19,568 research outputs found

    A State-of-the-art Integrated Transportation Simulation Platform

    Full text link
    Nowadays, universities and companies have a huge need for simulation and modelling methodologies. In the particular case of traffic and transportation, making physical modifications to the real traffic networks could be highly expensive, dependent on political decisions and could be highly disruptive to the environment. However, while studying a specific domain or problem, analysing a problem through simulation may not be trivial and may need several simulation tools, hence raising interoperability issues. To overcome these problems, we propose an agent-directed transportation simulation platform, through the cloud, by means of services. We intend to use the IEEE standard HLA (High Level Architecture) for simulators interoperability and agents for controlling and coordination. Our motivations are to allow multiresolution analysis of complex domains, to allow experts to collaborate on the analysis of a common problem and to allow co-simulation and synergy of different application domains. This paper will start by presenting some preliminary background concepts to help better understand the scope of this work. After that, the results of a literature review is shown. Finally, the general architecture of a transportation simulation platform is proposed

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    Introduction to IntelliSIM 1.0

    Get PDF
    IntelliSIM is a prototype for a new generation of knowledge-based simulation tool that has been developed by the Systems Simulation Laboratory at Arizona State University. This tool is a computer environment that allows non-simulation trained modelers to predict the performance of a manufacturing system for which the necessary data is available. The system provides predictive data on such items as throughput time, queue levels, equipment utilization, reactions to machine failures, etc. With IntelliSIM, the benefits of discrete-event simulation can be exploited without requiring the high level of expertise necessary to successfully conduct a sound simulation study. The approach offered with IntelliSIM is one which will offer substantial savings over currently available simulation tools. This document is Version 1 (1992) of the user manual for the IntelliSIM software

    Introduction to IntelliSIM 1.0

    Get PDF
    IntelliSIM is a prototype for a new generation of knowledge-based simulation tool that has been developed by the Systems Simulation Laboratory at Arizona State University. This tool is a computer environment that allows non-simulation trained modelers to predict the performance of a manufacturing system for which the necessary data is available. The system provides predictive data on such items as throughput time, queue levels, equipment utilization, reactions to machine failures, etc. With IntelliSIM, the benefits of discrete-event simulation can be exploited without requiring the high level of expertise necessary to successfully conduct a sound simulation study. The approach offered with IntelliSIM is one which will offer substantial savings over currently available simulation tools. This document is Version 1 (1992) of the user manual for the IntelliSIM software

    Automation and Integration in Semiconductor Manufacturing

    Get PDF

    A First Approach on Modelling Staff Proactiveness in Retail Simulation Models

    Get PDF
    There has been a noticeable shift in the relative composition of the industry in the developed countries in recent years; manufacturing is decreasing while the service sector is becoming more important. However, currently most simulation models for investigating service systems are still built in the same way as manufacturing simulation models, using a process-oriented world view, i.e. they model the flow of passive entities through a system. These kinds of models allow studying aspects of operational management but are not well suited for studying the dynamics that appear in service systems due to human behaviour. For these kinds of studies we require tools that allow modelling the system and entities using an object-oriented world view, where intelligent objects serve as abstract \'actors\' that are goal directed and can behave proactively. In our work we combine process-oriented discrete event simulation modelling and object-oriented agent based simulation modelling to investigate the impact of people management practices on retail productivity. In this paper, we reveal in a series of experiments what impact considering proactivity can have on the output accuracy of simulation models of human centric systems. The model and data we use for this investigation are based on a case study in a UK department store. We show that considering proactivity positively influences the validity of these kinds of models and therefore allows analysts to make better recommendations regarding strategies to apply people management practices.Retail Performance, Management Practices, Proactive Behaviour, Service Experience, Agent-Based Modelling, Simulation

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure
    corecore