60 research outputs found

    Evaluating the Effectiveness of tutorial dialogue instruction in a Explotary learning context

    Get PDF
    [Proceedings of] ITS 2006, 8th International Conference on Intelligent Tutoring Systems, 26-30 June 2006, Jhongli, Taoyuan County, TaiwanIn this paper we evaluate the instructional effectiveness of tutorial dialogue agents in an exploratory learning setting. We hypothesize that the creative nature of an exploratory learning environment creates an opportunity for the benefits of tutorial dialogue to be more clearly evidenced than in previously published studies. In a previous study we showed an advantage for tutorial dialogue support in an exploratory learning environment where that support was administered by human tutors [9]. Here, using a similar experimental setup and materials, we evaluate the effectiveness of tutorial dialogue agents modeled after the human tutors from that study. The results from this study provide evidence of a significant learning benefit of the dialogue agentsThis project is supported by ONR Cognitive and Neural Sciences Division, Grant number N000140410107proceedingPublicad

    ActiveAI: Introducing AI Literacy for Middle School Learners with Goal-based Scenario Learning

    Full text link
    The ActiveAI project addresses key challenges in AI education for grades 7-9 students by providing an engaging AI literacy learning experience based on the AI4K12 knowledge framework. Utilizing learning science mechanisms such as goal-based scenarios, immediate feedback, project-based learning, and intelligent agents, the app incorporates a variety of learner inputs like sliders, steppers, and collectors to enhance understanding. In these courses, students work on real-world scenarios like analyzing sentiment in social media comments. This helps them learn to effectively engage with AI systems and develop their ability to evaluate AI-generated output. The Learning Engineering Process (LEP) guided the project's creation and data instrumentation, focusing on design and impact. The project is currently in the implementation stage, leveraging the intelligent tutor design principles for app development. The extended abstract presents the foundational design and development, with further evaluation and research to be conducted in the future

    Ruffle&Riley: Towards the Automated Induction of Conversational Tutoring Systems

    Full text link
    Conversational tutoring systems (CTSs) offer learning experiences driven by natural language interaction. They are known to promote high levels of cognitive engagement and benefit learning outcomes, particularly in reasoning tasks. Nonetheless, the time and cost required to author CTS content is a major obstacle to widespread adoption. In this paper, we introduce a novel type of CTS that leverages the recent advances in large language models (LLMs) in two ways: First, the system induces a tutoring script automatically from a lesson text. Second, the system automates the script orchestration via two LLM-based agents (Ruffle&Riley) with the roles of a student and a professor in a learning-by-teaching format. The system allows a free-form conversation that follows the ITS-typical inner and outer loop structure. In an initial between-subject online user study (N = 100) comparing Ruffle&Riley to simpler QA chatbots and reading activity, we found no significant differences in post-test scores. Nonetheless, in the learning experience survey, Ruffle&Riley users expressed higher ratings of understanding and remembering and further perceived the offered support as more helpful and the conversation as coherent. Our study provides insights for a new generation of scalable CTS technologies.Comment: NeurIPS'23 GAIED, Camera-read

    Affect and believability in game characters:a review of the use of affective computing in games

    Get PDF
    Virtual agents are important in many digital environments. Designing a character that highly engages users in terms of interaction is an intricate task constrained by many requirements. One aspect that has gained more attention recently is the effective dimension of the agent. Several studies have addressed the possibility of developing an affect-aware system for a better user experience. Particularly in games, including emotional and social features in NPCs adds depth to the characters, enriches interaction possibilities, and combined with the basic level of competence, creates a more appealing game. Design requirements for emotionally intelligent NPCs differ from general autonomous agents with the main goal being a stronger player-agent relationship as opposed to problem solving and goal assessment. Nevertheless, deploying an affective module into NPCs adds to the complexity of the architecture and constraints. In addition, using such composite NPC in games seems beyond current technology, despite some brave attempts. However, a MARPO-type modular architecture would seem a useful starting point for adding emotions

    Learning about Online Learning Processes and Students' Motivation through Web Usage Mining

    Get PDF

    Efficient Classification of Student Help Requests in Programming Courses Using Large Language Models

