333 research outputs found

    Intelligent Torque Vectoring Approach For Electric Vehicles With Per-Wheel Motors

    Get PDF
    Transport electrification is currently a priority for authorities, manufacturers, and research centers around the world. The development of electric vehicles and the improvement of their functionalities are key elements in this strategy. As a result, there is a need for further research in emission reduction, efficiency improvement, or dynamic handling approaches. In order to achieve these objectives, the development of suitable Advanced Driver-Assistance Systems (ADAS) is required. Although traditional control techniques have been widely used for ADAS implementation, the complexity of electric multimotor powertrains makes intelligent control approaches appropriate for these cases. In this work, a novel intelligent Torque Vectoring (TV) system, composed of a neuro-fuzzy vertical tire forces estimator and a fuzzy yaw moment controller, is proposed, which allows enhancing the dynamic behaviour of electric multimotor vehicles. The proposed approach is compared with traditional strategies using the high fidelity vehicle dynamics simulator Dynacar. Results show that the proposed intelligent Torque Vectoring system is able to increase the efficiency of the vehicle by 10%, thanks to the optimal torque distribution and the use of a neuro-fuzzy vertical tire forces estimator which provides 3 times more accurate estimations than analytical approaches.The research leading to these results has been supported by the ECSEL Joint Undertaking under Grant agreement no. 662192 (3Ccar). This Joint Undertaking receives support from the European Union Horizon 2020 research and innovation program and the ECSEL member states

    Intelligent Torque Vectoring Approach for Electric Vehicles with Per-Wheel Motors

    Get PDF
    Transport electrification is currently a priority for authorities, manufacturers, and research centers around the world. The development of electric vehicles and the improvement of their functionalities are key elements in this strategy. As a result, there is a need for further research in emission reduction, efficiency improvement, or dynamic handling approaches. In order to achieve these objectives, the development of suitable Advanced Driver-Assistance Systems (ADAS) is required. Although traditional control techniques have been widely used for ADAS implementation, the complexity of electric multimotor powertrains makes intelligent control approaches appropriate for these cases. In this work, a novel intelligent Torque Vectoring (TV) system, composed of a neuro-fuzzy vertical tire forces estimator and a fuzzy yaw moment controller, is proposed, which allows enhancing the dynamic behaviour of electric multimotor vehicles. The proposed approach is compared with traditional strategies using the high fidelity vehicle dynamics simulator Dynacar. Results show that the proposed intelligent Torque Vectoring system is able to increase the efficiency of the vehicle by 10%, thanks to the optimal torque distribution and the use of a neuro-fuzzy vertical tire forces estimator which provides 3 times more accurate estimations than analytical approaches.The research leading to these results has been supported by the ECSEL Joint Undertaking under Grant agreement no. 662192 (3Ccar).This Joint Undertaking receives support from the European Union Horizon 2020 research and innovation program and the ECSEL member states

    A state-of-the-art review on torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains

    Get PDF
    © 2019, Levrotto and Bella. All rights reserved. Electric vehicles are the future of private passenger transportation. However, there are still several technological barriers that hinder the large scale adoption of electric vehicles. In particular, their limited autonomy motivates studies on methods for improving the energy efficiency of electric vehicles so as to make them more attractive to the market. This paper provides a concise review on the current state-of-the-art of torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains (FEVIADs). Starting from the operating principles, which include the "control allocation" problem, the peculiarities of each proposed solution are illustrated. All the existing techniques are categorized based on a selection of parameters deemed relevant to provide a comprehensive overview and understanding of the topic. Finally, future concerns and research perspectives for FEVIAD are discussed

    Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles

    Get PDF
    The combination of machine learning and heterogeneous embedded platforms enables new potential for developing sophisticated control concepts which are applicable to the field of vehicle dynamics and ADAS. This interdisciplinary work provides enabler solutions -ultimately implementing fast predictions using neural networks (NNs) on field programmable gate arrays (FPGAs) and graphical processing units (GPUs)- while applying them to a challenging application: Torque Vectoring on a multi-electric-motor vehicle for enhanced vehicle dynamics. The foundation motivating this work is provided by discussing multiple domains of the technological context as well as the constraints related to the automotive field, which contrast with the attractiveness of exploiting the capabilities of new embedded platforms to apply advanced control algorithms for complex control problems. In this particular case we target enhanced vehicle dynamics on a multi-motor electric vehicle benefiting from the greater degrees of freedom and controllability offered by such powertrains. Considering the constraints of the application and the implications of the selected multivariable optimization challenge, we propose a NN to provide batch predictions for real-time optimization. This leads to the major contribution of this work: efficient NN implementations on two intrinsically parallel embedded platforms, a GPU and a FPGA, following an analysis of theoretical and practical implications of their different operating paradigms, in order to efficiently harness their computing potential while gaining insight into their peculiarities. The achieved results exceed the expectations and additionally provide a representative illustration of the strengths and weaknesses of each kind of platform. Consequently, having shown the applicability of the proposed solutions, this work contributes valuable enablers also for further developments following similar fundamental principles.Some of the results presented in this work are related to activities within the 3Ccar project, which has received funding from ECSEL Joint Undertaking under grant agreement No. 662192. This Joint Undertaking received support from the European Union’s Horizon 2020 research and innovation programme and Germany, Austria, Czech Republic, Romania, Belgium, United Kingdom, France, Netherlands, Latvia, Finland, Spain, Italy, Lithuania. This work was also partly supported by the project ENABLES3, which received funding from ECSEL Joint Undertaking under grant agreement No. 692455-2

    On Nonlinear Model Predictive Control for Energy-Efficient Torque-Vectoring

    Get PDF
    A recently growing literature discusses the topics of direct yaw moment control based on model predictive control (MPC), and energy-efficient torque-vectoring (TV) for electric vehicles with multiple powertrains. To reduce energy consumption, the available TV studies focus on the control allocation layer, which calculates the individual wheel torque levels to generate the total reference longitudinal force and direct yaw moment, specified by higher level algorithms to provide the desired longitudinal and lateral vehicle dynamics. In fact, with a system of redundant actuators, the vehicle-level objectives can be achieved by distributing the individual control actions to minimize an optimality criterion, e.g., based on the reduction of different power loss contributions. However, preliminary simulation and experimental studies – not using MPC – show that further important energy savings are possible through the appropriate design of the reference yaw rate. This paper presents a nonlinear model predictive control (NMPC) implementation for energy-efficient TV, which is based on the concurrent optimization of the reference yaw rate and wheel torque allocation. The NMPC cost function weights are varied through a fuzzy logic algorithm to adaptively prioritize vehicle dynamics or energy efficiency, depending on the driving conditions. The results show that the adaptive NMPC configuration allows stable cornering performance with lower energy consumption than a benchmarking fuzzy logic TV controller using an energy-efficient control allocation layer

    Real-time multi-domain optimization controller for multi-motor electric vehicles using automotive-suitable methods and heterogeneous embedded platforms

    Get PDF
    Los capítulos 2,3 y 7 están sujetos a confidencialidad por el autor. 145 p.In this Thesis, an elaborate control solution combining Machine Learning and Soft Computing techniques has been developed, targeting a chal lenging vehicle dynamics application aiming to optimize the torque distribution across the wheels with four independent electric motors.The technological context that has motivated this research brings together potential -and challenges- from multiple dom ains: new automotive powertrain topologies with increased degrees of freedom and controllability, which can be approached with innovative Machine Learning algorithm concepts, being implementable by exploiting the computational capacity of modern heterogeneous embedded platforms and automated toolchains. The complex relations among these three domains that enable the potential for great enhancements, do contrast with the fourth domain in this context: challenging constraints brought by industrial aspects and safe ty regulations. The innovative control architecture that has been conce ived combines Neural Networks as Virtual Sensor for unmeasurable forces , with a multi-objective optimization function driven by Fuzzy Logic , which defines priorities basing on the real -time driving situation. The fundamental principle is to enhance vehicle dynamics by implementing a Torque Vectoring controller that prevents wheel slip using the inputs provided by the Neural Network. Complementary optimization objectives are effici ency, thermal stress and smoothness. Safety -critical concerns are addressed through architectural and functional measures.Two main phases can be identified across the activities and milestones achieved in this work. In a first phase, a baseline Torque Vectoring controller was implemented on an embedded platform and -benefiting from a seamless transition using Hardware-in -the -Loop - it was integrated into a real Motor -in -Wheel vehicle for race track tests. Having validated the concept, framework, methodology and models, a second simulation-based phase proceeds to develop the more sophisticated controller, targeting a more capable vehicle, leading to the final solution of this work. Besides, this concept was further evolved to support a joint research work which lead to outstanding FPGA and GPU based embedded implementations of Neural Networks. Ultimately, the different building blocks that compose this work have shown results that have met or exceeded the expectations, both on technical and conceptual level. The highly non-linear multi-variable (and multi-objective) control problem was tackled. Neural Network estimations are accurate, performance metrics in general -and vehicle dynamics and efficiency in particular- are clearly improved, Fuzzy Logic and optimization behave as expected, and efficient embedded implementation is shown to be viable. Consequently, the proposed control concept -and the surrounding solutions and enablers- have proven their qualities in what respects to functionality, performance, implementability and industry suitability.The most relevant contributions to be highlighted are firstly each of the algorithms and functions that are implemented in the controller solutions and , ultimately, the whole control concept itself with the architectural approaches it involves. Besides multiple enablers which are exploitable for future work have been provided, as well as an illustrative insight into the intricacies of a vivid technological context, showcasing how they can be harmonized. Furthermore, multiple international activities in both academic and professional contexts -which have provided enrichment as well as acknowledgement, for this work-, have led to several publications, two high-impact journal papers and collateral work products of diverse nature

