets different from the learning sets. We define a quantitative semantics for the logic and integrate the model checking algorithm with particle swarm optimization in a computational framework for synthesis of parameters leading to desired patterns in reaction-diffusion systems
    • 

    corecore