501 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Computational Intelligence Application in Electrical Engineering

    Get PDF
    The Special Issue "Computational Intelligence Application in Electrical Engineering" deals with the application of computational intelligence techniques in various areas of electrical engineering. The topics of computational intelligence applications in smart power grid optimization, power distribution system protection, and electrical machine design and control optimization are presented in the Special Issue. The co-simulation approach to metaheuristic optimization methods and simulation tools for a power system analysis are also presented. The main computational intelligence techniques, evolutionary optimization, fuzzy inference system, and an artificial neural network are used in the research presented in the Special Issue. The articles published in this issue present the recent trends in computational intelligence applications in the areas of electrical engineering

    Evolution of Controllers for the Speed Control in Thyristor Fed Induction Motor Drive

    Get PDF
    Induction Motors (IMs) are now becoming the pillar of almost all the motoring applications related to the industry and household. The practical applications of IMs usually require constant motoring speed. As a result, different types of control systems for IM's speed controlling have been shaped. One of the important techniques is the utilization of thyristor fed drive. Although, the thyristor fed induction motor drive (TFIMD) offers stable speed performance, the practical speed control demand is much more precise. Hence, this drive system utilizes additional controllers to attain precise speed for practical applications. This paper offers a detailed review of the controllers utilized with the thyristor fed IM drive in the past few decades to achieve good speed control performance. The clear intent of the paper is to provide a comprehensible frame of the pros and cons of the existing controllers developed for the TFIMD speed control requirements. Keywords: Thyristor Fed Drives, Induction Motors, Speed Controller, Conventional Controllers, and Soft Computing Techniques

    PSO BASED TAKAGI-SUGENO FUZZY PID CONTROLLER DESIGN FOR SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

    Get PDF
    A permanent magnet synchronous motor (PMSM) is one kind of popular motor. They are utilized in industrial applications because their abilities included operation at a constant speed, no need for an excitation current, no rotor losses, and small size. In the following paper, a fuzzy evolutionary algorithm is combined with a proportional-integral-derivative (PID) controller to control the speed of a PMSM. In this structure, to overcome the PMSM challenges, including nonlinear nature, cross-coupling, air gap flux, and cogging torque in operation, a Takagi-Sugeno fuzzy logic-PID (TSFL-PID) controller is designed. Additionally, the particle swarm optimization (PSO) algorithm is developed to optimize the membership functions' parameters and rule bases of the fuzzy logic PID controller. For evaluating the proposed controller's performance, the genetic algorithm (GA), as another evolutionary algorithm, is incorporated into the fuzzy PID controller. The results of the speed control of PMSM are compared. The obtained results demonstrate that although both controllers have excellent performance; however, the PSO based TSFL-PID controller indicates more superiority

    MOCHIO: a novel Multi-Objective Coronavirus Herd Immunity Optimization algorithm for solving brushless direct current wheel motor design optimization problem

    Get PDF
    A prominent and realistic problem in magnetics is the optimal design of a brushless direct current (BLDC) motor. A key challenge is designing a BLDC motor to function efficiently with a minimum cost of materials to achieve maximum efficiency. Recently, a new metaheuristic optimization algorithm called the Coronavirus Herd Immunity Optimizer (CHIO) is reported for solving global optimization problems. The inspiration for this technique derives from the idea of herd immunity as a way of combating the coronavirus pandemic. A variant of CHIO called Multi-Objective Coronavirus Herd Immunity Optimizer (MOCHIO) is proposed in this paper, and it is applied to optimize the BLDC motor design optimization problem. A static penalty constraint handling is introduced to handle the constraints, and a fuzzy-based membership function has been introduced to find the best compromise results. The BLDC motor design problem has two main objectives: minimizing the motor mass and maximizing the efficiency with five constraints and five decision/design variables. First, MOCHIO is tested with benchmark functions and then applied to the BLDC motor design problem. The experimental results are compared with other competitors are presented to confirm the viability and dominance of the MOCHIO. Further, six performance metrics are calculated for all algorithms to assess the performances

    Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems

    Get PDF
    Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the swarm intelligence family, is known to effectively solve large-scale nonlinear optimization problems. This paper presents a detailed overview of the basic concepts of PSO and its variants. Also, it provides a comprehensive survey on the power system applications that have benefited from the powerful nature of PSO as an optimization technique. For each application, technical details that are required for applying PSO, such as its type, particle formulation (solution representation), and the most efficient fitness functions are also discussed

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used

    Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine

    Get PDF
    Optimal performance of the electric machine/drive system is mandatory to improve the energy consumption and reliability. To achieve this goal, mathematical models of the electric machine/drive system are necessary. Hence, this motivated the editors to instigate the Special Issue “Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine”, aiming to collect novel publications that push the state-of-the art towards optimal performance for the electric machine/drive system. Seventeen papers have been published in this Special Issue. The published papers focus on several aspects of the electric machine/drive system with respect to the mathematical modelling. Novel optimization methods, control approaches, and comparative analysis for electric drive system based on various electric machines were discussed in the published papers

    An overview of artificial intelligence applications for power electronics

    Get PDF
    corecore