    고성능 한계 핸들링을 위한 인휠모터 토크벡터링 제어

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 기계항공공학부, 2021.8. 이경수.지난 10년 동안 차량 자세 제어시스템(ESC)은 치명적인 충돌을 방지하기 위해 많은 상용 차량에서 비약적으로 발전되고 개발되고 있다. 특히, 차량 자세 제어 시스템은 악천후로 인한 미끄러운 도로와 같은 위험한 도로에서 불안정한 차량 주행 조건에서 사고를 피하는데 큰 역할을 한다. 그러나, 최근의 경우, 고성능 차량 또는 스포츠카 등의 경우 제동제어의 빈번한 개입은 운전의 즐거움을 감소시키는 불만도 존재한다. 최근 차량의 전동화와 함께, 자량 자세 제어시스템의 작동 영역인 한계 주행 핸들링 조건에서 각 휠의 독립적인 구동을 적용 할 수 있는 시스템 중 하나인 인휠 모터 시스템을 사용하여 차량의 종, 횡방향 특성을 제어 가능하게 하는 토크 벡터링 제어기술에 대한 연구가 활발하다. 따라서, 본 연구에서는 차량의 선회 한계 핸들링 조건에서 안정성과 주행 다이나믹 성능을 향상시킬 수 있는 토크 벡터링 제어기를 제안하고자 한다. 먼저, 차량의 비선형 주행 구간인 한계 핸들링 조건에 대한 자동 드리프트 제어 알고리즘을 제안한다. 이 알고리즘을 이용하여 토크벡터링제어에 차량의 다이나믹한 주행모드에 대한 통찰력을 제공하고 미끄러운 도로에서 차량의 높은 슬립 각도의 안정성 제어를 제공 할 수 있다. 또한, 인휠 모터 시스템을 차량의 전륜에 2개 모터로 사용하여 차량 고유의 특성인 차량 언더스티어 구배를 직접적 제어를 수행하여, 차량의 핸들링 성능을 향상시켰다. 제어기의 채터링 효과를 줄이고 빠른 응답을 얻기 위해 새로운 과도 매개 변수가 이용하여 수식화하여 구성하였으며, 차량의 정상 상태 및 과도 특성 향상을 검증하기 위하여 ISO 기반 시뮬레이션 및 차량 실험을 수행하였다. 마지막으로 요 제어기와 횡 슬립 각도 제어기로 구성된 MASMC (Multiple Adaptive Sliding Mode Control) 접근 방식을 사용하는 4륜 모터 시스템을 사용한 동적 토크벡터링 제어를 수행하였다. 높은 비선형 특성을 가진 차량의 전후륜 타이어의 코너링 강성은 적응제어기법을 이용하여 예측하였다. 따라서, 안전모드와 다이나믹 모드를 구성하여, 운전자로 하여금 원하는 주행의 조건에 맞게 선택할 수 있는 알고리즘을 구현하였다. 이 MASMC 알고리즘은 향후 전동화 차량에 주행안정성 향상과 다이나믹한 주행의 즐거움을 주는 기술로써, 전차량 시뮬레이션을 이용하여 검증하였다.In the last ten decades, vehicle stability control systems have been dramatically developed and adapted in many commercial vehicles to avoid fatal crashes. Significantly, ESC (Electric Stability Control) system can help escape the accident from unstable driving conditions with dangerous roads such as slippery roads due to inclement weather conditions. However, for the high performed vehicle, frequent intervention from ESC reduces the pleasure of fun-to-drive. Recently, the development of traction control technologies has been taking place with that of the electrification of vehicles. The IWMs (In-Wheel Motor system), which is one of the systems that can apply independent drive of each wheel, for the limit handling characteristics, which are the operation areas of the ESC, is introduced for the control that enables the lateral characteristics of the vehicle dynamics. Firstly, the automated drift control algorithm can be proposed for the nonlinear limit handling condition of vehicles. This approach can give an insight of fun-to-drive mode to TV (Torque Vector) control scheme, but also the stability control of high sideslip angle of the vehicle on slippery roads. Secondly, using IWMs system with front two motors, understeer gradient of vehicle, which is the unique