2,363 research outputs found

    Image Forensics in the Wild

    Get PDF

    Validity of resting heart rate derived from contact-based smartphone photoplethysmography compared with electrocardiography:a scoping review and checklist for optimal acquisition and reporting

    Get PDF
    Background: With the rise of smartphone ownership and increasing evidence to support the suitability of smartphone usage in healthcare, the light source and smartphone camera could be utilized to perform photoplethysmography (PPG) for the assessment of vital signs, such as heart rate (HR). However, until rigorous validity assessment has been conducted, PPG will have limited use in clinical settings.Objective: We aimed to conduct a scoping review assessing the validity of resting heart rate (RHR) acquisition from PPG utilizing contact-based smartphone devices. Our four specific objectives of this scoping review were to (1) conduct a systematic search of the published literature concerning contact-based smartphone device-derived PPG, (2) map study characteristics and methodologies, (3) identify if methodological and technological advancements have been made, and (4) provide recommendations for the advancement of the investigative area.Methods: ScienceDirect, PubMed and SPORTDiscus were searched for relevant studies between January 1st, 2007, and November 6th, 2022. Filters were applied to ensure only literature written in English were included. Reference lists of included studies were manually searched for additional eligible studies.Results: In total 10 articles were included. Articles varied in terms of methodology including study characteristics, index measurement characteristics, criterion measurement characteristics, and experimental procedure. Additionally, there were variations in reporting details including primary outcome measure and measure of validity. However, all studies reached the same conclusion, with agreement ranging between good to very strong and correlations ranging from r = .98 to 1.Conclusions: Smartphone applications measuring RHR derived from contact-based smartphone PPG appear to agree with gold standard electrocardiography (ECG) in healthy subjects. However, agreement was established under highly controlled conditions. Future research could investigate their validity and consider effective approaches that transfer these methods from laboratory conditions into the “real-world”, in both healthy and clinical populations

    Development of image processing and vision systems with industrial applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Development,Validation, and Integration of AI-Driven Computer Vision System and Digital-twin System for Traffic Safety Dignostics

    Get PDF
    The use of data and deep learning algorithms in transportation research have become increasingly popular in recent years. Many studies rely on real-world data. Collecting accurate traffic data is crucial for analyzing traffic safety. Still, traditional traffic data collection methods that rely on loop detectors and radar sensors are limited to collect macro-level data, and it may fail to monitor complex driver behaviors like lane changing and interactions between road users. With the development of new technologies like in-vehicle cameras, Unmanned Aerial Vehicle (UAV), and surveillance cameras, vehicle trajectory data can be collected from the recorded videos for more comprehensive and microscopic traffic safety analysis. This research presents the development, validation, and integration of three AI-driven computer vision systems for vehicle trajectory extraction and traffic safety research: 1) A.R.C.I.S, an automated framework for safety diagnosis utilizing multi-object detection and tracking algorithm for UAV videos. 2)N.M.E.D.S., A new framework with the ability to detect and predict the key points of vehicles and provide more precise vehicle occupying locations for traffic safety analysis. 3)D.V.E.D.S applied deep learning models to extract information related to drivers\u27 visual environment from the Google Street View (GSV) images. Based on the drone video collected and processed by A.R.C.I.S at various locations, CitySim: a new drone recorded vehicle trajectory dataset that aim to facilitate safety research was introduced. CitySim has vehicle interaction trajectories extracted from 1140- minutes of video recordings, which provide a large-scale naturalistic vehicle trajectory that covers a variety of locations, including basic freeway segments, freeway weaving segments, expressway segments, signalized intersections, stop-controlled intersections, and unique intersections without sign/signal control. The advantage of CitySim over other datasets is that it contains more critical safety events in quantity and severity and provides supporting scenarios for safety-oriented research. In addition, CitySim provides digital twin features, including the 3D base maps and signal timings, which enables a more comprehensive testing environment for safety research, such as autonomous vehicle safety. Based on these digital twin features provided by CitySim, we proposed a Digital Twin framework for CV and pedestrian in-the-loop simulation, which is based on Carla-Sumo Co-simulation and Cave automatic virtual environment (CAVE). The proposed framework is expected to guide the future Digital Twin research, and the architecture we build can serve as the testbed for further research and development

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program
    corecore