    Full text link
    The accurate classification of student help requests with respect to the type of help being sought can enable the tailoring of effective responses. Automatically classifying such requests is non-trivial, but large language models (LLMs) appear to offer an accessible, cost-effective solution. This study evaluates the performance of the GPT-3.5 and GPT-4 models for classifying help requests from students in an introductory programming class. In zero-shot trials, GPT-3.5 and GPT-4 exhibited comparable performance on most categories, while GPT-4 outperformed GPT-3.5 in classifying sub-categories for requests related to debugging. Fine-tuning the GPT-3.5 model improved its performance to such an extent that it approximated the accuracy and consistency across categories observed between two human raters. Overall, this study demonstrates the feasibility of using LLMs to enhance educational systems through the automated classification of student needs

    Share data treatment and analysis processes inTechnology enhanced learning

    No full text
    International audienceIn the context of our research team (multidisciplinary with numerous and various TEL systems), we have been working during the last three years on the design and implementation of an open platform to collect, save and share experimental data drawn from the interaction with TEL systems, which could build, save and share analysis processes executed on these data. From our point of view both data and analysis processes are worth to be stored and shared, and moreover have to be joined in a unique repository to get the whole picture. This communication presents the analysis processes part of the project. Sharing analysis processes, i.e. the whole complex process, is rather unusual, whereas contemporary platforms or software already propose generic algorithms to work on data (for instance with a statistical point of view or a data mining point of view). Hence, we attempt to model the main concepts of global treatments for experimental data analysis in order to collect, execute, save and then share them in a platform, dedicated to TEL Systems. The execution part is the most difficult and constraining part of our work. This needs to be implemented with a complex architecture. An important part of the communication is so devoted to the description of the architecture, and to the link between the global point of view of the whole process and the local point of view of elementary or specific algorithms used during the process. A short, but realistic, example of application of our platform is given, with the definition of a global process and the definition of an elementary algorithm used in the global process. The process is executed on real data leading to a graphical display of results, which are then briefly analyzed

    Integrating Socially Assistive Robots into Language Tutoring Systems. A Computational Model for Scaffolding Young Children's Foreign Language Learning

    Get PDF
    Schodde T. Integrating Socially Assistive Robots into Language Tutoring Systems. A Computational Model for Scaffolding Young Children's Foreign Language Learning. Bielefeld: Universität Bielefeld; 2019.Language education is a global and important issue nowadays, especially for young children since their later educational success build on it. But learning a language is a complex task that is known to work best in a social interaction and, thus, personalized sessions tailored to the individual knowledge and needs of each child are needed to allow for teachers to optimally support them. However, this is often costly regarding time and personnel resources, which is one reasons why research of the past decades investigated the benefits of Intelligent Tutoring Systems (ITSs). But although ITSs can help out to provide individualized one-on-one tutoring interactions, they often lack of social support. This dissertation provides new insights on how a Socially Assistive Robot (SAR) can be employed as a part of an ITS, building a so-called "Socially Assistive Robot Tutoring System" (SARTS), to provide social support as well as to personalize and scaffold foreign language learning for young children in the age of 4-6 years. As basis for the SARTS a novel approach called A-BKT is presented, which allows to autonomously adapt the tutoring interaction to the children's individual knowledge and needs. The corresponding evaluation studies show that the A-BKT model can significantly increase student's learning gains and maintain a higher engagement during the tutoring interaction. This is partly due to the models ability to simulate the influences of potential actions on all dimensions of the learning interaction, i.e., the children's learning progress (cognitive learning), affective state, engagement (affective learning) and believed knowledge acquisition (perceived learning). This is particularly important since all dimensions are strongly interconnected and influence each other, for example, a low engagement can cause bad learning results although the learner is already quite proficient. However, this also yields the necessity to not only focus on the learner's cognitive learning but to equally support all dimensions with appropriate scaffolding actions. Therefore an extensive literature review, observational video recordings and expert interviews were conducted to find appropriate actions applicable for a SARTS to support each learning dimension. The subsequent evaluation study confirms that the developed scaffolding techniques are able to support young children’s learning process either by re-engaging them or by providing transparency to support their perception of the learning process and to reduce uncertainty. Finally, based on educated guesses derived from the previous studies, all identified strategies are integrated into the A-BKT model. The resulting model called ProTM is evaluated by simulating different learner types, which highlight its ability to autonomously adapt the tutoring interactions based on the learner's answers and provided dis-engagement cues. Summarized, this dissertation yields new insights into the field of SARTS to provide personalized foreign language learning interactions for young children, while also rising new important questions to be studied in the future
    • …
    corecore