characteristics of vehicle can be used for the proposed control strategy. A new transient parameter is formulated to be acquired rapid response of controller and reducing chattering effects. Simulation and vehicle tests are conducted for validation of TV control algorithm with steady-state and transient ISO-based tests. Finally, dynamic torque vectoring control with a four-wheel motor system with Multiple Adaptive Sliding Mode Control (MASMC) approach, which is composed of a yaw rate controller and sideslip angle controller, is introduced. Highly nonlinear characteristics, cornering stiffnesses of front and rear tires are estimated by adaptation law with measuring data. Consequently, there are two types of driving modes, the safety mode and the dynamic mode. MASMC algorithm can be found and validated by simulation in torque vectoring technology to improve the handling performance of fully electric vehicles.Chapter 1 Introduction 7 1.1. Background and Motivation 7 1.2. Literature review 11 1.3. Thesis Objectives 15 1.4. Thesis Outline 15 Chapter 2 Vehicle dynamic control at limit handling 17 2.1. Vehicle Model and Analysis 17 2.1.1. Lateral dynamics of vehicle 17 2.1.2. Longitudinal dynamics of vehicle 20 2.2. Tire Model 24 2.3. Analysis of vehicle drift for fun-to-drive 28 2.4. Designing A Controller for Automated Drift 34 2.4.1. Lateral controller 35 2.4.2. Longitudinal Controller 37 2.4.3. Stability Analysis 39 2.4.4. Validation with simulation and test 40 Chapter 3 Torque Vectoring Control with Front Two Motor In-Wheel Vehicles 47 3.1. Dynamic Torque Vectoring Control 48 3.1.1. In-wheel motor system (IWMs) 48 3.1.2. Dynamic system modeling 49 3.1.3. Designing controller 53 3.2. Validation with Simulation and Experiment 59 3.2.1. Simulation 59 3.2.2. Vehicle Experiment 64 Chapter 4 Dynamic handling control for Four-wheel Drive In-Wheel platform 75 4.1. Vehicle System Modeling 76 4.2. Motion Control based on MASMC 78 4.2.1. Yaw motion controller for the inner ASMC 80 4.2.2. Sideslip angle controller for the outer ASMC 84 4.3. Optimal Torque Distribution (OTD) 88 4.3.1. Constraints of dynamics 88 4.3.2. Optimal torque distribution law 90 4.4. Validation with Simulation 91 4.4.1. Simulation setup 91 4.4.2. Simulation results 92 Chapter 5 Conclusion and Future works 104 5.1 Conclusion 104 5.2 Future works 106 Bibliography 108 Abstract in Korean 114박

    Real-time multi-domain optimization controller for multi-motor electric vehicles using automotive-suitable methods and heterogeneous embedded platforms

