1,705 research outputs found

    Interactive Intent Modeling for Exploratory Search

    Get PDF
    Exploratory search requires the system to assist the user in comprehending the information space and expressing evolving search intents for iterative exploration and retrieval of information. We introduce interactive intent modeling, a technique that models a user’s evolving search intents and visualizes them as keywords for interaction. The user can provide feedback on the keywords, from which the system learns and visualizes an improved intent estimate and retrieves information. We report experiments comparing variants of a system implementing interactive intent modeling to a control system. Data comprising search logs, interaction logs, essay answers, and questionnaires indicate significant improvements in task performance, information retrieval performance over the session, information comprehension performance, and user experience. The improvements in retrieval effectiveness can be attributed to the intent modeling and the effect on users’ task performance, breadth of information comprehension, and user experience are shown to be dependent on a richer visualization. Our results demonstrate the utility of combining interactive modeling of search intentions with interactive visualization of the models that can benefit both directing the exploratory search process and making sense of the information space. Our findings can help design personalized systems that support exploratory information seeking and discovery of novel information.Peer reviewe

    Interactive faceted query suggestion for exploratory search : Whole-session effectiveness and interaction engagement

    Get PDF
    Abstract The outcome of exploratory information retrieval is not only dependent on the effectiveness of individual responses to a set of queries, but also on relevant information retrieved during the entire exploratory search session. We study the effect of search assistance, operationalized as an interactive faceted query suggestion, for both whole-session effectiveness and engagement through interactive faceted query suggestion. A user experiment is reported, where users performed exploratory search tasks, comparing interactive faceted query suggestion and a control condition with only conventional typed-query interaction. Data comprised of interaction and search logs show that the availability of interactive faceted query suggestion substantially improves whole-session effectiveness by increasing recall without sacrificing precision. The increased engagement with interactive faceted query suggestion is targeted to direct situated navigation around the initial query scope, but is not found to improve individual queries on average. The results imply that research in exploratory search should focus on measuring and designing tools that engage users with directed situated navigation support for improving whole-session performance.Peer reviewe

    Context Sensitive Search String Composition Algorithm using User Intention to Handle Ambiguous Keywords

    Get PDF
    Finding the required URL among the first few result pages of a search engine is still a challenging task. This may require number of reformulations of the search string thus adversely affecting user's search time. Query ambiguity and polysemy are major reasons for not obtaining relevant results in the top few result pages. Efficient query composition and data organization are necessary for getting effective results. Context of the information need and the user intent may improve the autocomplete feature of existing search engines. This research proposes a Funnel Mesh-5 algorithm (FM5) to construct a search string taking into account context of information need and user intention with three main steps 1) Predict user intention with user profiles and the past searches via weighted mesh structure 2) Resolve ambiguity and polysemy of search strings with context and user intention 3) Generate a personalized disambiguated search string by query expansion encompassing user intention and predicted query. Experimental results for the proposed approach and a comparison with direct use of search engine are presented. A comparison of FM5 algorithm with K Nearest Neighbor algorithm for user intention identification is also presented. The proposed system provides better precision for search results for ambiguous search strings with improved identification of the user intention. Results are presented for English language dataset as well as Marathi (an Indian language) dataset of ambiguous search strings.

    Anticipating Information Needs Based on Check-in Activity

    Full text link
    In this work we address the development of a smart personal assistant that is capable of anticipating a user's information needs based on a novel type of context: the person's activity inferred from her check-in records on a location-based social network. Our main contribution is a method that translates a check-in activity into an information need, which is in turn addressed with an appropriate information card. This task is challenging because of the large number of possible activities and related information needs, which need to be addressed in a mobile dashboard that is limited in size. Our approach considers each possible activity that might follow after the last (and already finished) activity, and selects the top information cards such that they maximize the likelihood of satisfying the user's information needs for all possible future scenarios. The proposed models also incorporate knowledge about the temporal dynamics of information needs. Using a combination of historical check-in data and manual assessments collected via crowdsourcing, we show experimentally the effectiveness of our approach.Comment: Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM '17), 201

    Large-scale interactive exploratory visual search

    Get PDF
    Large scale visual search has been one of the challenging issues in the era of big data. It demands techniques that are not only highly effective and efficient but also allow users conveniently express their information needs and refine their intents. In this thesis, we focus on developing an exploratory framework for large scale visual search. We also develop a number of enabling techniques in this thesis, including compact visual content representation for scalable search, near duplicate video shot detection, and action based event detection. We propose a novel scheme for extremely low bit rate visual search, which sends compressed visual words consisting of vocabulary tree histogram and descriptor orientations rather than descriptors. Compact representation of video data is achieved through identifying keyframes of a video which can also help users comprehend visual content efficiently. We propose a novel Bag-of-Importance model for static video summarization. Near duplicate detection is one of the key issues for large scale visual search, since there exist a large number nearly identical images and videos. We propose an improved near-duplicate video shot detection approach for more effective shot representation. Event detection has been one of the solutions for bridging the semantic gap in visual search. We particular focus on human action centred event detection. We propose an enhanced sparse coding scheme to model human actions. Our proposed approach is able to significantly reduce computational cost while achieving recognition accuracy highly comparable to the state-of-the-art methods. At last, we propose an integrated solution for addressing the prime challenges raised from large-scale interactive visual search. The proposed system is also one of the first attempts for exploratory visual search. It provides users more robust results to satisfy their exploring experiences
    • …
    corecore