4,014 research outputs found

    Condition monitoring of an advanced gas-cooled nuclear reactor core

    Get PDF
    A critical component of an advanced gas-cooled reactor station is the graphite core. As a station ages, the graphite bricks that comprise the core can distort and may eventually crack. Since the core cannot be replaced, the core integrity ultimately determines the station life. Monitoring these distortions is usually restricted to the routine outages, which occur every few years, as this is the only time that the reactor core can be accessed by external sensing equipment. This paper presents a monitoring module based on model-based techniques using measurements obtained during the refuelling process. A fault detection and isolation filter based on unknown input observer techniques is developed. The role of this filter is to estimate the friction force produced by the interaction between the wall of the fuel channel and the fuel assembly supporting brushes. This allows an estimate to be made of the shape of the graphite bricks that comprise the core and, therefore, to monitor any distortion on them

    Comparison of different classification algorithms for fault detection and fault isolation in complex systems

    Get PDF
    Due to the lack of sufficient results seen in literature, feature extraction and classification methods of hydraulic systems appears to be somewhat challenging. This paper compares the performance of three classifiers (namely linear support vector machine (SVM), distance-weighted k-nearest neighbor (WKNN), and decision tree (DT) using data from optimized and non-optimized sensor set solutions. The algorithms are trained with known data and then tested with unknown data for different scenarios characterizing faults with different degrees of severity. This investigation is based solely on a data-driven approach and relies on data sets that are taken from experiments on the fuel system. The system that is used throughout this study is a typical fuel delivery system consisting of standard components such as a filter, pump, valve, nozzle, pipes, and two tanks. Running representative tests on a fuel system are problematic because of the time, cost, and reproduction constraints involved in capturing any significant degradation. Simulating significant degradation requires running over a considerable period; this cannot be reproduced quickly and is costly

    Nuclear plant diagnostics using neural networks with dynamic input selection

    Get PDF
    The work presented in this dissertation explores the design and development of a large scale nuclear power plant (NPP) fault diagnostic system based on artificial neural networks (ANNs). The viability of detecting a large number of transients in a NPP using ANNs is demonstrated. A new adviser design is subsequently presented where the diagnostic task is divided into component parts, and each part is solved by an individual ANN. This new design allows the expansion of the diagnostic capabilities of an existing adviser by modifying the existing ANNs and adding new ANNs to the adviser;This dissertation also presents an architecture optimization scheme called the dynamic input selection (DIS) scheme. DIS analyzes the training data for any problem and ranks the available input variables in order of their importance to the input-output relationship. Training is initiated with the most important input and one hidden node. As the network training progresses, input and hidden nodes are added as required until the networks have learned the problem. Any hidden or input nodes that were added during training but are unnecessary for subsequent recall are now removed from the network. The DIS scheme can be applied to any ANN learning paradigm;The DIS scheme is used to train the ANNs that form the NPP fault diagnostic adviser. DIS completely eliminates any guesswork related to architecture selection, thus decreasing the time taken to train each ANN. Each ANN uses only a small subset of the available input variables that is required to solve its particular task. This reduction in the dimensionality of the problem leads to a drastic reduction in training time;Data used in this work was collected during the simulation of transients on the operator training simulator at Duane Arnold Energy Center, a boiling water reactor nuclear power plant. An adviser was developed to detect and classify 30 distinct transients based on the simulation of 47 scenarios at different severities. This adviser was then expanded to detect and classify a total of 36 transients based on the simulation of 58 transient scenarios. The noise tolerant characteristics of the adviser are demonstrated

    Computer-aided applications in process plant safety

    Get PDF
    Process plants that produce chemical products through pre-designed processes are fundamental in the Chemical Engineering industry. The safety of hazardous processing plants is of paramount importance as an accident could cause major damage to property and/or injury to people. HAZID is a computer system that helps designers and operators of process plants to identify potential design and operation problems given a process plant design. However, there are issues that need to be addressed before such a system will be accepted for common use. This research project considers how to improve the usability and acceptability of such a system by developing tools to test the developed models in order for the users to gain confidence in HAZID s output as HAZID is a model based system with a library of equipment models. The research also investigates the development of computer-aided safety applications and how they can be integrated together to extend HAZID to support different kinds of safety-related reasoning tasks. Three computer-aided tools and one reasoning system have been developed from this project. The first is called Model Test Bed, which is to test the correctness of models that have been built. The second is called Safe Isolation Tool, which is to define isolation boundary and identify potential hazards for isolation work. The third is an Instrument Checker, which lists all the instruments and their connections with process items in a process plant for the engineers to consider whether the instrument and its loop provide safeguards to the equipment during the hazard identification procedure. The fourth is a cause-effect analysis system that can automatically generate cause-effect tables for the control engineers to consider the safety design of the control of a plant as the table shows process events and corresponding process responses designed by the control engineer. The thesis provides a full description of the above four tools and how they are integrated into the HAZID system to perform control safety analysis and hazard identification in process plants

    A survey of life support system automation and control

    Get PDF
    The level of automation and control necessary to support advanced life support systems for use in the manned space program is steadily increasing. As the length and complexity of manned missions increase, life support systems must be able to meet new space challenges. Longer, more complex missions create new demands for increased automation, improved sensors, and improved control systems. It is imperative that research in these key areas keep pace with current and future developments in regenerative life support technology. This paper provides an overview of past and present research in the areas of sensor development, automation, and control of life support systems for the manned space program, and it discusses the impact continued research in several key areas will have on the feasibility, operation, and design of future life support systems

    Root Cause Analysis of Actuator Fault

    Get PDF
    This chapter develops a two-level fault diagnosis (FD) and root cause analysis (RCA) scheme for a class of interconnected invertible dynamic systems and aims at detecting and identifying actuator fault and the causes. By considering actuator as an individual dynamic subsystem connected with process dynamic subsystem in cascade, an interconnected system is then constituted. Invertibility of the interconnected system in faulty model is studied. An interconnected observer is introduced and aims at monitoring the performance of the interconnected system and providing information of actuator fault occurrence. A local fault filter algorithm is then triggered to identify the root causes of the detected actuator faults. According to real plant, outputs of the actuator subsystem are assumed inaccessible and are reconstructed by measurements of the global system, thus providing a means for monitoring and diagnosing the plant at both local and global level

    A study of the design expertise for plants handling hazardous materials

    Get PDF
    A study of the design expertise for plants handling hazardous material
    • …
    corecore