    Get PDF
    Los capítulos 2,3 y 7 están sujetos a confidencialidad por el autor. 145 p.In this Thesis, an elaborate control solution combining Machine Learning and Soft Computing techniques has been developed, targeting a chal lenging vehicle dynamics application aiming to optimize the torque distribution across the wheels with four independent electric motors.The technological context that has motivated this research brings together potential -and challenges- from multiple dom ains: new automotive powertrain topologies with increased degrees of freedom and controllability, which can be approached with innovative Machine Learning algorithm concepts, being implementable by exploiting the computational capacity of modern heterogeneous embedded platforms and automated toolchains. The complex relations among these three domains that enable the potential for great enhancements, do contrast with the fourth domain in this context: challenging constraints brought by industrial aspects and safe ty regulations. The innovative control architecture that has been conce ived combines Neural Networks as Virtual Sensor for unmeasurable forces , with a multi-objective optimization function driven by Fuzzy Logic , which defines priorities basing on the real -time driving situation. The fundamental principle is to enhance vehicle dynamics by implementing a Torque Vectoring controller that prevents wheel slip using the inputs provided by the Neural Network. Complementary optimization objectives are effici ency, thermal stress and smoothness. Safety -critical concerns are addressed through architectural and functional measures.Two main phases can be identified across the activities and milestones achieved in this work. In a first phase, a baseline Torque Vectoring controller was implemented on an embedded platform and -benefiting from a seamless transition using Hardware-in -the -Loop - it was integrated into a real Motor -in -Wheel vehicle for race track tests. Having validated the concept, framework, methodology and models, a second simulation-based phase proceeds to develop the more sophisticated controller, targeting a more capable vehicle, leading to the final solution of this work. Besides, this concept was further evolved to support a joint research work which lead to outstanding FPGA and GPU based embedded implementations of Neural Networks. Ultimately, the different building blocks that compose this work have shown results that have met or exceeded the expectations, both on technical and conceptual level. The highly non-linear multi-variable (and multi-objective) control problem was tackled. Neural Network estimations are accurate, performance metrics in general -and vehicle dynamics and efficiency in particular- are clearly improved, Fuzzy Logic and optimization behave as expected, and efficient embedded implementation is shown to be viable. Consequently, the proposed control concept -and the surrounding solutions and enablers- have proven their qualities in what respects to functionality, performance, implementability and industry suitability.The most relevant contributions to be highlighted are firstly each of the algorithms and functions that are implemented in the controller solutions and , ultimately, the whole control concept itself with the architectural approaches it involves. Besides multiple enablers which are exploitable for future work have been provided, as well as an illustrative insight into the intricacies of a vivid technological context, showcasing how they can be harmonized. Furthermore, multiple international activities in both academic and professional contexts -which have provided enrichment as well as acknowledgement, for this work-, have led to several publications, two high-impact journal papers and collateral work products of diverse nature

    Advanced electric vehicle components for long-distance daily trips

    Get PDF
    This paper introduces a holistic engineering approach for the design of an electric sport utility vehicle focused on the reliable capability of long-distance daily trips. This approach is targeting integration of advanced powertrain and chassis components to achieve energy-efficient driving dynamics through manifold contribution of their improved functions. The powertrain layout of the electric vehicle under discussion is designed for an e-traction axle system including in-wheel motors and the dual inverter. The main elements of the chassis layout are the electro-magnetic suspension and the hybrid brake-by-wire system with electro-hydraulic actuators on the front axle and the electro-mechanical actuators on the rear axle. All the listed powertrain and chassis components are united under an integrated vehicle dynamics and energy management control strategy that is also outlined in the paper. The study is illustrated with the experimental results confirming the achieved high performance on the electric vehicle systems level

    Torque Vectoring Predictive Control of a Four In-Wheel Motor Drive Electric Vehicle

    Get PDF
    The recent integration of vehicles with electrified powertrains in the automotive sector provides higher energy efficiency, lower pollution levels and increased controllability. These features have led to an increasing interest in the development of Advanced Driver- Assistance Systems (ADAS) that enhance not only the vehicle dynamic behaviour, but also its efficiency and energy consumption. This master’s thesis presents some contributions to the vehicle modeling, parameter estimation, model predictive control and reference generation applied to electric vehicles, paying particular attention to both model and controller validation, leveraging offline simulations and a real-time driving simulator. The objective of this project is focused on the Nonlinear Model Predictive Controller (NMPC) technique developing torque distribution strategies, specifically Torque Vectoring (TV) for a four-in wheel motor drive electric vehicle. A real-time TV-NMPC algorithm will be implemented, which maximizes the wheels torque usage and distribution to enhance vehicle stability and improve handling capabilities. In order to develop this control system, throughout this thesis the whole process carried out including the implementation requirements and considerations are described in detail. As the NMPC is a model-based approach, a nonlinear vehicle model is proposed. The vehicle model, the estimated parameters and the controller will be validated through the design of open and closed loop driving maneuvers for offline simulations performed in a simulation plant (VI-CarRealTime) and by means of a real-time driving simulator (VI-Grade Compact Simulator) to test the vehicle performance through various dynamic driving conditions
    corecore